(完整word版)读者写者问题实验报告

合集下载

操作系统课程设计报告——读者写者问题

操作系统课程设计报告——读者写者问题

操作系统课程设计课题:读者写者问题姓名:赫前进班级:1020552学号102055211指导教师:叶瑶提交时间:2012/12/30(一)实验目的1.进一步理解“临界资源”的概念;2.把握在多个进程并发执行过程中对临界资源访问时的必要约束条件;3.理解操作系统原理中“互斥”和“同步”的涵义。

(二)实验内容利用程序设计语言编程,模拟并发执行进程的同步与互斥(要求:进程数目不少于3 个)。

(三)、程序分析读者写者问题的定义如下:有一个许多进程共享的数据区,这个数据区可以是一个文件或者主存的一块空间;有一些只读取这个数据区的进程(Reader)和一些只往数据区写数据的进程(Writer),此外还需要满足以下条件:(1)任意多个读进程可以同时读这个文件;(2)一次只有一个写进程可以往文件中写;(3)如果一个写进程正在进行操作,禁止任何读进程度文件。

实验要求用信号量来实现读者写者问题的调度算法。

实验提供了signal类,该类通过P( )、V( )两个方法实现了P、V原语的功能。

实验的任务是修改Creat_Writer()添加写者进程,Creat_Reader()创建读者进程。

Reader_goon()读者进程运行函数。

读优先:要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。

读者优先的附加限制:如果一个读者申请进行读操作时已有另一读者正在进行读操作,则该读者可直接开始读操作。

写优先:一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。

写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资源,则该读者必须等到没有写者处于等待状态后才能开始读操作。

在Windows 7 环境下,创建一个控制台进程,此进程包含n 个线程。

用这n 个线程来表示n 个读者或写者。

每个线程按相应测试数据文件(格式见下)的要求进行读写操作。

读者写者实验报告

读者写者实验报告

读者写者实验报告
读者写者问题是指一个共享固定大小缓冲区的进程间通信问题,其中固定大小的缓冲区被多个读者进程和写者进程所共享。

读者进程从缓冲区中读取数据,而写者进程将数据写入缓冲区。

本实验目的是通过使用互斥锁、条件变量和信号量等同步机制,构建一个读者写者问题的解决方案。

实验环境:
- 操作系统:Linux
-编程语言:C语言
实验步骤:
1.创建共享内存缓冲区,用于读者和写者的数据传递。

2.创建互斥锁,用于保护共享内存缓冲区的访问。

3.创建条件变量,用于读者和写者之间的协调。

4.创建读者进程和写者进程,模拟读者写者的并发操作。

5.在读者进程中,通过互斥锁保护共享内存缓冲区,读取数据,并更新计数器。

6.在写者进程中,通过互斥锁保护共享内存缓冲区,写入数据,并更新计数器。

7.使用条件变量实现读者优先或写者优先的策略。

实验结果:
通过实验,我成功实现了读者写者问题的解决方案。

使用互斥锁可以保护共享资源的访问,防止读者和写者同时访问。

使用条件变量可以实现读者优先或写者优先的策略。

实验总结:
通过本次实验,我深入了解了读者写者问题,并且掌握了使用互斥锁、条件变量和信号量等同步机制来解决读者写者问题的方法。

在实现过程中,我遇到了一些困难,例如死锁和竞争条件等问题。


过调试和改进代码,我成功解决了这些问题,提高了程序的稳定性和性能。

在以后的工作中,我会更加注重并发编程的实践,提高自己解决问题
的能力。

(完整word版)操作系统实验报告.实验一 WINDOWS进程初识

(完整word版)操作系统实验报告.实验一 WINDOWS进程初识

操作系统教程实验指导书实验一WINDOWS进程初识1、实验目的(1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。

