函数的奇偶性说课稿

合集下载

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)函数的奇偶性教案(通用8篇)作为一位兢兢业业的人民教师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

来参考自己需要的教案吧!下面是小编收集整理的函数的奇偶性教案,欢迎阅读,希望大家能够喜欢。

函数的奇偶性教案篇1教学目标:了解奇偶性的含义,会判断函数的奇偶性。

能证明一些简单函数的奇偶性。

弄清函数图象对称性与函数奇偶性的关系。

重点:判断函数的奇偶性难点:函数图象对称性与函数奇偶性的关系。

一、复习引入1、函数的单调性、最值2、函数的奇偶性(1)奇函数(2)偶函数(3)与图象对称性的关系(4)说明(定义域的要求)二、例题分析例1、判断下列函数是否为偶函数或奇函数例2、证明函数在R上是奇函数。

例3、试判断下列函数的奇偶性三、随堂练习1、函数()是奇函数但不是偶函数是偶函数但不是奇函数既是奇函数又是偶函数既不是奇函数又不是偶函数2、下列4个判断中,正确的是_______.(1)既是奇函数又是偶函数;(2)是奇函数;(3)是偶函数;(4)是非奇非偶函数3、函数的图象是否关于某直线对称?它是否为偶函数?函数的奇偶性教案篇2一、教学目标【知识与技能】理解函数的奇偶性及其几何意义.【过程与方法】利用指数函数的图像和性质,及单调性来解决问题.【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式.三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.课本P46 习题1.3(A组) 第9、10题, B组第2题.四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.三、规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数的奇偶性教案篇3学习目标 1.函数奇偶性的概念2.由函数图象研究函数的奇偶性3.函数奇偶性的判断重点:能运用函数奇偶性的定义判断函数的奇偶性难点:理解函数的奇偶性知识梳理:1.轴对称图形:2中心对称图形:【概念探究】1、画出函数,与的图像;并观察两个函数图像的对称性。

2024《函数的奇偶性》说课稿范文

2024《函数的奇偶性》说课稿范文

2024《函数的奇偶性》说课稿范文今天我说课的内容是《函数的奇偶性》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1、《函数的奇偶性》是人教版高中数学必修一第二章的内容。

在学生已经掌握了函数的定义及性质的基础上,引入了函数的奇偶性的概念。

这是高中数学中非常重要的知识点,为后续学习函数的性质及图像提供了基础。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解函数的奇偶性的概念及性质,能够准确判断函数的奇偶性。

②能力目标:能够应用函数的奇偶性进行问题求解,培养学生的分析和推理能力。

③情感目标:培养学生对数学知识的兴趣,提高学生解决实际问题的能力。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解函数的奇偶性的概念及性质,能够准确判断函数的奇偶性。

难点是:能够应用函数的奇偶性进行问题求解。

二、说教法学法针对函数的奇偶性这一抽象概念,我采用了启发式教学法和问题导入法。

通过引导学生思考和解决问题的方式,帮助学生理解函数的奇偶性的概念和性质。

学法上,我将采用主题引领法和合作学习法。

通过引入实际问题和小组合作学习的方式,激发学生的学习兴趣,提高学习效果。

三、说教学准备在教学过程中,我准备了多媒体辅助教学工具,可以通过图像和动画的形式呈现函数的奇偶性的概念和性质。

同时还准备了一些实际问题和练习题,用于学生的巩固和拓展。

四、说教学过程根据教材的安排和学生的学情,我设计了如下教学环节。

环节一、引入新知,激发学生的思考我将通过一个小故事或者一个实际问题引入函数的奇偶性这一概念。

比如,“小明每天早上骑自行车去学校,然后骑回家。

他发现,不管在什么时间骑车,来回的路程总是相同的。

你知道为什么吗?”引入之后,我会引导学生思考这个问题,并进行讨论,帮助学生逐步理解函数的奇偶性的概念。

环节二、探究新知,理解函数的奇偶性我将通过几个具体的例子,引导学生观察函数的图像和函数的性质,帮助学生理解函数的奇偶性的概念。

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿【教材地位与作用】《函数的奇偶性》是高中人教版必修一第一章第三节的内容,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性。

