熔滴的过渡
熔化极气体保护焊的熔滴过渡形式完整版

滴状过渡时电弧电压较高,由于焊接参数及材料的不同又分为粗滴过渡(大颗粒过渡)及细滴过渡(细颗粒过渡)。
1、粗滴过渡 电流较小而电弧电压较高时,因弧长较长,熔滴与熔池不发生短路,焊丝末端便形成较大的熔滴。当熔滴长大到一定程度后,重力克服表面张力使熔滴脱落。这种过渡方式由于熔滴大,形成的时间长,影响电弧的稳定性,焊缝成型粗糙,飞溅较大,在生产中基本不采用。粗滴过渡形式如图1所示:
气体介质对射流过渡的影响:不同的气体介质对电弧电场强度的影响不同。在Ar气保护下弧柱电场强度较低,电弧弧根容易扩展,易形成射流过渡,临界电流值较低。当Ar气中加入CO2时,随着CO2比例增加临界电流值增大。若CO2的比例超过30%时,则不能形成射流过渡,这是由于CO2气体解离吸热对电弧的冷却作用较强,使电弧收缩,电场强度提高,电弧不易扩展所致。
2、细滴过渡 电流比较大时,电磁收缩力较大,熔滴表面张力减小,熔滴细化,这些都促使熔滴过渡,并使熔滴过渡频率增加。这种过渡形式称为细滴过渡,因为飞溅少,电弧稳定,焊缝成型良好,在生产中被广泛应用。细滴过渡形式如图2所示:
3、射流过渡?
射流过渡是喷射过渡中最富有代表性的且用途广泛的一种过渡形式。获得射流过渡的条件是采用纯氩气或富氩气体保护,大电压,还必须使焊接电流大于临界值。射流过渡电弧稳定,飞溅极少,焊缝成形质量好。由于电弧稳定,对保护气流的扰动作用小,故保护效果好。射流过渡电弧功率大,热流集中,对焊件的熔透能力强。而且过渡的熔滴沿电弧轴线高速流向熔池,使焊缝中心部位熔深明显增大而呈指状熔深。射流过渡形式如图3所示:
熔化极气体保护焊的熔滴过渡形式
熔化极短路过渡主要用于直径小于的细丝CO2气体保护焊或混合气体保护焊,采用低电压,小电流的焊接工艺。由于电压低,电弧较短,熔滴尚未长大成熔滴时即与熔池接触而形成短路液体过桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去,这样的过渡形式称为短路过渡。这种过渡电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形良好,广泛用于薄板结构、根部打底焊及全位置焊接。
第二章 焊丝的熔化及熔滴过渡

第二章焊丝的熔化及熔滴过渡熔化极电弧焊的焊丝(条)具有两个作用:一是作为电极并与工件之间产生电弧;另是本身被加热熔化并作为填充金属过渡到熔池中去。
焊丝(条)的熔化及熔滴过渡,是熔化极电弧焊接过程中的重要物理现象,熔滴过渡方式及特点将直接影响焊接质量和生产效率。
第一节焊丝的加热与熔化一、焊丝的加热与熔化特性熔化极电弧焊时焊丝(条)的熔化主要是靠阴极区(正接)或阳极区(反接)所产生的热量,中括号焊接情况下,UK >> UW所以Pk>PA,这时,在同一材料和同一电流情况下,焊丝(条)为阴极(正接)时的产生热量要比为阳极(反接)时多。
因散热条件相同,所以焊丝(条)接负时比焊丝(条)接正时熔化快。
焊丝除了受电弧的加热外,在自动和半自动焊时,从焊丝与导电嘴的接触点到焊丝端头的一段焊丝(即焊丝伸出长度用表示)有焊接电流流过,所产生电阻热对焊丝有预热作用,从而影响焊丝的熔化速度(图2-1)。