(2)掌握WINDOWS API的使用方法。

(3)编写测试程序,理解用户态运行和核心态运行。

2、实验内容和步骤(1)编写基本的Win32 Consol Application步骤1:登录进入Windows,启动VC++ 6.0。

步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。

创建一个新的控制台应用程序工程。

步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。

步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。

编译成可执行文件。

步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows “命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序:E:\课程\os课\os实验\程序\os11\debug>hello.exe运行结果 (如果运行不成功,则可能的原因是什么?) :答:运行成功,结果:(2)计算进程在核心态运行和用户态运行的时间步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。

步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。

步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。

北理工操作系统实验二读者写者问题

北理工操作系统实验二读者写者问题

本科实验报告实验名称:操作系统原理实验(读者写者问题)课程名称:操作系统原理实验时间:2015.10.30 任课教师:王耀威实验地点:10#102实验教师:苏京霞实验类型: 原理验证□综合设计□自主创新学生姓名:孙嘉明学号/班级:1120121474/05611202 组号:学院:信息与电子学院同组搭档:专业:信息对抗技术成绩:实验二:读者写者问题一、实验目的1.通过编写和调试程序以加深对进程、线程管理方案的理解;2.熟悉Windows多线程程序设计方法;二、实验要求在Windows环境下,创建一个控制台进程,此进程包含n个线程。

用这n个线程来表示n个读者或写者。

每个线程按相应测试数据文件(后面介绍)的要求进行读写操作。

用信号量机制分别实现读者优先和写者优先问题。

读者-写者问题的读写操作限制(包括读者优先和写者优先)1)写-写互斥:不能有两个写者同时进行写操作2)读-写互斥:不能同时有一个线程在读,而另一个线程在写。

3)读-读允许:可以有一个或多个读者在读。

读者优先的附加限制:如果读者申请进行读操作时已有另一个读者正在进行读操作,则该读者可直接开始读操作。

运行结果显示要求:要求在每个线程创建、发出读写申请、开始读写操作和结束读写操作时分别显示一行提示信息,以确定所有处理都遵守相应的读写操作限制。

测试数据文件包括 n行测试数据,分别描述创建的n个线程是读者还是写者,以及读写操作的开始时间和持续时间。

每行测试数据包括四个字段,每个字段间用空格分隔。

第1个字段为正整数,表示线程的序号。

第2个字段表示线程的角色,R表示读者,W表示写者。

第3个字段为一个正数,表示读写开始时间:线程创建后,延迟相应时间(单位为秒)后发出对共享资源的读写申请。

第4个字段为一个正数,表示读写操作的延迟时间。

当线程读写申请成功后,开始对共享资源进行读写操作,该操作持续相应时间后结束,释放该资源。

下面是一个测试数据文件的例子(在记事本手工录入数据):1 R 3 52 W 4 53 R 5 24 R 6 55 W 5.1 3三、实验环境硬件设备:个人计算机。

读者写者问题实验报告

读者写者问题实验报告

读者写者问题实验报告1. 引言读者写者问题是操作系统中的经典同步问题,用于研究多线程环境下对共享资源的访问和保护。

在该问题中,有多个读者和写者同时对一个共享资源进行操作,需要保证并发访问时的正确性和效率。

通过本实验,我们将探讨读者写者问题的解决方案,并比较不同算法的性能差异。

2. 实验目标本实验的主要目标是通过实现和比较不同的读者写者问题算法,深入了解并发访问的挑战和解决方案。

具体而言,我们将研究以下几个方面:•设计并实现读者写者问题的解决方案•比较不同算法的性能差异•分析可能的优化策略3. 实验方法我们将使用Python编程语言来实现读者写者问题的解决方案。

在实验过程中,我们将尝试以下几种常见的算法:3.1. 读者优先算法在读者优先算法中,当有读者在访问共享资源时,其他读者可以同时访问,但写者需要等待。

只有当所有读者完成访问后,写者才能获得访问权限。

3.2. 写者优先算法在写者优先算法中,当有写者在访问共享资源时,其他读者和写者都需要等待。

只有当写者完成访问后,其他读者或写者才能获得访问权限。

3.3. 公平算法在公平算法中,读者和写者的访问权限是公平的,先到先得。

无论读者还是写者,都需要按照到达的顺序依次获取访问权限。

4. 实验步骤下面是我们实施实验的具体步骤:4.1. 实现基本的读者写者问题解决方案我们首先实现基本的读者写者问题解决方案,包括读者和写者的线程逻辑和共享资源的访问控制。

