材料热力学课件-自由度

合集下载

自由度的计算(经典PPT)

自由度的计算(经典PPT)
由m个构件组成的复合铰 链,共有(m-1)个转动副。
1
复合铰链数=构件数-1
1
2
3
2
3
一、复合铰链
F 3n 2 pl ph
复合铰链——由个m构件在一处 组成轴线重合的转动副。
24
C
3
实际有(m-1)个转动副。 F=3×5-2×6=3 ? F=3×5-2×7=1
B2
3 A1
D
4 E 5
6
如图所示F、B、D、C处是复合铰链
内燃机
键 轴
齿轮
机构的组成(2/16)
空间运动: 6个自由度 一个自由构件
平面运动: 3个自由度
2.运动副
机构的组成(3/16)
运动副 是两构件直接接触而构成的可动连接;
运动副元素是两构件参与接触而构成运动副的表面。
约束 两构件上组成运动副时相对运动受到限制,这种对 独立运动的限制称约束
自由度减少数目等于约束数目。引入约束数目与运动副种 类有关。根据引入约束数目分Ⅰ、Ⅱ……Ⅴ级副。
构件与零件的区别: 构件是运动单元体 零件是加工制造单元体
构件——运动单元体。
零件——制造单元体。
构件是由一个或若干个零件组成刚性系统。
固定构件——机架
构件
活动构件 主动件 从动件
主动件(或原动件。)
作用有驱动力(矩)的活动构件称为
输入运动或动力的主动件称为输入件。 输出运动或动力的从动件称为输出件。
此机构能动,须给定一个原动件
4)
n=4 pl=5 ph=1 p’=0 F’=0
F=3n-(2pl+ph-p’)-F’ =3*4-(2*5+1-0)-0=1
复合铰链:A(2)

自由度

自由度

引言相平衡研究多相体系相变化规律,是热力学基本原理在化学领域中的重要应用。

"相律"是根据热力学原理推导出来的,以统一观点处理各种类型多相平衡的理论方法十分严谨明确。

它表明一个多相平衡体系的组分数、相数以及自由度之间的关系,可以帮助我们确定体系的平衡形状以及达平衡的必要条件。

然而,相律也有其局限性,它只能对多相平衡作定性描述。

可指明特定条件下平衡体系至多的相数以及为保持这些相数所必具的独立变量数。

但究竟是哪些相共存?哪些性质可作为独立变量以及它们之间的定量关系如何等问题,相律均无能为力。

这方面知识仍有待从实验中确定。

本章的目的,是以相律为基础讨论平衡体系共存相的数目与其所需条件(温度、压力、组成)之间的关系,这些关系具体以图解形式表示时,称之为"相图"。

相图是研究多相平衡的工具,在生产科研中有重要用途,本章将扼要地介绍相图的某些典型实验方法,并以实例说明相律在指导绘制相图和认识相图中的作用。

一、基本术语-相、组份和自由度(一)相系统中每一宏观的均匀部分,或体系内物理性质和化学性质完全相同的部分称为"相"。

相的数目用符号" Φ"表示。

相的存在与体系所含物质数量的多寡无关,仅取决与平衡体系的组成和外界条件。

由图5-1可,相与相之间有一明显的界面,越过界面相的性质立即发生突变,虽然"相"是均匀的,但并非一定要连续,例如于水中投入两块冰,只能算作两相(水和冰)而非三相〔图5-1(b)〕。

但如果体系中同时含有几种不同的固态物质(或因它们的组成、或因其晶体状态不同)就算有几个相。

如图5-1(c),尽管石灰粉与粉笔灰混合,表面上看,仿佛均匀,但绝不能算是一相,因为在显微镜底下可看清它们形态上的区别。

然而,化学上的"均匀"又不意味着物质成分的单一性;在水中放入少许食盐全溶解了,即成一相,溶解不完则为固体盐和水溶液两个相。

自由度的计算(经典课件)