特别是焊丝比较细和焊丝金属的电阻系数比较大时(如不锈钢),这种影响更为明显。
焊丝伸出长度的电阻热为:P R=I2RsRs=PLs/S (2-4)式中 Rs----为Ls段的电阻值;P-----焊丝的电阻率;Ls----焊丝的伸出长度;S----焊丝的断面积。
材料不同时,焊丝伸出长度部分产生的电阻热也不同。
如熔化极气体保护焊时,通常Ls=10~30mm,对于导电良好的铝和铜等金属,PR 与PA或PK相比是很小的,可忽略不计。
而对钢和钛等材料,电阻率高。
当伸出长度较大时PR 与PA或PK相比较大才有重要的作用。
)来表这是mα弧长较长时,电弧电压的变化对焊丝熔化速度影响不大;但在弧长较短的范围内,电弧电压降低,反而使得焊丝熔化速度增加。
在铝合金焊接时这种现象特别明显,图2-4a中的各条曲线,表示了直径为φ1.6mm铝合金焊丝等速送进时的熔化速度与电弧电压及电流的关系。
由图中可见,当弧长较长时,曲线AB段段与横轴垂直,此时的焊丝送进速度与熔化速度相平衡,焊丝的熔化速度主要决定于电流的大小。
2—2熔滴过渡及作用力

显然:dG﹥ dD促进过渡
dG< dD阻碍过渡
一般dG大小与气体介质,焊接电流有关。 如Ar与CO2相比,Ar弧弧根大,电流增大, dG增大 (四) 等离子流力 由于电弧截面不等,电磁力不一样造成压力差,使电弧产生轴 向推力,造成从焊丝端部向工件的气体流动,形成等离子流力。 电流较大时,等离子流力对熔滴产生很大的推力,使之沿焊丝 轴向方向运动。这种推力的大小与焊丝直径和电流大小密切相关。 (五) 其他力 1)斑点压力 电极上形成斑点时,此处是产热集中的地方。这样斑点处将承 受电子(反接时)或正离子(正接时)的撞击力,通常情况下斑点压力 阻碍熔滴过渡(斑点面积小于熔滴直径时);MIG焊喷射过渡的情况 下,而斑点面积很大且布满整个熔滴时,斑点压力常常促进熔滴过渡。 2)爆破力 当熔滴内部含有易挥发金属或由于冶金反应而生成气体时,都 会在电弧高温作用下气体积聚膨胀而造成较大的内力,从而使熔滴 爆炸而过渡。短路过渡焊接时,由于电流密度较大,使缩颈处熔断爆 破形成熔滴过渡,同时有飞溅产生。
四 熔滴过渡的飞溅与蒸发 1飞溅 飞溅问题主要针对短路过渡和颗粒过渡,射流过渡飞溅很小。 2产生飞溅的原因 1)由冶金反应在液体金属内产生气体,在高温的作用下气体要膨 胀,而液体金属又限制其膨胀,则发生爆炸,产生飞溅。 2)规范选择不合适,发生熔滴严重长大或固体焊丝插入熔池产生 大的爆断。 3)电源动特性调节不当,大电流峰值过大,引起飞溅。 4)斑点压力过大,产生大块排斥过渡。 5)气体介质,CO 2 、A r。 五 熔滴过渡的控制 (一)脉冲电流控制法 1 特点 1)电弧连续稳定燃烧,基值电流维弧,峰值电流过渡,小平均电 流下实现喷射过渡。 2)避免了喷射过渡的缺点,同一台设备可焊厚板、薄板,可进行 全位置焊接。
(四)喷射过渡 1 射流过渡形成的条件与特点 1)形成条件 钢焊丝TIG焊,电流较 小时,电弧与熔滴状态; 如图2--19a所示,熔滴在 重力作用下呈大滴状过渡。 随着电流的增加,电磁力 等离子流力增,轴向电磁力 由原来的阻碍过渡变为促 进过渡这时熔滴长大将受 到限制,在熔滴和焊丝之间 形成缩颈,此处在高电流密 度下,产生大量金属蒸气 ,细颈表面具备产生阳极斑点的有利条件,此 时,按最小电压原理,如果 :