我们将使用互斥锁和条件变量来保证并发访问的正确性。

4.2. 实现读者优先算法在已有的基本解决方案的基础上,我们实现读者优先算法。

我们将通过优化访问控制的逻辑来实现读者优先的特性。

4.3. 实现写者优先算法类似地,我们在基本解决方案的基础上实现写者优先算法。

我们将调整访问控制的逻辑,使得写者优先于其他读者和写者。

4.4. 实现公平算法最后,我们实现公平算法。

我们将结合队列和条件变量等技术来确保读者和写者的访问顺序是公平的。

读者-写者问题说明书

读者-写者问题说明书

《操作系统原理》课程设计任务书题目:读者-写者问题的实现学生姓名:李志旭学号:13740113 班级:_13级软件工程_题目类型:软件工程(R)指导教师:陈文娟、马生菊一、设计目的学生通过该题目的设计过程,掌握读者、写者问题的原理、软件开发方法并提高解决实际问题的能力。

二、设计任务编写程序实现读者优先和写者优先问题:读者-写者问题的读写操作限制(包括读者优先和写者优先)写-写互斥:不能有两个写者同时进行写操作读-写互斥:不能同时有一个线程在读,而另一个线程在写。

读-读允许:可以有一个或多个读者在读。

三、设计要求1.分析设计要求,给出解决方案(要说明设计实现所用的原理、采用的数据结构)。

2.设计合适的测试用例,对得到的运行结果要有分析。

3.设计中遇到的问题,设计的心得体会。

4.文档:课程设计打印文档每个学生一份,并装在统一的资料袋中,资料袋前面要贴有学校统一的资料袋封面。

四、提交的成果1. 课程设计说明书内容包括(1) 封面(学院统一印制);(2) 课程设计任务书;(3) 中文摘要150字;关键词3-5个;(4) 目录;(5) 正文;(设计思想;各模块的伪码算法;函数的调用关系图;测试结果等)(6) 设计总结;(7) 参考文献;(8) 致谢等。

注:每一部分是单独的一章,要另起一页写。

2. 排版要求(1) 所有一级标题为宋体三号加粗(即上面写的2~8部分,单独一行,居中)(2) 所有二级标题为宋体四号加粗(左对齐)(3) 所有三级标题为宋体小四加粗(左对齐)(4) 除标题外所有正文为宋体小四,行间距为固定值22磅,每个段落首行缩进2字符(5) 目录只显示3级标题,目录的最后一项是无序号的“参考文献资料”。

3. 其他要求(班长负责,务必按照以下方式建文件夹)(1) 以班级为单位刻录光盘一张,光盘以班级命名,例如:“10级计算机科学与技术1班”;(2) 光盘内每人一个文件夹,以学号姓名命名——如“10730101 陈映霞”,内容包括任务书、设计文档。

读者写者问题实验报告

读者写者问题实验报告

北京电子科技学院(BESTI)实验报告课程:操作系统班级:0921 姓名:学号:成绩:指导教师:徐小青实验日期:2011.11.22 实验密级:/ 预习程度:代码实验时间:12:50-15:20 仪器组次:A04 必修/选修:必修实验序号:(一)实验名称:用信号量来实现读者-写者问题实验目的与要求:理解进程(或线程)及信号量的概念实验仪器:一、实验目的:理解进程(或线程)及信号量的概念二、实验内容:1、定义一个数据缓存buffer及用于实现同步互斥的信号量。

