什么是熔滴的自由过渡
焊接电弧焊的熔滴过渡详解

焊接电弧焊的熔滴过渡详解熔滴是电弧焊时,在焊条(或焊丝)端部形成的和向熔池过渡的液态金属滴。
熔滴通过电弧空间向熔池转移的过程称为熔滴过渡。
熔滴过渡对焊接过程的稳定性,焊缝形成,飞溅及焊接接头的质量有很大的影响,因此了解这个问题对于掌握熔化极焊接工艺是很重要的。
金属熔滴向熔池过程的形式,大致可分为三种即:短路过渡、滴状过渡(颗粒过渡)、喷射过渡(射流过渡)为什么熔滴过渡会有上述这些不同的形式呢?这是由于作用于液体金属熔滴上的外力不同的缘故。
在焊接时,采取一定的工艺措施。
就可以改变熔滴上的作用力,也就使熔滴按人们所需要的过渡形式自焊条向熔池过渡。
1一熔滴过度的作用力01熔滴的重力任何物体都会因为本身的重力而具有下垂的倾向。
平焊时,金属熔滴的重力起促进熔滴过渡作用。
但是在立焊及仰焊时,熔滴的重力阻碍了熔滴向熔池过渡,成为阻碍力。
02表面张力液体金属象其它液体一样具有表面张力,即液体在没有外力作用时,其表面积会尽量减小,缩成圆形,对液体金属来说,表面张力使熔化金属成为球形。
焊条金属熔化后,其液体金属并不会马上掉下来,而是在表面张力的作用下形成球滴状悬挂在焊条末端。
随着焊条不断熔化,熔滴体积不断增大,直到作用在熔滴上的作用力超过熔滴与焊芯界面间的张力时,熔滴才脱离焊芯过渡到熔池中去。
因此表面张力对平焊时的熔滴过渡并不利。
但表面张力在仰焊等其它位置的焊接时,却有利于熔滴过渡,其一是熔池金属在表面张力作用下,倒悬在焊缝上而不易滴落;其二当焊条末端熔滴与熔池金属接触时,会由于熔池表面张力的作用,而将熔滴拉入熔池。
表面张力越大焊芯末端的熔滴越大。
表面张力的大小与多种因素有关,如焊条直径越大焊条末端熔滴的表面张力也越大;液体金属温度越高,其表面张力越小,在保护气体中加入氧化性气体(Ar—O2 Ar—CO2)可以显著降低液金属的表面张力,有利于形成细颗粒熔滴向熔池过渡。
03电磁力(电磁收缩力)异性相吸,则这两根导体彼此相吸,使这两根导体相吸的力叫做电磁力,方向是从外向内,电磁力的大小与两根导体的电流的乘积成正比,即通过导体的电流越大,电磁力越大。
二氧化碳电弧焊常用的熔滴过渡方式

二氧化碳电弧焊常用的熔滴过渡方式一、引言二氧化碳电弧焊是一种常见的金属焊接方法,广泛应用于工业生产中。
熔滴过渡方式是二氧化碳电弧焊中一个重要的概念,它对焊接质量和效率都有着重要的影响。
本文将介绍二氧化碳电弧焊常用的熔滴过渡方式。
二、熔滴过渡方式的定义熔滴过渡方式是指在二氧化碳电弧焊中,熔滴从钨极处分离出来后,到达工件表面之前所经历的各种状态和变化过程。
这个过程包括了熔滴形成、脱离、运动、凝固等多个阶段。
三、常用的熔滴过渡方式1. 滴落式滴落式是最基本的熔滴过渡方式,在这种方式下,每个熔滴都会从钨极处逐一分离出来,并在空气中自由落下,直到与工件表面接触并融合为止。
这种方式下,每次只有一个熔滴参与焊接,因此焊接速度较慢。
2. 喷射式喷射式是一种常用的高效熔滴过渡方式。
在这种方式下,电弧能量足够大,可以将熔滴从钨极处喷射出来,并在空气中快速运动到工件表面附近。
这种方式下,多个熔滴可以同时参与焊接,因此焊接速度较快。
3. 桥式桥式是一种介于滴落式和喷射式之间的熔滴过渡方式。
在这种方式下,每个熔滴会从钨极处分离出来,并在空气中自由落下,但是电弧能量足够大,在熔滴接触工件表面之前可以形成一个桥梁状的电弧,在这个电弧中会产生更多的熔化金属,从而加快焊接速度。
4. 转移式转移式是一种特殊的熔滴过渡方式,在这种方式下,每个熔滴不会从钨极处分离出来,而是通过电弧能量和惯性力的作用,在钨极上形成一个薄薄的液态金属层,并随着电弧向前运动。
当液态金属层到达工件表面时,它会融合并形成焊缝。
这种方式下,焊接速度非常快,但是需要精密的电弧控制技术和高质量的钨极。
