磁阻效应及磁阻传感器实验
磁阻传感器实验报告

磁阻传感器实验报告磁阻传感器实验报告引言磁阻传感器是一种常见的传感器,它能够通过测量磁场的变化来检测物体的位置、速度和方向等信息。
在本次实验中,我们将对磁阻传感器进行测试,并探讨其工作原理、应用领域以及优缺点等方面的内容。
实验目的本次实验的主要目的是通过实际操作,了解磁阻传感器的基本原理和特性,并掌握其在实际应用中的使用方法。
实验材料和仪器本次实验所需的材料和仪器包括:磁阻传感器、磁铁、电源、示波器、导线等。
实验步骤1. 将磁阻传感器连接到电源,并将示波器的探头连接到传感器的输出端口。
2. 将磁铁靠近传感器,并观察示波器上的波形变化。
3. 调整磁铁与传感器之间的距离,观察示波器上波形的变化情况。
4. 将磁铁移动到传感器的不同位置,观察示波器上波形的变化。
实验结果与分析通过实验观察,我们可以发现当磁铁靠近传感器时,示波器上的波形会发生明显的变化。
这是因为磁铁的磁场会影响传感器内部的磁阻元件,导致输出信号的变化。
当磁铁与传感器的距离增加时,波形的振幅会逐渐减小,直至消失。
这是因为磁铁的磁场强度随距离的增加而减弱,无法对传感器产生足够的影响。
根据实验结果,我们可以得出结论:磁阻传感器的输出信号与磁场的强度和方向有关,距离磁场源越近,输出信号的幅度越大。
这一特性使得磁阻传感器在许多应用领域中得到了广泛的应用。
应用领域磁阻传感器由于其灵敏度高、精度高、成本低等优点,被广泛应用于许多领域,如汽车、航空航天、机器人、医疗设备等。
在汽车领域,磁阻传感器可以用于测量转向角、车速、加速度等参数,以实现车辆的自动控制和安全性能的提升。
在航空航天领域,磁阻传感器可以用于导航、姿态控制等方面,为飞行器的精确控制提供支持。
在机器人领域,磁阻传感器可以用于测量机器人的位置和姿态,实现精确的运动控制。
在医疗设备领域,磁阻传感器可以用于监测患者的心率、血压等生理参数,为医疗诊断和治疗提供数据支持。
优缺点分析磁阻传感器作为一种常见的传感器,具有以下优点:首先,磁阻传感器的灵敏度高,能够对微小的磁场变化做出反应;其次,磁阻传感器的响应速度快,可以实时监测磁场的变化;此外,磁阻传感器的成本相对较低,易于大规模生产和应用。
物理实验要求及数据表格实验13磁阻效应

实验14磁阻效应的实验研究
专业___________________学号___________________姓名___________________
一、预习要点
了解磁阻效应的基本原理,并看懂实验装置图。
二、实验内容
1.能根据现有的实验线路图连接实验线路;
2.在InSb磁阻传感器电流或电压保持不变的条件下,测量InSb磁阻传感器的电阻与磁感应强度
的关系;
3.将电磁铁的线圈引线与正弦交流低频发生器输出端相接;InSb磁阻传感器通以2.5mA直流电,
用示波器测量磁阻传感器两端电压与电磁铁两端电压构成的李萨如图形(选做)。
三、实验注意事项
1.实验前先把仪表上的各个旋纽调至最小位置;
2.连接线路前不要开启电源;
3.实验时InSb传感器工作电流应小于3mA。
四、原始数据记录表格
组号________ 同组人姓名____________________ 成绩__________ 教师签字_______________
五、数据处理要求
用坐标纸画出磁阻传感器电阻的相对改变量与磁场的关系图()/0R R B ∆-,并求出其中强磁场下的函数关系。
六、数据处理注意事项
画图时,自变量磁场强度B 应为横坐标,()/0R R ∆为纵坐标。
应画出坐标轴,并视具体情况标注坐标轴代表的物理量及其单位的符号,坐标轴上应合理分度。
描出所有实验点,再连线(不论直线或曲线都应是光滑的),最后在合适的位置写出图名
七、思考题
1. 什么叫磁阻效应?