2、定义一个读者函数:●当有写者在占用buffer时,读者应该等待,直到写者不再使用该buffer。

●当有其他读者在占用buffer时,读者可对buffer进行读取操作。

●当buffer中有数据时,则从其中读取一个数据,并显示然后退出。

●当buffer中没有数据时,应等待,直到buffer中有数据可读。

3、定义一个写者函数●当有读者在占用buffer时,写者应该等待,直到所有的读者都退出为止。

●当有其他写者占用buffer时,该写者应该等待,直到占用buffer的写者退出为止。

●当buffer有空闲时,写者应该在buffer中写入一个数据并退出。

●当buffer满时,写者应该等待,直到buffer有空闲为止。

4、定义主函数,在其中可以任意创建读者与写者。

可根据用户输入创建读者或写者进程(线程)。

三、实验当堂完成内容:1,将设计好的思路以代码形式呈现,并调通。

2,将数据改变,看结果是否符合预期设想3,与同学交流,将代码完善。

四、设计思想:读进程:read(){P(Sr); 申请区域P(Scot); 锁定读者计数器first = first+1;if(first ==1)P(Sdoc);V(Scnt); 解锁读者计数器开始读;P(Scnt); 锁定读者计数器V(Sdoc);V(Scnt);V(Sr);}写进程:write(){P(sdoc);开始写;V(sdoc);}主函数设计思想:五、代码及具体解释:#include <stdlib.h>#include <windows.h>#include <stdio.h>#define P(S) WaitForSingleObject(S, INFINITE)// 这是Windows 下多线程工作的P 操作#define V(S) ReleaseSemaphore(S, 1, NULL)// 这是Windows 下多线程工作的V 操作const int RN = 5 ; // 所有读者总数(可以改变)const int WN = 3; // 所有写者总数(可以改变)HANDLE Sdoc; // 文档信号量——互斥量(临界区的信号量题目要求是1)HANDLE Sr; // 读者信号量——广义信号量(一次最多有多少个读者在读)HANDLE Scnt; // 保护g_cntReader 的互斥量(目前有多少读者正在读)int g_cntReader = 0; // 读者个数计数器// funcname : JustWait ( )// note: 显示一些信息,让后等待// ret val : void//// + Parameter :// [ int ] - nReader 读者(写者)编号,读者>0,写者<0// [ int ] - min 操作等待的最短时间// [ int ] - max 操作等待得最长时间,实际等待的时间介于两者之间// [ LPCSTR ] - info 要显示的信息void JustWait(int nReader, int min, int max, LPCSTR info);DWORD WINAPI Reader(LPVOID lpPara);DWORD WINAPI Writer(LPVOID lpPara);// 这是主函数void main(){Sdoc = CreateSemaphore(NULL, 1, 1, "Document");// 创建信号量初值,最大信号量值Sr = CreateSemaphore(NULL, 3, 3, "ReaderNumber"); // 一次最多允许3 个Scnt = CreateSemaphore(NULL, 1, 1, "ReaderCounterProtect");// 他也是一个互斥信号量,初值为 1HANDLE threads[RN+WN];for (int i=0; i<RN; i++) //不断创建读者线程threads[i] = CreateThread(0, 0, Reader, 