四、熔滴过渡方式的选择选择哪种熔滴过渡方式应该根据具体的焊接需求来决定。
如果焊接速度要求不高,可以选择滴落式;如果需要高效率的生产,可以选择喷射式或桥式;如果需要最快的焊接速度,则可以选择转移式。
同时,也需要考虑材料、板厚、电流、电压等因素对熔滴过渡方式的影响。
五、总结熔滴过渡方式是二氧化碳电弧焊中一个重要的概念,不同的熔滴过渡方式对焊接质量和效率都有着重要的影响。
焊接过程中熔滴过渡方式的研究

焊接过程中熔滴过渡方式的研究摘要焊接是一种常见的金属连接方法,其中熔滴过渡方式对焊接质量有重要影响。
本文通过对焊接过程中熔滴过渡方式的研究,探讨了不同过渡方式对焊接质量的影响,为提高焊接工艺的稳定性提供了参考。
1. 引言焊接是一种常用的金属连接方法,广泛应用于航空航天、汽车制造、建筑等领域。
焊接过程中,金属材料被加热熔化,通过熔滴的形成和凝固来实现连接。
熔滴过渡方式是指熔滴在焊接过程中从一个状态到另一个状态的方式,直接影响焊接接头的质量和性能。
2. 熔滴过渡方式的分类熔滴过渡方式可分为以下几种: - 均一型熔滴过渡:熔滴在熔化和凝固的过程中保持稳定,凝固时间短。
- 不均一型熔滴过渡:熔滴在熔化和凝固的过程中出现不稳定现象,凝固时间较长。
- 异常型熔滴过渡:熔滴在熔化和凝固的过程中出现异常现象,如溅射、喷射等,影响焊接质量。
3. 不同过渡方式对焊接质量的影响3.1 均一型熔滴过渡均一型熔滴过渡方式是焊接过程中理想的状态,熔滴在熔化和凝固的过程中保持稳定。
这种过渡方式能够保证焊接接头的形状稳定,减少缺陷的产生,提高焊接质量和强度。
3.2 不均一型熔滴过渡不均一型熔滴过渡方式是指熔滴在熔化和凝固的过程中出现不稳定现象,凝固时间较长。
这种过渡方式容易导致焊接接头的形状不稳定,产生变形和裂纹等缺陷,影响焊接质量和强度。
3.3 异常型熔滴过渡异常型熔滴过渡方式是指熔滴在熔化和凝固的过程中出现异常现象,如溅射、喷射等。
这种过渡方式会导致焊接接头表面的涂层受损,降低焊接质量和强度。
4. 改善熔滴过渡方式的方法4.1 控制焊接参数通过调整焊接参数,如焊接电流、焊接速度等,可以改善熔滴过渡方式。
合理的焊接参数能够使熔滴在熔化和凝固的过程中保持均一,减少不均一和异常现象的发生。
4.2 优化焊接工艺优化焊接工艺,如预热、后热处理等,可以改善熔滴过渡方式。
适当的预热能够提高焊接界面的温度均匀性,减少熔滴过渡中的温度梯度,从而降低不均一和异常现象的发生。
射流过渡、熔滴过渡、脉冲过渡和短路过渡。

射流过渡、熔滴过渡、脉冲过渡和短路过渡。
射流过渡、熔滴过渡、脉冲过渡和短路过渡是电弧焊接过程中常见的四种过渡状态。
这些过渡状态对焊接质量和焊接速度都有着重要的影响。
在本文中,我们将详细介绍这四种过渡状态的特点、影响和应对措施。
一、射流过渡射流过渡是电弧焊接过程中最常见的过渡状态之一。
在这种状态下,电弧的能量主要用于将金属表面加热并蒸发,形成一个高温、高速的气流。
这个气流可以将金属表面的氧化物和杂质吹走,从而清洁焊接区域,提高焊缝的质量。
射流过渡的特点是电弧稳定,焊接速度较快,但焊接质量较差。
这是因为在射流过渡状态下,电弧的能量主要用于加热和蒸发金属表面,而不是用于熔化金属。
因此,焊接区域的温度较低,焊缝的质量也较差。
应对措施:为了提高焊接质量,可以采取以下措施:1.增加电流密度,提高焊接区域的温度,促进金属的熔化。
2.增加焊接速度,减少射流过渡状态的时间,降低气流对焊缝的影响。
3.使用气体保护,减少氧化物和杂质的生成,提高焊缝的质量。
二、熔滴过渡熔滴过渡是电弧焊接过程中另一种常见的过渡状态。
在这种状态下,电弧的能量主要用于熔化金属,形成熔滴。
这些熔滴会从电极上脱落,落在焊缝上,形成焊缝。
熔滴过渡的特点是电弧不稳定,焊接速度较慢,但焊接质量较好。