【学情分析】1.高一学生在初中已经学过轴对称及中心对称图形,但主要处在感性认知阶段,理性思维片面,缺乏深刻性。

2.从学生的思维特点看,学生很难从前面所学的函数的单调性联系到图形的对称性所反映的函数的奇偶性,这对学生的思维是一个突破,所以让学生利用对图像的直观感受,在学生的主动参与中引导学生多思、多说、多练,使得对问题的认知得到深化。

3.让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验,所以让学生独立去观察、动手计算、归纳猜想,使学生自主参与知识的发生、发展及形成过程。

【教学目标】1.从数与形两个角度引导学生理解奇函数、偶函数的概念。

2.学会利用定义判断奇偶性。

3.渗透数形结合和从特殊到一般的数学思想,培养学生观察、归纳、抽象的能力。

【教学重点】函数奇偶性概念的建立过程,即通过几何直观地把函数图像的对称性用代数形式来描述。

重点确定的理由:学生通过观察函数图像的对称性,产生定量刻画描述的倾向,即通过图像抽象出用解析式描述函数的奇偶性,解决重点的关键是数形结合、归纳抽象。

【教学难点】函数奇偶性概念的形成及奇偶函数定义域的对称性。

难点确定的理由:奇偶性概念中蕴含着“具有奇偶性的函数其定义域关于原点对称”,学生理解的难点是定义域关于原点对称,所以问题主要集中在:如何帮助学生理解定义域的对称性。

【教学过程】一、提出问题,启发思考问题一:在所学过的函数图像中,哪些是轴对称图形、哪些是中心对称图形?预设:二次函数的图像是轴对称图形,反比例函数的图像是中心对称图形,学生到黑板上画出函数的图像并写出解析式。

问题二:华罗庚说过:“数无形时少直觉,形少数时难入微。

”“形”上的对称在“数”上表现出了怎样的规律?要寻找规律一般怎样做?预设:从特殊到抽象,从具体到一般,先猜想再证明。

函数的奇偶性说课稿

函数的奇偶性说课稿

函数的奇偶性说课稿
函数的奇偶性说课稿(精选9篇)
作为一名教师,通常会被要求编写说课稿,是说课取得成功的前提。

那么问题来了,说课稿应该怎么写?下面是小编为大家收集的函数的奇偶性说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

函数的奇偶性说课稿篇1
一、教材分析
1.教材所处的地位和作用
"奇偶性"是人教A版第一章"集合与函数概念"的第3节"函数的基本性质"的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。

从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。

因此,本节课起着承上启下的重要作用。

2.学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。

3.教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:。

函数的奇偶性说课讲稿

函数的奇偶性说课讲稿

数学与信息科学学院说课稿课题函数的奇偶性专业数学与应用数学指导教师王亚雄班级2008级3班姓名曾霞学号200802410272011年4月15日尊敬的各位领导,老师,大家好!我说课的题目是《函数的奇偶性》.选自人民教育出版社《普通高中课程标准实验教科书数学必修1 A版》第一章第三节第二课时,下面我从教材分析、教学方法设计、教学过程设计、板书设计和教学评价五个方面进行阐述.一、教材分析1.课题的地位与作用函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中.函数的奇偶性不仅与现实生活中的对称性密切相关,而且是后面学习幂、指、对数函数性质的基础.因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用.2.教学目标根据课程标准、教学大纲的要求和学生的实际水平,我确定了本节课的三维教学目标:a.知识目标使学生理解奇偶性的概念及其图象特征,会利用定义判断函数的奇偶性.b.能力目标培养学生的观察、归纳、类比推理的能力和数形结合的思想.c.情感目标培养学生乐于求索的精神和积极思考,合作交流的学习方式。

3.教学重点、难点为了实现以上三个目标,我确定本节课的重点和难点如下:教学重点:本节课主要是介绍函数的奇偶性,故我将奇、偶函数的概念的理解制定为教学重点。

教学难点:由于学生对抽象事物是陌生的,所以我将由特殊推导到一般归纳出奇、偶函数的概念的过程设定为教学难点。

二、教学方法设计1.学情分析由于学生的于年龄的特征,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此片面,不严谨.从学生的思维特点看,学生很难从前面所学的函数的单调性联系到函数图形的对称性所反映的函数的奇偶性。