0, 0, 0);for (int j=0; j<WN; j++)threads[j+RN] = CreateThread(0, 0, Writer, 0, 0, 0);WaitForMultipleObjects(RN+WN, threads, TRUE, INFINITE);}// 读者线程DWORD WINAPI Reader(LPVOID lpPara){// 注意是静态变量,可以使每来一个读者增加一static int reader_num = 1;int i = reader_num ++;int x=0;while (x<=5){JustWait(i, 1, 2, "我想读"); //1s的时候来,给2s的时间去读P(Sr); // 读者未满P(Scnt); // 锁定读者计数器printf("还有%d 个读者在读, 读者%d进入\n", g_cntReader, i);g_cntReader ++;if (g_cntReader == 1) // 如果是第一个读者{JustWait(i, 1, 2, "我是第一个!");P(Sdoc); // 锁定文档printf("读者%d说:有人在读,不可写文件\n", i);JustWait(i, 1, 2, "我可以读文件了!");V(Scnt); // 解锁读者计数器释放JustWait(i, 2, 5, "我在读");// 读ing…………JustWait(i, 1, 2, "我将要离开!");P(Scnt); // 锁定读者计数器g_cntReader --;if (g_cntReader == 0) // 如果是最后一个{JustWait(i, 1, 2, "我是最后一个!");printf("读者%d说:可以对文件操作了!~~~\n", i);V(Sdoc);// 解锁文档}printf("还有%d个读者在, 读者%d离开\n", g_cntReader, i);V(Scnt);// 解锁读者计数器V(Sr); // 离开JustWait(i, 5, 3, "结束");x++;printf("%d\n",x);}return 0;}DWORD WINAPI Writer(LPVOID lpPara){// 注意是静态变量,可以使每来一个写者减去一,注意初值是负值static int g_cnt = -1;int j = g_cnt --;while (1){JustWait(j, 2, 4, "我想写");// 锁定文档P(Sdoc);printf("\t写者%d说:文件正在修改不可操作\n", -j);JustWait(j, 4, 3, "写···"); // 写ing……JustWait(j, 1, 2, "写完了,离开");printf("写者%d说:可以对文件操作了\n", -j);V(Sdoc);// 解锁文档JustWait(j, 8, 4, "休息了");}return 0;}void JustWait(int nReader, int min, int max, LPCSTR info)//min为读者到来时间,max为读者离开时间{const int BASETIME = 1000;// 等待时间的基本量,以毫秒表示int wait_time = 0;// 实际等待得时间if (max==min) // 判断是为了避免%0错误,注意取随机值wait_time = min*BASETIME;//处理时间为0;elsechar s_out[128];// 最终显示的信息缓冲if (nReader > 0)// 读者大于0,写者小于0sprintf(s_out, "读者%d说: %s\n", nReader, info);elsesprintf(s_out, "\t写者%d说: %s\n", -nReader, info);printf(s_out);// 打印Sleep(wait_time);// 然后等待}//其设计思想是:读者在读,来了写着,创建写着线程,利用时间片区分他们。