这是因为在熔滴过渡状态下,电弧的能量主要用于熔化金属,形成熔滴。
这些熔滴可以充分熔化金属,形成均匀的焊缝。
应对措施:为了提高焊接速度,可以采取以下措施:1.减小电流密度,降低焊接区域的温度,减少熔滴的形成。
2.增加焊接速度,减少熔滴过渡状态的时间,提高焊接效率。
3.使用适当的电极直径和电极形状,使电弧稳定,减少熔滴的飞溅。
三、脉冲过渡脉冲过渡是一种特殊的焊接过渡状态。
在这种状态下,电弧的能量以脉冲形式释放,每个脉冲的时间很短,但能量很大。
这种方式可以使焊接区域的温度快速升高,熔化金属,形成焊缝。
脉冲过渡的特点是焊接速度快,焊接质量好,但需要特殊的焊接设备和技术。
熔滴过渡

对不同熔滴过度形式比较,包括形成条件,熔滴过度过程的不同特点,应用等内容。
一、熔滴过渡的分类:①自由过渡(Free Flight),是指熔滴脱离焊丝末端前不与熔池接触,脱离焊丝后经电弧空间自由飞行进入熔池的一种过渡形式。
包括:颗粒过渡(包括大颗粒过渡、排斥过渡和细滴过渡)、喷射过渡(包括射滴过渡、亚射流过渡、射流过渡和旋转射流过渡)和爆炸过渡。
②接触过渡(Bridging Transfer),是通过焊丝末端的熔滴与熔池表面接触成桥而过渡的。
包括:短路过渡和搭桥过渡。
③渣壁过渡(Slag Guiding Transfer),包括:沿渣壳过渡和沿药皮筒过渡。
二、形成条件、特点和应用①大颗粒过渡:高弧压、小电流,重力克服表面张力作用,电弧稳定性和焊接质量比较差,可用于高电压、小电流MIG焊。
②排斥过渡:弧根小,电流较大,斑点压力大,高电压较大电流CO2气体保护焊,直流正接时,斑点压力很大,CO2、MIG都有明显的大颗粒排斥过渡③细滴过度:高弧压,更大电流,电流比较大,电磁收缩力增大,表面张力作用减小,熔滴存在的时间短,熔滴细化,过渡频率增加,电弧稳定性比较高,飞溅少,焊缝质量高;CO2细丝较大电流。
④射滴过度:熔滴直径达到与焊丝直径相近时,电弧力使之脱离焊丝端头,并快速通过电弧空间,向熔池过渡的形式。
形成条件:钢焊丝脉冲MIG焊、铝焊丝MIG焊,电流必须达到一定的临界值,过渡形式才会从滴状过渡变为射滴过渡。
射滴过渡特点:斑点力和重力促进熔滴过渡;表面张力阻碍熔滴过渡;飞溅小,成型好;电流有临界值,且电流区间窄;电弧成钟罩型。
⑤射流过度:熔滴呈细小颗粒,沿焊丝的铅笔尖状的端部以喷射状态快速通过电弧空间向熔池过渡的形式。
获得射流过渡的条件是采用纯氩或富氩保护气氛,直流反极性接法,除了保持高弧压(长弧)外,还必须使焊接电流大于某临界值。
电弧从熔滴的根部扩张到颈缩的根部射流过渡特点:跳弧;铅笔尖状;锥形电弧;等离子流力;指状熔深;电弧平稳,飞溅小;电流有临界值。
焊接技术

熔滴过渡电弧焊时,焊丝或焊条端部形成熔滴通过电弧空间向熔池转移的过程称熔滴过渡。
熔滴过渡对熔焊过程稳定、飞溅大小,焊缝成形优劣以及焊接缺陷等有很大影响。
熔滴过渡的类型:自由过渡、接触过渡、渣壁过渡。
(一)自由过渡按过渡形态不同分:滴状过渡、喷射过渡、爆炸过渡。
(1)滴状过渡:当电流较小时,电弧力作用小,随着焊丝熔化,熔滴逐渐长大,当熔滴的重力克服其表面张力的作用时,就以较大的颗粒脱离焊丝,落入熔池成为滴状过渡的形式,例如高电压小电流的MIG焊接(熔化极惰性气体保护焊如氩气、氦气焊)。
如果有斑点压力作用且大于熔滴的重力,熔滴在脱离焊丝之前就偏离了焊丝轴线,甚至上翘,脱离之后不能沿焊丝轴线过渡时,成为排斥过渡焊接形式。
例如高电压小电流的CO2焊及直流正接的大电流CO2焊。
滴状过渡和排斥过渡的熔滴较大,一般大于焊丝直径,属大滴过渡(粗颗粒过渡)。
大滴过渡的熔滴大,形成时间长,影响电弧稳定性,焊缝成形粗糙,飞溅较多,生产中很少采用。