2. 霍尔传感器为何有磁阻效应?
3. InSb 磁阻传感器在弱磁场时和强磁场时代电阻值与磁感应强度关系有何不同?这两种特性有
什么应用?。
磁阻效应的实验报告

磁阻效应的实验报告实验目的通过实验研究磁阻效应的产生原理,了解磁阻效应对于电阻变化的影响。
实验原理磁阻效应是指材料在外加磁场作用下,电阻发生变化的现象。
根据实验材料的不同,磁阻效应可以分为正磁阻效应和负磁阻效应。
正磁阻效应对应着电阻的增加,而负磁阻效应对应着电阻的减小。
实验器材1. 磁阻效应实验装置2. 磁铁实验步骤1. 将实验装置连接好,并将其放置于稳定的起点位置。
2. 打开电源,调整磁铁的位置和方向,使之与实验装置的位置和方向重合。
3. 对实验装置进行初始磁场校准,保持电流为零,记录下此时的电阻读数。
4. 调节电源,使电流从小到大依次经过一系列数值,记录下每个电流值对应的电阻读数。
5. 根据记录的数据,绘制电流与电阻的变化曲线。
实验结果分析通过实验记录的数据,绘制出电流与电阻的变化曲线如下:
实验15 磁阻效应法测量磁场物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。
磁场的测量可利用电磁感应,霍尔效应,磁阻效应等各种效应。
其中磁阻效应法发展最快,测量灵敏度最高。
磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。
本实验研究AMR 的特性并利用它对磁场进行测量。
【实验目的】1. 了解AMR 的原理并对其特性进行实验研究。
2. 测量赫姆霍兹线圈的磁场分布。
3. 测量地磁场。
【仪器用具】ZKY-CC 各向异性磁阻传感器(AMR )与磁场测量仪【实验原理】各向异性磁阻传感器AMR (Anisotropic Magneto-Resistive sensors )由沉积在硅片上的坡莫合金(Ni 80 Fe 20)薄膜形成电阻。
沉积时外加磁场,形成易磁化轴方向。
铁磁材料的电阻与电流与磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为:θ2min max min cos )(R R R R -+= (1) 在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。
图1中,易磁化轴方向与电流方向的夹角为45度。
理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。
无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。
磁电阻效应实验报告

一、实验目的1. 理解磁电阻效应的基本原理和现象。
2. 掌握磁电阻效应实验的基本操作和数据处理方法。
3. 分析磁电阻效应在不同材料中的表现,了解其应用前景。
二、实验原理磁电阻效应是指当金属或半导体材料受到磁场作用时,其电阻值发生变化的现象。
根据磁电阻效应的原理,本实验主要分为以下三个部分:1. 磁阻效应:当磁场垂直于电流方向时,电阻值随磁场强度的增加而增加。
2. 巨磁电阻效应(GMR):在多层膜结构中,由于电子的隧穿效应,当相邻两层膜的磁化方向相反时,电阻值显著降低。
3. 隧道磁电阻效应(TMR):在隧道结中,当电子隧穿穿过绝缘层时,电阻值随磁场强度的变化而变化。
三、实验仪器与材料1. 实验仪器:磁电阻效应实验仪、磁场发生器、电流表、电压表、信号发生器、示波器、计算机等。
2. 实验材料:磁阻材料、多层膜材料、隧道结材料等。
四、实验步骤1. 磁阻效应实验:(1)将磁阻材料放置在磁场发生器中,调整磁场强度;(2)使用电流表和电压表测量电阻值;(3)记录不同磁场强度下的电阻值;(4)分析磁阻效应。
2. 巨磁电阻效应(GMR)实验:(1)将多层膜材料放置在磁场发生器中,调整磁场强度;(2)使用电流表和电压表测量电阻值;(3)记录不同磁场强度下的电阻值;(4)分析巨磁电阻效应。
3. 隧道磁电阻效应(TMR)实验:(1)将隧道结材料放置在磁场发生器中,调整磁场强度;(2)使用电流表和电压表测量电阻值;(3)记录不同磁场强度下的电阻值;(4)分析隧道磁电阻效应。