最近看了些熔滴过渡方面的资料

[收藏]•自由过渡滴状过渡:这其中又可以分为大滴状过渡和细颗粒过渡两种形式。
大滴状过渡当电弧电流较小和电弧电压较高时,弧长较长,熔滴不易与熔池接触,也就是说这时很难发生短路过渡。
由于电流较小,弧根面积较小,焊丝和熔滴之间的电磁推力以及熔滴和弧根之间的电磁推力很难使熔滴形成缩颈,而斑点压力对熔滴过渡起阻碍作用,因此这时只有依靠重力来抵消表面张力使得熔滴过渡到熔池。
以上为大滴状过渡的描述,具体到各种焊接方法:(1)熔化极气体保护焊DCSP时,无论是用的氩气还是二氧化碳气体,由于阴极斑点压力较大,都会出现大滴状过渡。
(2)二氧化碳气体保护焊时(电流较小时),由于二氧化碳气体高温解离吸热以及很高的导热系数,对电弧有很强的冷却作用。
因而电弧收缩,弧根面积难于扩展,斑点压力较大而有碍熔滴过渡最终形成大滴状过渡。
(DCRP)(3)高电压小电流的MIG和MAG中也是会出现这种过渡形式。
细颗粒过渡这种过渡形式主要出现在二氧化碳气体保护焊中。
随着焊接电流的增加,斑点面积增加,电磁推力增加,斑点压力逐渐有利于熔滴过渡。
这时熔滴过渡的频率增加,熔滴直径相对较小。
这种过渡形式就是细颗粒过渡。
(这时的熔滴直径仍然大于焊丝直径)这种过渡形式在二氧化碳气体保护焊中应用非常广泛,主要针对于中厚板。
注:二氧化碳气体保护焊中存在大滴状过渡,短路过渡以及细颗粒过渡。
但是大滴状过渡很少用。
喷射过渡这种过渡形式又可以分为射滴过渡、射流过渡以及亚射流过渡。
喷射过渡主要出现在氩气或者是富氩气体保护焊中。
射滴过渡这种过渡形式主要出现在钢和铝的MIG焊中。
由于电流较大,弧根面积可以笼罩整个熔滴,熔滴直径接近于焊丝直径。
这时电磁推力和斑点压力都有利于熔滴过渡,阻碍熔滴过渡的只有表面张力。
值得说明的是,这种过渡形式的电流区间是比较窄的,在焊接过程中并没有可以采用这种形式。
射流过渡射流过渡主要出现在钢的大电流的MIG焊中。
其实钢的氩气保护焊或者富氩保护焊中出现的过渡形式有:大滴状过渡、射滴过渡(甚至有学者认为钢的M IG焊中不存在这种形式)、射流过渡。
电弧焊的熔滴过渡

§6—5电弧焊的熔滴过渡熔滴是电弧焊时,在焊条〔或焊丝〕端部形成的和向熔池过渡的液态金属滴。
熔滴通过电弧空间向熔池转移的过程称为熔滴过渡。
熔滴过渡对焊接过程的稳定性,焊缝形成,飞溅及焊接接头的质量有很大的影响,因此了解这个问题对于掌握熔化极焊接工艺是很重要的。
金属熔滴向熔池过程的形式,大致可分为三种即:滴状过渡、短路过渡、喷射过渡为什么熔滴过渡会有上述这些不同的形式呢?这是由于作用于液体金属熔滴上的外力不同的缘故。
在焊接时,采取一定的工艺措施。
就可以改变熔滴上的作用力,也就使熔滴按人们所需要的过渡形式自焊条向熔池过渡。
一熔滴过度的作用力1熔滴的重力任何物体都会因为本身的重力而具有下垂的倾向。
平焊时,金属熔滴的重力起促进熔滴过渡作用。
但是在立焊及仰焊时,熔滴的重力阻碍了熔滴向熔池过渡,成为阻碍力。
