液晶电光效应试验说明书

合集下载

液晶的电光效应

液晶的电光效应
11
12
实验内容及步骤
1.校准透过率为100 1.校准透过率为100 校准透过率为 2.液晶电光特性的测量 2.液晶电光特性的测量
静态模式下使电压从0v到 记录相应的透射率 记录相应的透射率。 静态模式下使电压从 到6v记录相应的透射率。 线图求出阈值电压与关断电压。 线图求出阈值电压与关断电压。 绘制电光曲
2
实验原理
液晶是介于液体与晶体之间的一种物质状态。 液晶是介于液体与晶体之间的一种物质状态。一般的液体内 是介于液体与晶体之间的一种物质状态 部分子排列是无序的,而液晶既具有液体的流动性,其分子 部分子排列是无序的,而液晶既具有液体的流动性, 液体的流动性 又按一定规律有序排列,使它呈现晶体的各向异性。 又按一定规律有序排列,使它呈现晶体的各向异性。 晶体的各向异性 液晶的电光效应:液晶分子是含有极性基团的极性分子, 液晶的电光效应:液晶分子是含有极性基团的极性分子,在 电场作用下,极性分子的排列方式会发生变化,从而引起液 电场作用下,极性分子的排列方式会发生变化, 晶的光学性质发生改变。 晶的光学性质发生改变。
3.液晶时间特性曲线测定 3.液晶时间特性曲线测定
静态闪烁状态,透过率为 %,电压为 静态闪烁状态,透过率为100%,电压为 由示波器观察到驱 %,电压为2v,由示波器观察到驱 动电压波形及时间特性曲线,并求出上升时间与下降时间。 动电压波形及时间特性曲线,并求出上升时间与下降时间。
13
实验内容与步骤
15
思考题:ห้องสมุดไป่ตู้
选购液晶显示器, 1. 选购液晶显示器,常用的参数和意义
2. 彩色液晶显示器的基本原理
16
4.液晶视角特性的测量 4.液晶视角特性的测量
(1)水平视角的测量 水平视角的测量 0V: 角度从 度至 角度从-85度至 度至+85度,读出每一角度下透射率的最大值。 读出每一角度下透射率的最大值。 度 读出每一角度下透射率的最大值 2V: 角度从 度至 角度从-85度至 度至+85度,读出每一角度下透射率的最小值。 读出每一角度下透射率的最小值。 度 读出每一角度下透射率的最小值 计算对比度,绘制曲线图。 计算对比度,绘制曲线图。 (2)垂直视角的测量(同上) 垂直视角的测量(同上) 垂直视角的测量

液晶电光效应综合实验说明书

液晶电光效应综合实验说明书

ZKY-LCDEO-2液晶电光效应综合实验仪实验指导及操作说明书液晶电光效应综合实验仪液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer 在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA 公司的Heimeier 发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN (扭曲向列)型液晶为例,说明其工作原理。

TN 型光开关的结构如图1所示。

在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃 = 10-10米 ),直径为4~6埃,液晶层厚度一般为5-8微米。

液晶电光效应综合实验

液晶电光效应综合实验

液晶电光效应综合实验液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转、双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

实验目的1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

实验仪器1、液晶电光效应综合实验仪2、液晶电光效应信号适配器3、模拟双踪示波器实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构如图1所示。

在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

液晶电光效应实验

液晶电光效应实验

液晶电光效应综合实验液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转、双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利科学家赖因策(F.Reinitzer)在布拉格植物生理研究所做实验时,发现他加热的化合物熔化后先变成了白浊液体,并且闪现某些颜色,继续加热后变成透明液体。

于是他又对化合物进行降温后,重复实验,依然看到上述现象。

赖因策没有像其他人那样将这种特有的现象简单看作是材料不纯造成的,而是更精心地制备材料,对颜色的起因进行探究。

1888年3月14日,赖因策将样品寄给德国的年轻结晶学家雷曼(O.Lehmann),并附上一封长信。

雷曼经过系统研究,发现有许多有机化合物都具有同样的性质,这些化合物在混浊状态,其力学性质与液体相似,具有流动性,而其光学性质与晶体相似,具有各向异性,故取名为液晶(liquid crystal)1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