当电流较大时,电磁收缩力较大,熔滴的表面张力较小,熔滴细化,其直径一般等于或小于焊丝直径,熔滴向熔池过渡频率增加,飞溅少,电弧稳定,焊缝成形较好,这种过渡形式叫细颗粒过渡。
在生产中常用,例如较大电流的CO2焊。
(2)喷射过渡:随着焊接电流的增加(大于电流临界值),熔滴尺寸变得更小,过渡频率也急剧提高,在电弧力的强制作用下,熔滴脱离焊丝沿焊丝轴向飞速地射向熔池的焊接形式。
喷射过渡焊接过程稳定,飞溅小,熔深大,焊缝成形好,多用于板厚大于3mm的平焊,不宜焊薄板。
滴状过渡转变成喷射过渡有一临界电流,大于临界电流的熔滴过渡为喷射过渡。
临界电流与焊丝成分、直径、伸出长度、保护气体成分等因素有关。
(3)爆炸过渡:指熔滴在形成、长大或过渡过程中,由于激烈的冶金反应,在熔滴内部产生CO气体,使熔滴急剧膨胀爆裂而形成的一种过渡形式。
在CO2气体保护焊和焊条电弧焊中有时会出现这种熔滴过渡,爆炸时引起飞溅,恶化工艺。
熔滴过渡

熔滴过渡熔滴过渡:焊丝(条)端头的金属在电弧热作用下被加热熔化形成熔滴,并在各种力的作用下脱离焊丝(条)进入熔池,称之为熔滴过渡。
熔滴过渡状态是指焊条熔化后滴入熔池的状态。
对熔滴过渡产生影响的因素包括保护气体的种类和成分,焊接电流和电压,焊条的成分和直径等。
1. 粒状熔滴过渡(Globular transfer)指熔滴直径比所使用的wire直径大时的过渡状态。
可以细分为低电流和中间程度的焊接电流范围内所产生的drop transfer和较高电流co2焊接时产生的repelled transfer。
2.短路熔滴过渡(Short circuiting transfer)Wire端部产生的熔滴与熔池直接接触过渡。
在低电流电压co2焊接时,或在惰性气体成分高的焊接条件下,即MAG或MIG焊接时会出现。
3.旋转熔滴Rotating transfer :在GMAW的大电流领域产生的现象。
由于电流越高熔合效率越高,因此从效率方面考虑时电流越高越好。
但是与其相对应缺点是很难控制熔池,易产生焊接不良。
目前对提高焊接效率的研究主要集中在rotating mode的control方面。
4.喷雾型熔滴过渡Spray transfer :Pulse mode是指比焊接wire小的熔滴的过渡状态。
在较高电流中Ar主成份的保护气体焊接时产生。
喷雾过渡时熔滴一滴一滴有规律的过渡,因此称为projected transfer。
熔化后滴落的wire前端形成小的粒状,熔滴以流淌的状态过渡,称为streaming tran sfer 。
另外熔化的wire前端拉长并高速旋转的过渡称为rotating transfer。
什么是熔滴的自由过渡?熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。
因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。
1、滴状过渡焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩短拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。
熔滴的自由过渡

熔滴的自由过渡熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡.因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式.(1)滴状过渡焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡.滴状过渡有两种形式:1)轴向滴状过渡手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为滴状过渡,见图28a.2)非轴向滴状过渡在多原子气氛中(CO2、N2、H2),阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡.(2)喷射过渡熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡.喷射过渡还可分为射滴过渡和射流过渡两种形式:1)射滴过渡在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡,见图29a.2)射流过渡在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡.这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流,见图29b.什么是熔滴的短路过渡?焊条(或焊丝)端部的熔滴与熔池短路接触,由于强烈过热和磁收缩的作用使熔滴爆断,直接向熔池过渡的形式称为短路过渡,见图30.熔滴的短路过渡频率可达20~200次/s.29、什么是熔滴的混合过渡?在一定条件下,熔滴过渡不是单一形式,而是自由过渡与短路过渡的混合形式,这就称为熔滴的混合过渡.例如,管状焊丝气体保护电弧焊及大电流CO2气体保护电弧焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡.30、试述熔滴过渡时产生飞溅的原因.熔焊时,在熔滴过渡过程中,一部分熔滴溅落到熔池以外的现象称为飞溅.产生飞溅的原因有以下几个方面:(1)气体爆炸引起的飞溅用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅.(2)斑点压力引起的飞溅电弧中的带电质点——电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力.斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅.手弧焊和CO2气体保护焊采用直流正接时经常会发生这种类型的飞溅.(3)短路过渡引起的飞溅CO2气体保护焊采用短路过渡时,在短路的最后阶段,如果还继续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是熔滴的自由过渡?
熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。
因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。
⑴滴状过渡焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。
滴状过渡有两种形式:
1)轴向滴状过渡手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为滴状过渡,见图28a。
2)非轴向滴状过渡在多原子气氛中(CO2、N2、H2),阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡。
⑵喷射过渡熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。
喷射过渡还可分为射滴过渡和射流过渡两种形式:
1)射滴过渡在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡,见图29a。
2)射流过渡在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡。
这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流,见图29b。