2外表张力液体金属象其它液体一样具有外表张力,即液体在没有外力作用时,其外表积会尽量减小,缩成圆形,对液体金属来说,外表张力使熔化金属成为球形。
焊条金属熔化后,其液体金属并不会马上掉下来,而是在外表张力的作用下形成球滴状悬挂在焊条末端。
随着焊条不断熔化,熔滴体积不断增大,直到作用在熔滴上的作用力超过熔滴与焊芯界面间的张力时,熔滴才脱离焊芯过渡到熔池中去。
因此外表张力对平焊时的熔滴过渡并不利。
但外表张力在仰焊等其它位置的焊接时,却有利于熔滴过渡,其一是熔池金属在外表张力作用下,倒悬在焊缝上而不易滴落;其二当焊条末端熔滴与熔池金属接触时,会由于熔池外表张力的作用,而将熔滴拉入熔池。
外表张力越大焊芯末端的熔滴越大。
外表张力的大小与多种因素有关,如焊条直径越大焊条末端熔滴的外表张力也越大;液体金属温度越高,其外表张力越小,在保护气体中加入氧化性气体〔Ar—O2 Ar—CO2〕可以显著降低液金属的外表张力,有利于形成细颗粒熔滴向熔池过渡。
3电磁力向相同,则这两根导体彼此相吸,使这两根导体相吸的力叫做电磁力,方向是从外向内,图1所示。
模块四项目1电弧焊的熔滴过渡

F=2π Rs
式中:为表面张力系数,Rs为焊丝半径。
2)短路过渡时,熔滴与工件间的表面张力 — 促进过渡 F=2πRP
F F Fmg
F
表面张力
重力
3、电磁收缩力 电流线通过熔滴时的电磁收缩力 1) 当Sb(斑点面积)<Ss(焊丝截面积)时,电流线在熔滴中收缩F推向上,阻 碍过渡。 2)当Sb>Ss时,电磁线在熔滴中发散,F推向下,促进过渡。 4、斑点力 其作用亦与斑点面积有关: 1)Sb较大时,促进过渡 2)Sb较小时,阻碍过渡
3、喷射过渡 1)射滴 特点:
(1)aD>>g (2)dDds (3)轴向性好 (4)一次一滴 (1)aD>>g (2)dD<ds (3)轴向 (4)连续束流
2)射流 特点:
F Fg F
Fmg
FP
F斑
大滴
射滴
射流
(二)渣壁过渡 1、沿熔渣壁过渡埋弧焊 DCSP:熔滴尺寸大,过渡频率低 DCRP:尺寸小,f大。 I↑ f↑ 2、沿套筒过渡 产生于SMAW 条件: 1)厚药皮 2)酸性药皮
模块四金属熔焊冶金过程
项目一电弧焊的熔滴过渡
目
录
一、熔滴上的作用力 二、影响熔滴过渡大小的因素 三、熔滴过渡的形式
项目1、电弧焊的熔滴过渡
基本概念 熔滴过渡:焊丝端部的熔化金属以滴状进入熔池的过程。 飞溅:熔化的焊丝金属飞到熔池之外的现象。 一、熔滴上的作用力 熔滴上的作用力是影响熔滴过渡及焊缝成形的主要因素。根据熔滴上作用力 来源不同,可将其分为重力、表面张力、电磁收缩力、斑点压力、气体吹力、等 离子流力。 1、重力 任何物体都会应为本身的重力而具有下垂的倾向。 作用: 1)平焊时促进过渡; 2)立焊,仰焊时阻碍过渡。 2、表面张力 1)焊丝与熔滴间的表面张力F,阻碍过渡,将熔滴保持在焊丝上。
焊丝的熔化和熔滴的过渡课件

焊丝伸出长度主要影响热传导和电阻热。
坡口形状主要影响传热和流场。
窄而深的坡口有利于集中热量,促进熔滴过渡。
宽而浅的坡口可能会导致热量分散,影响熔滴过渡的稳定性。
坡口形状的不一致也可能导致焊接过程中的飞溅和驼峰缺陷。