五、实验数据与结果1. 磁阻效应实验数据:磁场强度(T)电阻值(Ω)0.1 1000.2 1500.3 2000.4 2500.5 3002. 巨磁电阻效应(GMR)实验数据:磁场强度(T)电阻值(Ω)0.1 1000.2 500.3 200.4 100.5 53. 隧道磁电阻效应(TMR)实验数据:磁场强度(T)电阻值(Ω)0.1 1000.2 500.3 200.4 100.5 5六、实验分析与讨论1. 磁阻效应实验结果表明,随着磁场强度的增加,磁阻材料的电阻值逐渐增加。
磁阻效应实验报告

磁阻效应实验报告磁阻效应实验报告引言:磁阻效应是指当磁场作用于导体时,导体内的电阻会发生变化的现象。
这一现象在工业和科学领域中具有重要的应用价值。
本实验旨在通过测量磁场强度和电阻的变化关系,探究磁阻效应的原理和应用。
实验装置:本实验所用装置包括磁场发生器、导线、电流表、电压表和电源等。
磁场发生器用于产生磁场,导线则用于连接电源、电流表和电压表。
实验过程:1. 首先,将磁场发生器放置在实验台上,并连接电源。
2. 将导线绕在磁场发生器的铁芯上,确保导线与磁场发生器之间的接触良好。
3. 将电流表和电压表分别连接到导线的两端,以测量电流和电压的变化。
4. 通过调节电源的电压,使得电流表读数在合适的范围内。
5. 用磁铁靠近磁场发生器,观察电流表和电压表的读数变化。
实验结果:实验中我们记录了不同磁场强度下的电流和电压变化。
结果显示,在磁场强度增加的情况下,电流表的读数逐渐减小,而电压表的读数则逐渐增加。
这一结果表明了磁阻效应的存在。
讨论和分析:根据实验结果,我们可以得出以下结论:1. 磁阻效应是由磁场对导体内电子运动的影响所引起的。
当磁场增强时,磁场对电子的作用力也增强,从而导致电子在导体内运动的受阻,导致电流减小。
2. 磁阻效应的大小与导体的材料和几何形状有关。
不同材料和形状的导体对磁阻效应的响应程度不同。
3. 磁阻效应在实际应用中具有广泛的用途。
例如,磁阻效应可用于制造磁阻传感器,用于测量磁场强度和位置。
此外,磁阻效应还可应用于磁存储器、磁记录和磁传感等领域。
结论:通过本实验,我们深入了解了磁阻效应的原理和应用。
磁阻效应是磁场对导体内电子运动的影响,导致电流减小的现象。
磁阻效应在工业和科学领域中具有重要的应用价值,例如磁阻传感器、磁存储器等。
通过进一步研究和应用,我们可以不断发掘磁阻效应的潜力,为技术创新和进步做出贡献。
总结:本实验通过测量磁场强度和电阻的变化关系,探究了磁阻效应的原理和应用。
实验结果表明,在磁场强度增加的情况下,电流减小,电压增加,验证了磁阻效应的存在。
磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告一、实验目的1、了解磁阻传感器的工作原理和特性。
2、掌握利用磁阻传感器测量地磁场的方法。
3、学会对实验数据进行处理和分析,得出地磁场的相关参数。
二、实验原理1、磁阻效应磁阻效应是指某些金属或半导体在磁场中电阻值发生变化的现象。
磁阻传感器就是利用磁阻效应来测量磁场的。
2、地磁场地磁场是地球周围存在的磁场,其强度和方向在不同的地理位置有所不同。
地磁场可以分解为水平分量和垂直分量。
3、测量原理通过将磁阻传感器放置在不同的方向,测量磁场在不同方向上的分量,然后利用三角函数关系计算出地磁场的大小和方向。
三、实验仪器1、磁阻传感器实验仪包括磁阻传感器、亥姆霍兹线圈、数字电压表等。
2、电脑及数据采集软件四、实验步骤1、仪器连接与调试将磁阻传感器与实验仪连接好,打开电源,预热一段时间,确保仪器正常工作。
2、测量地磁场水平分量(1)将磁阻传感器水平放置,旋转传感器,使数字电压表的示数最大,此时传感器的方向即为地磁场水平分量的方向。
(2)记录此时的电压值,根据仪器的标定系数,计算出地磁场水平分量的大小。
3、测量地磁场垂直分量(1)将磁阻传感器垂直放置,同样旋转传感器,使数字电压表的示数最大。
(2)记录电压值,计算出地磁场垂直分量的大小。
4、数据记录与处理将测量得到的数据记录下来,利用三角函数计算地磁场的大小和方向。
五、实验数据|测量项目|电压值(V)|标定系数(V/T)|磁场分量大小(T)|||||||地磁场水平分量|_____ |_____ |_____ ||地磁场垂直分量|_____ |_____ |_____ |六、数据处理1、地磁场大小根据公式$B =\sqrt{B_{H}^{2} + B_{V}^{2}}$,其中$B_{H}$为地磁场水平分量,$B_{V}$为地磁场垂直分量,计算地磁场的大小。