自由度的计算(经典课件)
自由度的计算(经典课件)
目录
• 自由度的定义 • 自由度的计算方法 • 自由度在物理中的应用 • 自由度在数学中的应用 • 自由度的计算实例
01 自由度的定义
自由度的定义
自由度是指在某一物理系统或数学模型中,描述一个状态所需的独立参数的数量。
在物理学中,自由度通常用于描述粒子在空间中的位置和动量,或者描述物体的旋 转状态。
热力学的自由度计算
总结词
热力学的自由度计算是研究系统热力学性质的重要手段,它涉及到系统的熵、焓等热力学量的计算。
详细描述
在热力学中,自由度的计算通常基于系统的质量和能量守恒方程。通过求解这些方程,可以得到系统 的熵、焓等热力学量,进而确定系统的自由度数。自由度的计算对于分析系统热力学性质、预测反应 过程和优化能源利用等具有重要意义。
公式
对于一个$m times n$的矩阵$A$,其自由度可以通过计算其秩$r$来 获得,即$r = min(m, n)$。
向量的自由度计算
总结词
向量的自由度计算是解析几何中的基本概念,用于描述向量在空间中的独立变化程度。
详细描述
向量的自由度是指向量在空间中可以独立变化的维度数量。对于一个三维向量,其自由度为3, 因为三个参数(x、y、z)可以独立地变化以产生不同的向量。更高维度的向量具有更多的自 由度。
在数学中,自由度通常用于描述矩阵或向量的秩,或者描述概率分布的参数个数。
自由度在物理中的意义
01
在经典力学中,一个质点的自由度 是3,因为需要三个参数(x, y, z) 来描述其在空间中的位置。
02
对于一个刚体,其自由度取决于 其运动方式。例如,一个绕固定 点旋转的刚体有3个自由度(角度 和角速度)。
统计力学的自由度计算

第6章:固体材料的热力学状态:自由能、相图、相和组织

第6章:固体材料的热力学状态:自由能、相图、相和组织

④低温下:内能项为主→低温相多是低内能,原子排列 规整紧密的相; 高温下:熵项可超过内能项使→混乱度大的相稳定存在。
6.1.4 材料系统的化学势
材料系统多为多元体系,增加成分变数 → 要用化学 热力学与化学位。 由H = U+PV,dH = dU+PdV+VdP =
TdS - PdV+PdV+VdP=TdS+VdP
(2) 系统的功、能变化
容量性质(体积V、质量、熵S等)有加和性; 强度性质(温度T、压强P等)无加和性。
强度性质作用在容量性质上(使其变化),此过程 涉及功: 力F 压力P 而 T•dS 杆l 体积V dl(伸长) dV Fdl(变形功) PdV(机械功)
即强度性质×容量性质的变化 = 功 δQ(无序功)
合并Ⅰ、Ⅱ律:dU=δQ + δW, δQ≤TdS 得: dU-TdS ≤ δ W, 恒温: d(U-TS) ≤ δ W 定义: F≡U-TS, dF ≤ δ W , 若恒V:δ W = 0 故 : d(U-TS)T,V ≤ 0 或 dF ≤ 0 自发过程(<),平衡过程(=)
同理: d (H-TS)T,P ≤ 0,
热力学Ⅰ律: △U= Q+W 或 du=δQ+δw(以系统为主) P 、V 、T系统
①若恒容: δW= PdV =0 则 △U=Qv, du=δQv ②若恒压: δW = -PdV (系统对外做膨胀功) δQp = du-δW = du+d(PV) = d(U+PV), 令 H≡U+PV (Enthalpy) 则 δQP=dH △H=Qp ③若吸、放热(T变):
dSU· (dH)S· V≥0; (dU)S· V≤0; P≤0; (dG)T· (dF)T· P≤0 V≤0;