读写者实验报告

读写者实验报告

《Linux系统分析》实验报告报告提交日期:姓名:程志超学号: 128355003 班级:交换生一、实验题目采用多线程互斥与同步机制,实现读者、写者问题二、实验目的掌握使用POSIX接口提供的互斥变量、条件变量实现多线程同步三、实验要求有一个文件为多个并发线程所共享,其中读线程只要求读取文件内容,写线程则要求修改文件容,允许多个线程同时读取文件内容。

但若有一个写线程在写,则其他读线程不能读;若有一个写线程在写或有其他读线程在读,则其他写线程均被拒绝。

当一个写线程正在写,而有多个读线程与写线程在等待时,写线程应优先唤醒。

读线程进去读、等待,写线程进去写、等待等状态均在屏幕上打印出来四、设计思路和流程图(对于涉及算法的实验,需要提供数据结构及其说明、测试数据的设计及测试结果分析)数据结构的说明struct prodcons{int buffer[BUFFERSIZE]; //缓冲区pthread_mutex_t lock; //互斥锁int readpos,writepos; //读写的游标pthread_cond_t notempty; //缓冲区非空条件判断pthread_cond_t notfull; //缓冲区非满条件判断};测试结果:读和写的线程交互进行五、实验体会(包括实验中遇到的问题及解决过程、产生的错误及原因分析)对线程条件变量控制相关函数pthread_cond_init()、pthread_cond_wait()和pthread_cond_signal()的原型及用法不是很了解,上网查阅相关资料,明白第一个是初始化一个条件变量,第二个等待线程,尤其要注意线程状态和条件变量的加解锁过程是/*block-->unlock-->wait() return-->lock*/六、程序清单(包括源程序、makefile、readme)/***multithread.c***/#include<stdio.h>#include<pthread.h>#define BUFFERSIZE 100#define OVER (-1)struct prodcons{int buffer[BUFFERSIZE];pthread_mutex_t lock;int readpos,writepos;pthread_cond_t notempty;pthread_cond_t notfull;};void init(struct prodcons *b){pthread_mutex_init(&b->lock,NULL);pthread_cond_init(&b->notempty,NULL);pthread_cond_init(&b->notfull,NULL);b->readpos = 0;b->writepos = 0;}void put(struct prodcons *b,int data){pthread_mutex_lock(&b->lock);if((b->writepos + 1) % BUFFERSIZE == b->readpos){ pthread_cond_wait(&b->notfull,&b->lock);}b->buffer[b->writepos] = data;b->writepos++;if(b->writepos >= BUFFERSIZE)b->writepos = 0;pthread_cond_signal(&b->notempty);pthread_mutex_unlock(&b->lock);}int get(struct prodcons *b){int data;pthread_mutex_lock(&b->lock);if(b->writepos == b->readpos){pthread_cond_wait(&b->notempty,&b->lock);}data = b->buffer[b->readpos];b->readpos++;if(b->readpos >= BUFFERSIZE)b->readpos = 0;pthread_cond_signal(&b->notfull);pthread_mutex_unlock(&b->lock);return data;}struct prodcons buffer;void *producer1(void *data){int n;for(n = 0;n < 10000;n++){//printf("%d\n",n);printf("producer1 is writing\n");put(&buffer,n);}put(&buffer,OVER);return NULL;}void *producer2(void *data){int n;for(n = 0;n < 10000;n++){//printf("%d\n",n);printf("producer2 is writing\n");put(&buffer,n);}put(&buffer,OVER);return NULL;}void *consumer1(void * data){int d;while(1){d = get(&buffer);if(d == OVER)break;//printf("%d\n",d);printf("consumer1 is reading\n");}return NULL;}void *consumer2(void * data){int d;while(1){d = get(&buffer);if(d == OVER)break;//printf("%d\n",d);printf("consumer2 is reading\n");}return NULL;}int main(void){pthread_t writer1,reader1,writer2,reader2;void *retval;init(&buffer);pthread_create(&writer1,NULL,producer1,0);pthread_create(&reader1,NULL,consumer1,0);pthread_create(&writer2,NULL,producer2,0);pthread_create(&reader2,NULL,consumer2,0);pthread_join(writer1,&retval);pthread_join(reader1,&retval);pthread_join(writer2,&retval);pthread_join(reader2,&retval);return 0;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当读者拥有临界区所有权时,写者阻塞在临界区对象write上.当写者拥有临界区所有权时,第一个读者判断完”read_count==1”后阻塞在write上,其余的读者由于等待对read_count的判断,阻塞在mutex上.
b)写者优先
写者优先与读者优先类似.不同之处在于一旦一个写者到来,它应该尽快对文件进行写操作,如果有一个写者在等待,则新到来的读者不允许进行读操作.为此应当添加一个整形变量write_count,用于记录正在等待的写者的数目,当write_count=0时,才可以释放等待的读者线程队列.
while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime)
{}
printf("Reader %d is Exit...\n",pPerson->m_nID);
printf("\n\n************************************************\n");