2、地磁场方向利用反正切函数$\theta =\arctan\frac{B_{V}}{B_{H}}$计算地磁场的方向。
地磁场的测量实验报告

地磁场的测量实验报告一、实验目的地磁场是地球的重要物理场之一,它对地球的生态、通信、导航等方面都有着重要的影响。
本次实验的目的是测量地磁场的水平分量和垂直分量,并了解地磁场的基本特性。
二、实验原理1、利用磁阻传感器测量地磁场的磁感应强度磁阻传感器是一种基于磁阻效应的传感器,当磁场作用于磁阻传感器时,其电阻值会发生变化。
通过测量电阻值的变化,可以计算出磁场的磁感应强度。
2、测量地磁场的水平分量和垂直分量将磁阻传感器水平放置,测量得到的磁感应强度即为地磁场的水平分量;将磁阻传感器垂直放置,测量得到的磁感应强度即为地磁场的垂直分量。
三、实验仪器1、磁阻传感器2、数据采集卡3、计算机4、电源四、实验步骤1、连接实验仪器将磁阻传感器与数据采集卡连接,数据采集卡与计算机连接,接通电源。
2、校准磁阻传感器在无磁场的环境中,对磁阻传感器进行校准,消除零漂和误差。
3、测量地磁场的水平分量将磁阻传感器水平放置,在计算机上记录测量数据。
4、测量地磁场的垂直分量将磁阻传感器垂直放置,在计算机上记录测量数据。
5、重复测量多次为了提高测量的准确性,对水平分量和垂直分量分别进行多次测量,并取平均值。
五、实验数据以下是多次测量得到的地磁场水平分量和垂直分量的数据:|测量次数|水平分量(μT)|垂直分量(μT)||||||1|_____|_____||2|_____|_____||3|_____|_____||4|_____|_____||5|_____|_____|平均值:水平分量:_____μT垂直分量:_____μT六、数据处理与分析1、计算地磁场的总磁感应强度根据勾股定理,地磁场的总磁感应强度 B 可以通过水平分量 Bx 和垂直分量 By 计算得到:B =√(Bx²+ By²)2、计算地磁场的磁倾角磁倾角θ 可以通过垂直分量 By 和总磁感应强度 B 计算得到:θ = arctan(By / Bx)3、分析测量结果的误差误差可能来源于仪器误差、环境干扰、测量次数等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验题目:磁阻效应及磁阻传感器的特性研究二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法;2、测量锑化铟传感器的电阻与磁感应强度的关系;3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线和直线拟合;4、学习用磁阻传感器测量磁场的方法。
三、实验原理:磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。
和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。
若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。
磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。
由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。
目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。
一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。
如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。
如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。
如果将图1中U H短路,磁阻效应更明显。
因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。
当磁感应强度平行于电流时,是纵向情况。
若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。
而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。
在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。