第三章无机材料的热学性能PPT课件

第三章无机材料的热学性能PPT课件

Vi
WiV i
代入(4-28)式,整理得
iWiKi / i WiKi / i
.
(4-29)
35
1 V 2 (2 1 ) ( 4 K G 1 ( 1 3 K 3 2 K 2 4 ) [ G 4 1 V ) 2 2 G 1 ( ( K K 2 2 K K 1 1 ) ) ( 1 6 3 G K 1 1 2 K 2 1 2 G 4 G 1 K 1 K 2 ) 1 ]
几种陶瓷材料的. 热容-温度曲线
19
CaO+SiO2与CaSiO3的热容-温度曲线
.
20
虽然固体材料的摩尔热容不是结构敏感的,但是单位体积的热容却与气孔 率有关。多孔材料因为质量轻,所以热容小,因此提高轻质隔热砖的温度 所需要的热量远低于致密的耐火砖。
材料热容与温度关系应有实验来精确测定,经验公式:
对于圆柱体薄釉样品,有如下表达式:
釉1 E(T0T) (釉坯 )A A 坯
(4-33)
坯1 E(T0T) (坯釉)A A釉 坯 .
(4-34)
39
4.3 无机材料的热传导
4.3.1 固体材料热传导的宏观规律
当固体材料的一端的温度比另一端高时,热量就会从热端自动 传向冷端,这个现象称为热传导。
QdTSt
人们发现德拜理论在低温下还不能完全符合事实,显然是由于 晶体毕竟不是一个连续体。
实际上电子运动能量的变化对热容也会有贡献,只是在温度不 太低时,这部分的影响远小于晶格振动能量的影响,一般可以 忽略不计,只有在极低的温度下,才成为不可忽略的部分。
.
18
4.1.2.3 无机材料的热容 无机材料的热容与键的强度、材料的弹性模量、熔点等有关。 陶瓷材料的热容与材料结构的关系是不大的。 相变时由于热量的不连续变化,所以热容也出现了突变。

10.3 能量按自由度均分原理

10.3 能量按自由度均分原理

一个氮气(或一氧化碳)分子的转动动能为
J
2 kT 1.381023 273 3.7 1021 J 2
(4)单位体积内分子的总平均平动动能为
3 kTn 3 kT p 3 p 1.5103 J
2
2 kT 2
大学物理 第三次修订本
第10章 气体动理论及热力学
(5)0.3摩尔氮气(或一氧化碳)分子的内能为
u 2v

Z 2vn 2πd 2vn
二、平均自由程
每两次连续碰撞之间,分子自由运动的平 均路程。
平均自由程 v 1
Z 2πd 2n
19
大学物理 第三次修订本
第10章 气体动理论及热力学
利用 P nkT 得 kT
2πd 2P
T 一定时,
1
p
标况下多数气体 ~10-8m,氢气约为10-7m。 一般分子直径 d~10-10m, 故 d。
E
M
NA
i 2
kT
i RT
2
5 0.38.31 273 1.7 103 J 2
大学物理 第三次修订本
第10章 气体动理论及热力学
10.9 气体分子的平均自由程
前面讨论了气体处于平衡态的性质和一些 统计规律,在其中起关键作用的是分子间的碰 撞。不仅如此,系统由非平衡态向平衡态的转 变过程中,如热传递过程、扩散过程,气体分 子间的碰撞也起关键作用。
可求得: Z ~109/秒。每秒钟一个分子竟发 生几十亿次碰撞!
20
大学物理 第三次修订本
第10章 气体动理论及热力学
例 估计两种情况下空气分子的平均自由程。 (1) 273 K ,1.013×105pa 时;
(2)273 K ,1.333 ×10-3pa 时。