【实验目的】1.根据液晶的电光效应特性,可制成光开关器件。

在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

液晶的电光效应实验报告

液晶的电光效应实验报告

液晶的电光效应实验报告液晶的电光效应实验报告引言液晶是一种特殊的物质,具有晶体和液体的特性。

它在电场的作用下会发生电光效应,这一现象在现代科技领域中有着广泛的应用。

本实验旨在研究液晶的电光效应,并探究其在液晶显示器等设备中的应用。

实验材料与仪器本实验所需材料包括液晶样品、电源、电极板、电压调节器等。

实验仪器包括显微镜、光源、示波器等。

实验步骤1. 准备工作:将液晶样品放置在显微镜下,调节显微镜的焦距,使样品清晰可见。

2. 搭建电路:将电源与电极板连接,通过电压调节器调节电压大小。

3. 观察现象:逐渐增加电压,观察液晶样品的变化。

记录不同电压下的观察结果。

4. 测量光强:使用光源照射液晶样品,通过示波器测量光强的变化。

记录不同电压下的光强数值。

实验结果与分析在实验过程中,我们观察到了液晶样品的电光效应。

随着电压的增加,液晶样品的透明度发生了明显的变化。

当电压较小时,液晶样品呈现出较高的透明度;而当电压较大时,液晶样品的透明度明显降低。

这种变化是由于电场的作用导致液晶分子的排列发生改变,进而影响了光的传播。

通过测量光强的变化,我们发现随着电压的增加,光强逐渐减小。

这是因为在电场的作用下,液晶分子的排列发生了改变,使得光的传播受到阻碍,从而导致光强减小。

这一现象在液晶显示器中得到了广泛的应用,通过调节电压,可以控制液晶的透明度,从而实现图像的显示和隐藏。

液晶的电光效应是基于液晶分子的特殊排列结构。

液晶分子具有长而细长的形状,可以自由旋转和移动。

在无电场作用下,液晶分子呈现出无序排列的液态状态;而在电场作用下,液晶分子会被电场所约束,呈现出有序排列的晶态状态。

这种有序排列会导致光的传播路径发生改变,从而产生电光效应。

液晶的电光效应在现代科技领域中有着广泛的应用。

最典型的应用就是液晶显示器。

液晶显示器利用液晶的电光效应,通过控制电场的大小和方向,实现图像的显示和隐藏。

液晶显示器具有体积小、能耗低、分辨率高等优点,已经成为了电子产品领域中不可或缺的一部分。

实验4.6液晶电光效应

实验4.6液晶电光效应

液晶电光效应【实验简介】液晶是介于液体与晶体之间的一种物质状态,即具有液体的流动性,又具有晶体各向异性的特性。

当光通过液晶时,会产生像晶体那样的偏振面旋转及双折射等效应。

液晶分子是含有极性基团的棒状极性分子,在外电场作用下,偶极子会按电场方向取向,使分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶电光效应。

液晶电光效应的应用很广,利用液晶电光效应可以做成各种液晶显示器件、光导液晶光阀、光调制器、光路转换开关等,尤其是利用液晶电光效应制成的液晶显示器件,由于具有驱动压低(一般为几伏),功耗小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势,因此,研究液晶电光效应具有很重要的意义。

常用的液晶显示器件类型有:TFT型(有源矩阵液晶显示)、STN型(超扭曲液晶显示)、TN型(扭曲向列相液晶显示),其中TN型液晶显示器件原理比较简单,是TFT型、STN型液晶显示的基础,因此本实验研究TN型液晶材料,希望通过一些基本现象的观察和研究,对液晶有一个基本了解。

【实验目的】1.了解液晶的结构特点和物理性质。

2.了解液晶电光效应、液晶光开关的工作原理及简单液晶显示器件的显示原理。

3.通过液晶电光特性和时间响应特性曲线的观测,测量液晶的一些性能参数。

【预习思考题】1.扭曲向列相液晶具有那些物理特性,如何利用其电光效应制成液晶光开关?如何利用液晶光开关进行数字、图形显示?2.如何在示波器上显示驱动信号波形和时间响应曲线,如何测量响应曲线的上升时间和下降时间?【实验仪器】液晶盒及液晶驱动电源、二维可调半导体激光器、偏振片(两个)、光功率计、光电二极管探头、双踪示波器、白屏、光学实验导轨及元件底座、钢板尺【实验原理】1.液晶分类大多数液晶材料都是由有机化合物构成的。

这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为0.1nm量级,并按一定规律排列。

液晶电光效应综合实验说明书

液晶电光效应综合实验说明书

ZKY-LCDEO-2液晶电光效应综合实验仪实验指导及操作说明书液晶电光效应综合实验仪液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。

1888年,奥地利植物学家Reinitzer 在做有机物溶解实验时,在一定的温度范围内观察到液晶。

1961年美国RCA 公司的Heimeier 发现了液晶的一系列电光效应,并制成了显示器件。

从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,并至今在这一领域保持领先地位。

液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。

【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。

2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。

3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。

4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN (扭曲向列)型液晶为例,说明其工作原理。

TN 型光开关的结构如图1所示。

在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃 = 10-10米 ),直径为4~6埃,液晶层厚度一般为5-8微米。