2.教法分析根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅.教学过程中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力.3.学法分析为了充分体现新课标理念,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用自主探索、观察发现、合作交流的学习方法。

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

函数的奇偶性引入大家好,我是现代数学教师,今天我来给大家讲解《函数的奇偶性》这一话题。

让我们开始这一趟数学之旅!首先,让我们回顾一下数学中的“奇偶性”概念。

在数学中,奇偶性通常用来描述一个数或者一个函数在变量变化时的规律性。

对于数学函数,我们可以通过对函数的自变量奇偶性的变化来探索这个函数的奇偶性质。

学习目标在学习完本节课后,我们将了解以下内容:•掌握函数奇偶性的定义•能够判断一个函数的奇偶性•能够利用函数的奇偶性来简化计算函数的奇偶性定义首先,让我们来定义函数的奇偶性。

对于一个函数f(x),我们称它为: - 奇函数,当且仅当f(−x)=−f(x)对于所有x成立; - 偶函数,当且仅当f(−x)=f(x)对于所有x成立; - 既不是奇函数也不是偶函数,当存在至少一个x使得f(−x)eqf(x)且f(−x)eq−f(x)成立。

上述定义意味着,如果一个函数既不是奇函数也不是偶函数,那么我们称它为“无奇偶性”的函数。

判断函数的奇偶性现在我们已经了解了函数奇偶性的定义,接下来我们就来看看如何判断一个函数的奇偶性。

奇函数对于奇函数而言,我们起始于f(−x)=−f(x)的假设,推导至一一般情况的有效方法是:•将f(x)变为−f(−x);•利用f(−x)=−f(x)替代−f(−x);•得到结果中−f(x)=f(−x)。

通过这些步骤我们得知,如果一个函数f(x)满足f(−x)=−f(x),那么这个函数一定是奇函数。

偶函数同样的,对于偶函数而言,我们起始于f(−x)=f(x)的假设,推导至一般情况的有效方法是:•将f(x)变为f(−x);•利用f(−x)=f(x)替代f(−x);•得到结果f(x)=f(−x)。

这说明,如果一个函数f(x)满足f(−x)=f(x),那么这个函数一定是偶函数。

无奇偶性的函数当一个函数f(x)既不是奇函数也不是偶函数时,表示我们无法通过f(x)和−f(x)的关系得到关于函数的更多信息。

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿引言:函数是数学中非常重要的概念之一,我们在数学学习的过程中会经常遇到各种类型的函数。

不同种类的函数都有不同的性质,今天我将要给大家讲述的是函数的奇偶性。

一、教学目标1. 知识目标:掌握奇函数和偶函数的基本概念、性质及图像。

2. 技能目标:能通过函数的变化确定其奇偶性,并求出奇偶扩展函数。

3. 情感目标:培养学生的求知欲和思考能力,养成勇于解决问题的良好习惯。

二、教学内容1. 函数的基本概念。

2. 奇函数和偶函数的定义与性质。

3. 常见的奇偶函数及其图像。

三、教学过程1. 导入新课,激发学生的学习兴趣。

先让学生思考以下问题:如果用一种颜色区分正数和负数情况下,函数图象会有什么变化? 如图所示,请看以下函数:f(x) = x^2, g(x) = x^3, h(x) = x^4-4x^2。

当x取正数、负数时,f(x)、g(x)、h(x)的值呈现什么规律?2. 引入函数的奇偶性概念引导学生来解答思考的问题,由此,我们很自然地引出了什么是偶函数什么是奇函数。

学生能够理解并总结什么是奇函数,什么是偶函数等相关概念。

3. 探究正、负数时函数的变化规律将函数f(x)、g(x)、h(x)的x值依次取-2、-1、0、1、2,通过对比负数和正数时函数的值得出以下规律:当x取正数时,f(x)、g(x)、h(x)的值相等,即f(x) = g(x) = h(x);当x取负数时,f(x)、g(x)的值相等,而h(x)的值与两个函数值不等;即我们可以说,函数f(x) 和g(x)关于y轴对称,而h(x)没有任何对称轴,只有原点的对称性。