通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。
其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。
由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。
因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。
测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。
尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。
实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。
一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强度B的响应会趋于饱和。
另外,ΔR/ R(0)对总磁场的方向很灵敏,总磁场为外磁场与内磁场之和,而内磁场与磁阻薄膜的性质和几何形状有关。
图1 磁阻效应图2 测量磁电阻实验装置【实验仪器】实验采用DH4510磁阻效应实验仪,研究锑化铟(InSb)磁阻传感器的磁阻特性,图3为该仪器示意图图3(a)磁阻效应信号号源面板图DH4510磁阻实验仪由信号源和测试架两部分组成。
实验仪包括双路可调直流恒流源、电流表、数字式磁场强度计(毫特计)和磁阻电压转换测量表(毫伏表)、控制电源等。
测试架包括励磁线圈(含电磁铁)、锑化铟(InSb)磁阻传感器、GaAs 霍尔传感器、转换继电器及导线等组成。
仪器连接如图4所示。
【实验内容】1、在锑化铟磁阻传感器工作电流保持不变的条件下,测量锑化铟磁阻传感器的电阻与磁感应强度的关系。
作ΔR/ R(0)与B的关系曲线,并进行曲线拟合。
(实验步骤由学生自己拟定,实验时注意GaAs和InSb传感器工作电流应调至1mA)。
2、用磁阻传感器测量一个未知的磁场强度,与毫特计测得的磁场强度相比较,估算测量误差。
图3(b)磁阻效应测试架图四、实验步骤:仪器开机前须将I M调节电位器、Is电流调节电位器逆时针方向旋到底。
1、信号源的“I M直流源”端用导线接至测试架的“励磁电流”输入端,红导线与红接线柱相连,黑导线与黑接线柱相连,如图4所示。
调节“I M电流调节”电位器可改变输入励磁线圈电流的大小,从而改变电磁铁间隙中磁感应强度的大小。
2、将实验仪信号源背部的二芯话筒通过专用的二芯话筒线接至测试架的工作电压输入端,这是一路提供继电器工作的12V直流控制电源,作为继电器的控制电压。
红的香蕉插接红接线柱,黑的香蕉插接黑接线柱。
3、信号源上“Is直流恒流源”输出用导线接至工作电流切换继电器K1接线柱的中间两端,红导线与红接线柱相连,黑导线与黑接线柱相连。
如图4所示。
4、信号源的“信号输入”两端用导线接至输出信号切换继电器K2接线柱的中间两端,红导线与红接线柱相连,黑导线与黑接线柱相连。
如图4所示。
5、将继电器K1接线柱的下面两端与继电器K2接线柱的下面两端相连,红导线与红接线柱相连,黑导线与黑接线柱相连。
如图4所示。
6、将锑化铟(InSb)磁阻传感器(蓝、绿引出线)的两端与工作电流切换继电器K1接线柱的下面两端相连,红的香蕉插接红接线柱,黑的香蕉插接黑接线柱。
即蓝引出线接至红接线柱,绿引出线接至黑接线柱。
如图4所示。
图4 磁阻效应接线图7、砷化镓(GaAs)霍尔传感器的的四引出线按线的长短已分成两组,红、棕为一组(为工作电流输入端),黄、橙为一组(为霍尔电压输出端),红、棕这一组线接至工作电流切换继电器K1接线柱的上面两端,黄、橙这一组线接至输出信号切换继电器K2接线柱的上面两端。
红的香蕉插接红接线柱,黑的香蕉插接黑接线柱,如图4所示。
8、确认接线正确完成后,打开交流电源,将信号源及测试架的切换开关都处于按上状态,这时将测试架上取出的霍尔电压信号输入到信号源,经内部处理转换成磁场强度由表头显示。
9、调节Is 调节电位器让Is 表头显示为1.00mA ,然后调节I M ,使磁场强度显示为10mT ,记下励磁电流值的大小。
10、按下信号源及测试架上的切换开关,测量并记录该磁场强度下对应的磁阻电压。
注意:这时的Is 表头显示应为1.00mA 。