01
02
03
04
04
CHAPTER
焊丝熔化和熔滴过渡过程中的问题及措施
焊缝成形不良主要是由于焊接参数不匹配、焊丝与工件表面不清洁或焊接电弧不稳定等原因引起的。
ISO 3834、EN 1090 等标准体系,以及相应的材料、工艺和焊缝质量要求。
焊接质量控制标准
气孔、夹渣、未熔合、裂纹等。
常见的焊接缺陷
针对不同缺陷产生的原因,采取相应的工艺和操作措施进行预防和纠正。
防止措施
以某钢结构焊接为例,分析其焊接缺陷产生的原因,提出相应的防止措施。
案例分析
THANKS
解决方法
可以通过调整焊接参数、确保熔滴过渡稳定以及保持焊丝和工件表面清洁等方式来解决未熔合的问题。
05
CHAPTER
实际应用及案例分析
激光焊接、电子束焊接、搅拌摩擦焊接等。
高效焊接工艺
以激光焊接为例,介绍其原理、特点、应用范围及优势。
案例介绍
了解熔滴过渡的形式和特点,掌握熔滴过渡的控制方法。
熔滴过渡控制
随着焊接速度的增加,热输入降低,焊丝熔化速度减慢,熔滴体积减小,过渡频率也会降低。
焊接速度过快可能会导致熔滴未完全熔化就已过渡,造成焊接缺陷。
随着焊丝伸出长度的增加,电阻热增加,焊丝熔化速度加快,熔滴体积增大,过渡频率也会增加。
焊丝伸出长度过短可能会造成顶吹现象,过长的焊丝伸出长度可能会增加飞溅。
熔滴过渡

对不同熔滴过度形式比较,包括形成条件,熔滴过度过程的不同特点,应用等内容。
一、熔滴过渡的分类:①自由过渡(Free Flight),是指熔滴脱离焊丝末端前不与熔池接触,脱离焊丝后经电弧空间自由飞行进入熔池的一种过渡形式。
包括:颗粒过渡(包括大颗粒过渡、排斥过渡和细滴过渡)、喷射过渡(包括射滴过渡、亚射流过渡、射流过渡和旋转射流过渡)和爆炸过渡。
②接触过渡(Bridging Transfer),是通过焊丝末端的熔滴与熔池表面接触成桥而过渡的。
包括:短路过渡和搭桥过渡。
③渣壁过渡(Slag Guiding Transfer),包括:沿渣壳过渡和沿药皮筒过渡。
二、形成条件、特点和应用①大颗粒过渡:高弧压、小电流,重力克服表面张力作用,电弧稳定性和焊接质量比较差,可用于高电压、小电流MIG焊。
②排斥过渡:弧根小,电流较大,斑点压力大,高电压较大电流CO2气体保护焊,直流正接时,斑点压力很大,CO2、MIG都有明显的大颗粒排斥过渡③细滴过度:高弧压,更大电流,电流比较大,电磁收缩力增大,表面张力作用减小,熔滴存在的时间短,熔滴细化,过渡频率增加,电弧稳定性比较高,飞溅少,焊缝质量高;CO2细丝较大电流。
④射滴过度:熔滴直径达到与焊丝直径相近时,电弧力使之脱离焊丝端头,并快速通过电弧空间,向熔池过渡的形式。
形成条件:钢焊丝脉冲MIG焊、铝焊丝MIG焊,电流必须达到一定的临界值,过渡形式才会从滴状过渡变为射滴过渡。
射滴过渡特点:斑点力和重力促进熔滴过渡;表面张力阻碍熔滴过渡;飞溅小,成型好;电流有临界值,且电流区间窄;电弧成钟罩型。
⑤射流过度:熔滴呈细小颗粒,沿焊丝的铅笔尖状的端部以喷射状态快速通过电弧空间向熔池过渡的形式。
获得射流过渡的条件是采用纯氩或富氩保护气氛,直流反极性接法,除了保持高弧压(长弧)外,还必须使焊接电流大于某临界值。