通过以上探究学生能够感受到奇偶性函数的性质,掌握函数的奇偶性。

4. 探究奇函数和偶函数的性质及图像接下来,我们将通过一些例子来探究奇函数和偶函数性质及图像。

首先将以下函数的图像画出:f(x) = x^3, g(x) = x^4从图像中发现,函数f(x)的图像表现了奇函数的性质,它对称于原点,当x取正数时,f(x)、g(x)的值相等,而x取负数时,f(x)、g(x)的值相等;而函数g(x)的图像表现了偶函数的性质,它对称于y轴,函数的图像无论用哪种方法旋转,都能使其与原图像一致,即不会改变原函数的形状。

函数的奇偶性的说课稿

函数的奇偶性的说课稿

函数的奇偶性的说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是函数的奇偶性。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析函数的奇偶性是函数的重要性质之一,它不仅与函数的图像紧密相关,还在数学的其他领域以及实际生活中有着广泛的应用。

本节课是在学生已经学习了函数的概念、函数的表示法以及函数的单调性的基础上进行的,为后续学习函数的周期性以及进一步研究函数的性质奠定了基础。

本节课的教材内容主要包括函数奇偶性的定义、奇偶函数的图像特征以及函数奇偶性的判断方法。

通过对这些内容的学习,学生能够深化对函数概念的理解,提高观察、分析和解决问题的能力。

二、学情分析在知识储备方面,学生已经掌握了函数的基本概念和函数单调性的相关知识,具备了一定的函数研究能力。

但对于函数奇偶性这一较为抽象的概念,学生可能会感到理解困难。

在思维能力方面,高中生的抽象思维能力和逻辑推理能力正在逐步发展,但仍需要通过具体的实例和直观的图像来帮助他们理解抽象的数学概念。

在学习态度方面,学生对于数学学习有一定的兴趣和积极性,但在面对较难的问题时可能会出现畏难情绪,需要教师给予适当的引导和鼓励。

三、教学目标基于以上的教材分析和学情分析,我制定了以下的教学目标:1、知识与技能目标(1)理解函数奇偶性的定义,能够准确判断函数的奇偶性。

(2)掌握奇偶函数的图像特征,能够根据函数的图像判断其奇偶性。

(3)能够利用函数奇偶性的性质解决一些简单的数学问题。

2、过程与方法目标(1)通过观察函数图像,引导学生发现函数奇偶性的特征,培养学生的观察能力和归纳能力。

(2)通过对函数奇偶性的定义的探究,培养学生的逻辑推理能力和数学抽象能力。

(3)通过函数奇偶性的应用,提高学生分析问题和解决问题的能力。

3、情感态度与价值观目标(1)让学生在探究函数奇偶性的过程中,体验数学的严谨性和科学性,培养学生的数学思维品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性(说课稿)
各位专家、评委:大家好!
今天我说课的内容是《函数的奇偶性》,下面我分别从教学内容的解析、教学目标的确定、教学问题的诊断、教学支持条件分析、教学重难点的确定、教学模式的选择以及教学过程的设计等几个方面来汇报我对这节课的教学设想.一. 教学内容的解析
本节课是人教版必修一§1.3.2节《奇偶性》,主要内容是从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断简单函数的奇偶性。

从知识结构上看,函数的奇偶性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数等内容的基础。

研究函数奇偶性的过程体现了数学的“从特殊到一般”、“数形结合”的思想方法,这对培养学生的思维能力和数学素养具有重要的意义。

二. 教学目标的确定
教学目标是
1.使学生从数和形两方面理解奇偶性的概念,掌握判断函数奇偶性的方法;
2.在奇偶性概念形成过程中,培养学生的观察、类比和归纳能力,同时渗透数形结合和特殊到一般的数学思想方法;
3.在学习中,体验数学的美感,培养善于观察、勇于探索的良好习惯和严谨的科学态度。

设想通过以下四个教学过程来实现教学目标.
1.用图象表述奇偶性:通过设置情景,通过实际生活中的例子,让学生对图象的对称有一个初步的感性认识,为下一步对概念的理性认识做好铺垫。

2.用文字概括奇偶性:利用图、表帮助学生对函数奇偶性由“形”到“数”认识,使得学生对函数奇偶性的研究经历从直观到抽象的过程。

3.用符号描述奇偶性:引导学生用数学符号语言准确定义奇(偶)函数;
4.对函数性质的思辨:通过教师的设问,引导学生对函数奇偶性、单调性探究的过程进行类比和辨析,进一步精致所学的概念,培养思辨能力与类比方法。