《自由度的计算》课件

《自由度的计算》课件
在量子力学中,自由度通常定义为描述粒子状态所需的独立波函数的数目。
自由度的计算
对于一个粒子,其位置和动量是两个基本的自由度。然而,在量子力学中,位置和动量不再是经典意义上的确定值,而是由波函数描述的概率分布。
分子动力学模拟简介:分子动力学模拟是一种用于研究分子体系结构和动态行为的计算机模拟方法。通过模拟分子间的相互作用力和运动轨迹,可以预测体系的性质和行为。
自由度是指描述一个系统状态所需的独立变量数。
在热力学中,自由度用于描述系统的熵和焓等热力学量的变化。
在量子力学中,自由度用于描述粒子的波函数和动量等物理量。
在经典力学中,自由度用于描述物体的运动轨迹和速度等物理量。
03
在生态学中,自由度用于描述生态系统的稳定性和多样性等生态学性质。
01
在化学反应中,自由度用于描述反应的平衡常数和速率常数等化学性质。
总结词
阐述生物系统中自由度与生物功能之间的关系,以及如何通过自由度的研究来了解生物系统的运行机制和规律。
在生物系统中,自由度与生物功能之间存在着密切的联系。生物分子的自由度影响着其运动状态和相互作用,进而影响整个生物系统的功能。通过对自由度的研究,可以深入了解生物系统的运行机制和规律,为生物学的深入研究提供重要的理论支持和实践指导。
在光学系统中,自由度的计算涉及到光的波动方程和光束传播的特性,不同的光学元件和结构会对光束的自由度产生影响。
光学自由度在光学系统设计和优化中有重要应用,如光束整形、光学通信和光学传感等。
04
CHAPTER
自由度在化学系统中的应用
总结词
化学反应中的自由度变化是化学反应动力学研究的重要内容,它涉及到反应速率和反应机理的确定。
总结词
详细描述

热力学-1

热力学-1

系统和外界没有热量交换。
3.内能改变量计算: 内能是状态单值函数,与过程无关. 1).定容过程:
i t r 2S
2).定压过程: 3).定温过程:
4). M QV CV (T2 T1 )
M i M E R (T2 T1 ) CV (T2 T1 ) 2

dT

dT
普适常量
RdT CV CV R dT
C p CV
为什么?
2i C p CV R R 2 i CV R 2
i CV R 2
dQ dE dW
系统从外界吸收热量全部用来增加内能.
2i C p CV R R 2
C p CV
i t r 2S
1K所需热量.
摩尔热容量(J/mol.K):
一摩尔物质温度 升高1K所需热量
与过程有关 C=c M Q C (T2 T1 )
Qp
M Q C (T2 T1 )
摩尔热容量
与过程有关
M

C p T2 T1
定压摩尔热容量
M QV CV (T2 T1 )
定容摩尔热容量
练习
0.01kg的氧气,其压强为3atm,温度为10℃,
经等压膨胀后,体积变为10L。(氧气分子可看作刚 性双原子分子)求:
(1)氧气吸收的热量;(2)膨胀前后的内能。
解 吸收热量
Qp
M
T2 = CpT - 1 1 1 T M

C p T2 - T1
M P RT / V
*改变系统状态方法:
以上这二种方法达到相同效果, 传热和作功是等效的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 请应用相律论证下列结论的正确性: (1)纯物质在一定压力下的熔点为定值; (2)纯液体在一定温度下有一定的蒸气压。
解:(1)C=1 ,=2 , 因压力一定, =C-+1=1-2+1=0
故熔点为定值;
(2)C=1, =2,因T一定, =C-+1=1-ቤተ መጻሕፍቲ ባይዱ+1=0
故蒸气压为定值。
1 在A和B形成的二元凝聚系统中,在转熔点发生转熔 反应: B(晶)+ L(熔液)===AmBn(晶)
2 将固体NH4HCO3(s) 放入真空容器中,恒温到400 K, NH4HCO3 按下式分解并达到平衡: NH4HCO3(s) === NH3(g) + H2O(g) + CO2(g)
3 I2在水和CCl4中分配达到平衡(无固体存在)
4 5g氨气通入1升水中,与蒸气平衡共存
S R R C f
1 3 10 231 2 4 1 2 1 2 f =0 3 3 0 0 3 23 4 2(3) 0(1) 0 2 2 2
某金属有多种晶型,有人说他在一定温度、 压力下制备了这一纯金属的蒸汽、液 态、晶型和晶型平衡共存系统,问 这是可能的吗?
解:(1)C=1 , =1-+2=3 - ; f=0, max=3 ,
相关文档
最新文档