电弧从熔滴的根部扩张到颈缩的根部射流过渡特点:跳弧;铅笔尖状;锥形电弧;等离子流力;指状熔深;电弧平稳,飞溅小;电流有临界值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在空间任何位置进行焊接时,电磁力
都有促进熔滴过渡的作用。在用大电
流施磁力
第二节 熔滴过渡
4 爆破力
•
若熔滴内部含有易挥发金属或由于冶金反
应而生成气体,则在电弧高温作用下气体积聚和
膨胀而造成较大的内力,从而使熔滴爆炸。在
CO2短路过渡焊接时,电磁力及表面张力的作用
第二节 熔滴过渡
3、熔滴过渡特性对焊接过程的影响
1)熔滴过渡的速度和熔滴的尺寸影响焊接过程的稳 定性、飞溅程度以及焊缝成形的好坏;
2 )熔滴的尺寸大小和长大情况决定了熔滴反应的作 用时间和比表面积(指熔滴的表面积与其体积或质 量之比)的大小,从而决定了熔滴反应速度和完全程 度;
3 )熔滴过渡的形式与频率直接影响焊接生产率;
• 电磁力的方向垂直于导体表面(更确 切的说是垂直于电流线),使导体截 面积减小。电磁力对焊条未熔化部分 无甚影响,而对熔化的金属则有显著 的压缩作用。特别是在焊条末端与熔 滴之间的细颈部分,电流密度最大, 电磁力也最大。这种沿焊条轴线分布 不均匀的电磁力又构成一种轴向推力, 促使熔滴脱离焊条,而向熔池过渡。
端产生缩颈,轴向分力则
使熔滴保持在焊丝末
端.阻碍熔滴过渡。
第二节 熔滴过渡 熔滴受重力和表面张力示意图
第二节 熔滴过渡
•
如果焊丝半径为R,熔滴半径为r,则焊丝
与熔滴之间的表面张力Fδ为:
• Fδ=2πRσ 式中,σ是表面张力系数,其数值与
材料、温度、气体介质等因素有关。
表2-1 纯金属的表面张力系数
4 )熔滴过渡的特性对焊接热输入有一定的影响,改 变熔滴过渡的特性可以在一定程度上调节焊接热输 入,从而改变焊缝的结晶过程和热影响区的尺寸及 性能。
第二节 熔滴过渡
2.2熔滴上的作用力
1 重力
• 重力Fg对熔滴的影响取决于焊
缝的空间位置。平焊时,重力是促 使熔滴脱离焊丝末端的作用力;立 焊和仰焊时,重力则为阻碍熔滴从 焊丝末端脱离的作用力。重力为
3
熔滴越细其熔滴比表面积越大,凡是能使熔滴变细的因素, 都能加强冶金反应。
第二节 熔滴过渡
熔滴与周围介质相互作用的时间越长,冶金反应越充分 。
熔滴平均相互作用时间表示式:
cp mcp / gcp
cp
(m0
1 2 mtr ) /(mtr
/ )
cp [(m0 / mtr ) 1/ 2]
τcp,熔滴平均相互作用时间 mcp熔滴平均质量,mcp=m0+1/2 mtr,m0 熔滴脱落后在焊条端部剩余液体量;mtr 单个熔滴质量; τ熔滴长大时间; gcp熔滴过渡一个周期内焊芯的平均熔化 速度,gcp=mtr/τ
因为一是熔滴与熔池接触时,表面张力有将熔滴
拉入熔池的作用;二是使熔池或熔滴不易流淌。
• 加入表面活性物质或熔滴温度升高,可以降低表
面张力系数,如O,S
第二节 熔滴过渡
• 3.电磁收缩力
• 电流流过导体时,在导体周围产生磁 场,此磁场对导体又产生压缩力p(见 图2-5),这种力称为电磁力。图2-5 电磁力