三.教学问题诊断分析
学生已有的认知基础有:
1.学生已经学习过函数、轴对称和中心对称等知识;
2.之前已经学习过函数的单调性,经历了单调性的定义的形成过程;
学生可能会遇到的困难有:
1.学生要从“形”和“数”两个方面来理解“对称”这个概念,进而认识函数奇偶性的概念,将会有一定的难度;
2.在函数奇偶性概念形成过程中由特殊到一般的过渡,也就是对定义中“任意”的理解;
四.教学支持条件分析
利用几何画板从形和数两个方面丰富学生对“对称”概念以及“奇偶性”概念的认识,增强学生的学习兴趣。

五.教学重难点的确定
根据课程标准的要求和教材的安排,及根据对教学内容和教学目标的解析,确定的重点和难点如下:
重点:函数奇偶性定义的形成过程;
难点:形成函数奇偶性概念的过程中,如何从图象对称的直观认识过渡到函数奇偶性的数学符号语言表述。

六.教学模式的选择
根据本节课的内容、重难点的设定以及学生的学习现状,采用“联想导入—发现探究—归纳概括—应用提升”的教学模式。

七.教学过程的设计
1.联想导入,引出概念
情景1:生活中,哪些几何图形体现着对称美?
情景2:我们学过的函数图象中有没有体现着对称的美呢?
情景3:引导学生从对称角度将所说的函数图象进行分类比较。

教师引入课题,并对所提到的函数奇偶性作出说明。

2.发现探究,完善概念
教师提出问题1:“你能判断函数11
2,24+==x y x y 的奇偶性吗?” (设计这个问题有这样的目的:一是让学生在学习中产生冲突:没有办法从图象的角度作出判断;二是为下一步从“数的方面”论证概念创设教学情景.)
问题2:“能不能从函数解析式的角度来描述函数图象的对称性?如果能,该怎么解决?
(这时,让学生以2x y =为例,先给出该函数的解析式和图象让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得出f(-1)=f(1),f(-2)=f(2),进而提
出在定义域内是否对所有的 x ,都有类似的情况?)
学生会选取很多的x 的值,得到结论。

追问:这些x 的值能不能代表所有x 呢?
借助课件演示,引导学生进行代数式推导,再次得出结论f(-x)=f(x).(强调x 是定义域内任意值,帮助学生完成由特殊到一般的思维过程)
用数学符号表示偶函数的严格定义。

问题4:让学生用自己的语言描述对偶函数的认识。

(从形和数两方面) 问题5:结合课本中的材料,仿照偶函数概念的建立过程,学生独立去建立奇函数的概念。

3.归纳概括,精致概念
(此时,大部分学生已经有了如何判断函数奇偶性的意识,只是不太确定。

) 问题6:给出函数,x y =与)2,1(,-∈=x x y ,让学生自主讨论并判断这两个函数的奇偶性。

(设计这个问题的目的:一来是为学生强调判断函数奇偶性的方法;二来为判断函数奇偶性的一个先决条件:“定义域必须关于原点对称”埋下伏笔)。

问题6:在学习函数奇偶性的概念中有哪些几个注意的地方?
问题7:我们经历了函数单调性和奇偶性概念的学习过程,谈谈你对这两个概念的认识?
(引导学生进一步精致所学概念:认识单调性、奇偶性都是描述函数整体特征的,都必须在整个定义域范围内进行研究;引导学生对定义中“任意”的理解;引导学生认识到函数图象是函数性质的直观载体;)
4. 应用提升,活用概念
安排两类例题:一类是根据定义判断函数的奇偶性;另一类是已知函数奇偶性及部分图象,将图象补充完整。

(选取课本中的例5及课后练习作为学习资料。


最后布置思考题:(1)函数 y=2 是什么函数,函数 y=0 又是什么函数?(2)对形如y= x n 的函数,若 n 为偶数则它为偶函数;若 n 为奇数,则它为奇函数,你认为这个结论正确吗?(通过这两个问题,不但让学生寻找到了本节课开始阶段提到的既奇又偶函数实例,而且发展了学生的思维,为后续学习幂函数的性质打下良好的基础)。

相关文档
最新文档