WaitForSingleObject(g_hReadSemaphore,INFINITE); if(g_NumOfReading ==0)
{
WaitForSingleObject(g_hWriteSemaphore,INFINITE); }
g_NumOfReading++;
ReleaseSemaphore(g_hReadSemaphore,1,NULL);
二、实验设备(环境)
实验设备:WINDOWS 2000环境、VC平台、WIN 32 API
三、实验内容与步骤
实验内容与步骤:可以将所有读者和写者分别存于一个读者等待队列和一个写者等待队列,每当读允许时,就从读者队列中释放一个或多个读者线程进行读操作;每当写允许时,就从写者队列中释放一个写者进行写操作.
g_CurrentTime = 0;
while(true)
{
g_CurrentTime++;
Sleep(300); // 300 ms
printf("CurrentTime = %d\n",g_CurrentTime);
if(finished) return 0;
system ("pause");
}// return 0;
WaitForSingleObject(g_hReadSemaphore,INFINITE);
g_NumOfReading--;
if(g_NumOfReading == 0)
{ReleaseSemaphore(g_hWriteSemaphore,1,NULL);//此时没有读者,可以写
}
ReleaseSemaphore(g_hReadSemaphore,1,NULL);
《操作系统》实验报告
实验序号:操作系统实验(二)实验项目名称:读者写者问题
学 号
姓 名
队别
实验地点
指导教员
实验时间
一、实验目的及要求
实验目的:综合运用多进程并发控制,进程同步互斥,信号量机制等原理解决问题。
实验要求:本题目安排16学时,要求党员根据题目要求,写出算法,在VC平台上进行程序设计和调试,在运行成功的基础上,整理出源程序和运行结果.写出设计报告。
}
void CreatePersonList(int *pPersonLists)
{
int i=0;
int *pList = pPersonLists;
bool Ret;
while(pList[0] != END)
{
switch(pList[1])
{
case R:
Ret = CreateReader(pList[2],pList[3],pList[0]);//351,w452,523,654
WaitForSingleObject(g_hWriteSemaphore,INFINITE);
// modify the writer's real start time
pPerson->m_nStartTime = g_CurrentTime;
printf("Writer %d is Writting the Shared Buffer...\n",pPerson->m_nID);
//g_NumOfWriteRequest--;
ReleaseSemaphore(g_hWriteSemaphore,1,NULL);
if(pPerson->m_nID == 4) finished = true;//所有的读写完成
ExitThread(0);
return 0;
}
bool CreateReader(int StartTime,int WorkTime,int ID)
int m_nWorkTime;//运行时间
int m_nID;//进程号
}Person;
Person g_Persons[MAX_PERSON];
int g_NumPerson = 0;
long g_CurrentTime= 0;//基本时间片数
int g_PersonLists[] = {//进程队列
break; case W:
Ret = CreateWriter(pList[2],pList[3],pList[0]);
break;
}
if(!Ret)
printf("Create Person %d is wrong\n",pList[0]);
pList += 4; // move to next person list
g_hWriteSemaphore = CreateSemaphore(NULL,1,100,NULL); //创建信号灯,当前可用的资源数为,最大为
CreatePersonList(g_PersonLists); // Create All the reader and writers
printf("Created all the reader and writer\n...\n");
}
}
DWORD WINAPI ReaderProc(LPVOID lpParam)//读过程
{
Person *pPerson = (Person*)lpParam;
// wait for the start time
while(g_CurrentTime != pPerson->m_nStartTime)
while(g_CurrentTime != pPerson->m_nStartTime)
{}
printf("Writer %d is Requesting ...\n",pPerson->m_nID);
printf("\n\n************************************************\n");
if(pPerson->m_nID == 4) finished = true; //所有的读写完成
ExitThread(0);
return 0;
}
DWORD WINAPI WriterProc(LPVOID lpParam)
{
Person *pPerson = (Person*)lpParam;
// wait for the start time
while(g_CurrentTime <= pPerson->m_nStartTime + pPerson->m_nWorkTime)
{}
printf("Writer %d is Exit...\n",pPerson->m_nID);
printf("\n\n************************************************\n");
{
DWORD dwThreadID;
if(g_NumPerson >= MAX_PERSON)
return false;
Person *pPerson = &g_Persons[g_NumPerson];
pPerson->m_nID = ID;
pPerson->m_nStartTime = StartTime;
四、实验结果与数据处理
源代码
#include <windows.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <malloc.h>
#define MAX_PERSON 100
#define READER 0 //读者
pPerson->m_nStartTime =;Reader %d is Reading the Shared Buffer...\n",pPerson->m_nID);
printf("\n\n************************************************\n");
为了对全局变量write_count实现互斥,必须增加一个对象mutex3.
为了实现写者优先,应当添加一个临界区对象read,当有写者在写文件或等待时,读者必须阻塞在read上.
读者线程除了要对全局变量read_count实现操作上的互斥外,还必须有一个互斥对象对阻塞read这一过程实现互斥.这两个互斥对象分别命名为mutex1和mutex2。
相关文档
最新文档