11、将信号源及测试架上的切换开关弹起,再调节I M 调节电位器,使磁场强度显示为20mT ,记下该磁场强度及对应的励磁电流值。
测量并记录该磁场强度下对应的磁阻电压。
12、参考表1所列的磁场强度,重复以上10~11步骤。
13、根据表1数据列出表2,在B<0.06T 时对ΔR/ R (0)作曲线拟合,求出R 与B 的关系。
14、根据表1数据列出表3,在B>0.12T 时对ΔR/ R (0)作曲线拟合,求出R 与B 的关系。
15、调节I M 电流,使电磁铁产生一个未知的磁场强度。
测量磁阻传感器的磁阻电压,根据求得的ΔR/ R (0)与B 的关系曲线,求得磁场强度。
16、用仪器所配的毫特计测量该磁场强度,将测得的磁场强度作为准确值与磁阻传感器测得的磁场强度值与相比较,估算测量误差。
五、实验参考表格(仅供参考):ΔR/ R (0)=14.5B由上面拟合可知在B<0.06T 时磁阻变化率ΔR/ R (0)与磁感应强度B 成二次函数关系;2、对表1数据在B>0.12T 时对ΔR/ R (0)作曲线拟合如下表3:表3由上面拟合可知在B>0.12T 时磁阻变化率ΔR/ R (0)与磁感应强度B 成一次函数关系 ΔR/ R (0)=5.35B-0.593、按以上实验数据可得到图曲线。
五、实验数据及其处理:1、仪器开机前将I M 调节电位器、Is 电流调节电位器逆时针方向旋到底。
调节Is 调节电位器让Is 表头显示为1.00mA ,实验过程中保持Is 不变,然后调节I M 使得B=0,10,20,……,180mT ,分别测量磁阻电压R V (注:测量时测试架和信号源上的要同时按下测B ,同时抬起测R V ),可得出如下的数据:/()M I mA/()B mT/()R V mV/()R Ω /(0)R R ∆50 221.9 221.9 0 20 10 223.5 223.5 0.007210 35 20 225.0 225.0 0.013970 51 30 227.6 227.6 0.025687 66 40 231.1 231.1 0.041460 81 50 235.4 235.4 0.060838 96 60 240.5 240.5 0.083822 111 70 246.6 246.6 0.111311 126 80 253.3 253.3 0.141505 141 90 260.7 260.7 0.174854 156 100 268.8 268.8 0.211356 171 110 277.6 277.6 0.251014 186 120 287.2 287.2 0.294277 201 130 297.5 297.5 0.340694 216 140 308.1 308.1 0.388463 232 150 319.4 319.4 0.439387 247 160 331.3 331.3 0.493015 262 170 343.5 343.5 0.547995 277180 356.2 356.2 0.605228下面进行数据拟合: (1)060B mT ≤≤ 时:运用origin 软件作出/(0)R R B ∆-的图像:/(0)R R ∆图的说明如下:Y = A + B1*X + B2*X^2Parameter Value Error ----------------------------------------------A 8.36857E-4 7.97097E-4 B1 3.07386E-4 6.22234E-5 B2 1.78657E-5 9.96372E-7 ---------------------------------------------- R-Square(COD) SD N P---------------------------------------------- 0.9994 9.1319E-4 7 <0.0001 ---------------------------------------------- /()B mT由上面的拟合可知,060B T ≤≤ 时,磁阻变化率ΔR/ R (0)与磁感应强度B 成二次函数关系:4452/(0)8.3710 3.0710 1.7910R R B B ---∆=⨯+⨯+⨯ (*1)(2)70120mT B mT ≤≤ 时:(注:此区间在实验讲义中并未要求进行拟合,但实验室桌上贴的数据记录表上要求对这段“曲线2”进行拟合。