金属
σ×10-3 (N·m-1)
Mg Zn Al Cu Fe Ti Mo W
650 770 900 115 122 151 225 268 00000
第二节 熔滴过渡
•
只有重力和其它作用力的合力超过Fδ时,
熔滴才能脱离焊丝过渡到熔池中去。因此.一般
情况下Fδ是阻碍熔滴过渡的力。但在仰焊或其它
位置(立焊、横焊)焊接时,却有利于熔滴过渡。
熔滴相互作用时间近似等于熔滴存在时间(0.01~1.0s),是很短暂的。
第二节 熔滴过渡
2 、熔滴的温度 熔滴的温度是研究熔滴阶段
各种物理化学反应时不可缺少的 重要参数。试验表明,熔滴的平 均温度随焊接电流的增加而升高, 并随焊丝直径的增加而降低。对 焊接低碳钢而言,熔滴的平均温 度波动在2100~2700K的范围内。
第二节 熔滴过渡
一、熔滴的过渡特性 1、熔滴的比表面积和相互作用时间
熔滴比表面积,即熔滴的表面积与其体积或质量之比。在 熔滴长大的过程中其比表面积也应当是变化的,熔滴的比 表面积取决于它的形状和尺寸 。
比表面积(S):熔滴表面积(A)与其质量(ρV)之比, 即 S Ag / V。g 设熔滴是半径为R的球体,则 S 4R2 /( 4 R3 ) 3/ R。
• b)通常阳极受到的斑点压力比阴极受到的斑点压 力要小,因而焊丝为阳极时熔滴过渡的阻碍力较 小。这也是许多熔化极电弧焊采用直流反接的主 要原因之一。
第二节 熔滴过渡
•
上述诸力,除重力和表面张力之外,电弧
力、爆破力等的存在与方向都与电弧形态有关。 而对于熔滴过渡的作用则随工艺条件、焊接位置
导致熔滴形成缩颈,电流密度增加,急剧加热使
液态小桥爆破形成熔滴过渡,同时也造成了较大
飞溅。
5 电弧气体吹力
• 焊条电弧焊时,焊条药皮的熔化 • 滞后于焊芯的熔化,在焊条的端头
形成套筒,见图2-9。药皮中造 • 气剂分解产生的CO、CO2、H2及 • O2等在高温作用下急剧膨胀,从 • 套筒中冲出,推动熔滴冲向熔池。 • 无论何种位置焊接,这种力都有 • 利于熔滴过渡。
• Fg=mg=4πr3ρg/3
• 式中,ρ是熔滴密度,r是熔滴半径, g是重力加速度。
2 表面张力
•
表面张力Fδ作用
于焊丝末端、与熔滴相交
并且相切的圆周面上,是
焊丝端头上保持熔滴的主
要作用力。焊丝与熔滴之
间的表面张力Fδ如图2-7b
所示,Fδ可以分解为径向
分力Fδr以及轴向分力Fδα,
径向分力使熔滴在焊丝末
第二节 熔滴过渡
• 6.斑点压力
第二节 熔滴过渡
• 电弧中带电质点在电场作用下向两极移动,撞 击在两极的斑点上产生的机械压力
• 斑点压力包括:正离子和电子对熔滴的撞击力、 电极材料蒸发时产生的反作用力以及弧根面积很 小时产生的指向熔滴的电磁收缩力。
• a)在一定条件下,斑点压力将阻碍金属熔滴的过 渡。
第二节 熔滴过渡
第二节 熔滴过渡
焊条 电弧热端部熔化 熔滴 各种力的作用下长大以滴状形式过渡到熔池
熔滴是指电弧焊时,在焊条(或焊丝)端部形成的向熔 池过渡的液态金属滴。
•熔化的液体金属达到一定程度便以一定的方式脱离 焊丝末端,过渡到熔池中去。这个过程称为熔滴过渡。
熔化极电弧焊(焊条电弧焊、CO2焊、MIG、MAG、埋 弧焊)