液晶电光效应实验

液晶电光效应实验

因。 3)液晶板与光线的夹角与仪器上所标识的不一定相同,这可能是导致实验数据中出现了透 射率大于 100%的情况。 3. 关于液晶的应用前景的分析: 以液晶作为显示的最大优点正是其耗能少, 从实验中可以看到, 只需加上电压改变液晶的 形态从而改变光的通透, 以达到显示的目的。 而传统显示器是依靠自身表面的发光来实现显 示的目的的。 这确实可以证明在有着日光或是环境光的情况下, 液晶确实是一个显示的绝佳 材料,譬如计算器。然而,在夜晚,由于液晶本身并不发光,显示的作用是达不到的。因此, 绝大部分应用液晶显示的机器为了使其能在夜晚也能实现显示, 显示板下方是配有背景照明 的,譬如电视,计算机,手机中的亮度调节,正是用于调节此背景光的。通过我的观察,显 示器的电能消耗大部分还是消耗于这种背景照明上, 而不是液晶。 另外液晶在强日光下的显 示效果也不是很好。因此,我们应该考虑液晶在夜晚显示的另一种方式,这种方式将比背景 光更加节能。比如,可以将液晶加入某种荧光材料,夜晚通过荧光材料显示,而白天依然通 过普通液晶显示。但是荧光材料的荧光性会慢慢减弱。对于计算器,由于其太阳能所充的能 量远大于其使用的电量,而其余电量正好用于荧光材料的恢复。至于其他机器,则需要考虑 一些其他的办法了。
100 100 100 100 1.5 31.8 31.9 31.9 31.87
100 100 100 100 1.6 20.7 20.6 20.5 20.6
99.9 99.9 99.9 99.9 1.7 12.8 12.7 12.5 12.67
98.4 98.3 98.4 98.37 2 4 4.1 4 4.03
四、实验思考题
1. 如何确定本实验使用的液晶样品是常黑型还是长白型 答:在加上电压时,透射率骤减,说明入射偏振光在没有旋转的情况下未能通过,说明是长 白型。实际应用中可以根据需求选择长白型或是常黑型,若是长期需要光通过,则选择长白 型,反之选择常黑型,以节省电能。 2. 在液晶开关视角特性的测量中,可以发现图像和数据关于 0 并不是十分的对称,分析其 原因如下: 1) 角度的齿轮肯定存在一些误差,因此随着转动角度的增大,角度误差也会越来越大,因 此可能会导致图像的整体偏移,即 0 度角所对应的点并不是真正的 0 度。 2) 实验中注意到,在放置实验仪器而不作任何操作的时候(静态工作) ,透射率会慢慢减 小。这一现象可能与透射率的测量、光源的稳定性、外界光源都有关系,这也可能是一个原
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液晶电光效应实验基本要求1、了解液晶的特性和基本工作原理;2、掌握一些特性的常用测试方法;3、了解液晶的应用和局限。

实验原理:液晶是介于液体与晶体之间的一种物质状态。

一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。

当光通过液晶时,会产生偏振面旋转,双折射等效应。

液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃,直径为4〜6埃,液晶层厚度一般为5-8微米。

列方式和天然胆甾(音同淄)相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。

而天然胆甾相液晶的螺距一般不足1um,不能人为控制。

扭曲向列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。

在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。

由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。

如果我们对液晶物质施加电场,就可能改变分子排列的规律。

从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。

这就是液晶的的电光效应。

为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。

我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。

当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。

根据液晶分子的结构特点。

我们假定液晶分子没有固定的电极。

但可被外电场极化形成一种感生电极矩。

这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。

液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。

当外电场足够强时,两电极之间的液晶分子将会变成如图2中的排列形式。

本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。

并利用现有的物理知识进入初步的分析和解释。

这时,液晶分子对偏振光的旋光作用将会减弱或消失。

通过检偏器,我们可以清晰地观察到偏振态的变化。

大多数液晶器件都是这样工作的。

图4液晶光开关工作原理以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。

若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。

不加电 压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转 90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图 5;其中纵坐标为透光强度,横坐标为外加电压。

最大透光强度的 10炳对应的外加电压值称为 阈值电压(U th ),标志了液晶电光效应有可观察反应的开始 (或称起辉),阈值电压小,是电光效应好的一个重要指标。

最大透光强度的 90%对应的外加电压值称为饱和电压 (U r ),标志了获得最大对比度所需的外加电压数值,U 小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。

对比度D = l ma/I min ,其中I max 为最大观察(接收)亮度(照度),I min 为最小亮度。

陡度3 =U/U th 即饱和电压与阈值电压之比。

EletlrddsCvndwciive Ppftp liquid Cfytlol 漉晶■一―冷________ .-B = = = = 0 —■ • I •一■ ■〔I H配向猿Pdlym#r肿Eleckode Pertimeter SealElectrodeGla»图3液晶屏结构图5液晶电光效应关系图以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。

而对 于这两个状态之间的中间状态。

我们还没有一个清晰的认识, 其实在这个中间状态, 有着极 其丰富多彩的光学现象。

在实验中我们将会一一观察和分析。

液晶对变化的外界电场的响应速度是液晶产品的一个十分重要的参数。

一般来说液晶的响应速度是比较低的。

我们用上升沿时间和下降沿时间来衡液晶对外界驱动信号的响应速度 情况。

定义如图6所示实验仪器:1控制机箱2、液晶电光效应光具座架 3、激光器4、起偏器5、液晶屏 6、检偏器7、光电池液晶电光效应控制机箱:遶W 率90«1QX图6液晶屏响应时间1激光器输出:输出连接到激光器上,供应半导体激光器电源 2、 功率:控制激光器亮度,顺时针变亮 3、 液晶屏输出:输出方波信号给液晶屏 4、 同步:同步信号给示波器5、 频率:调节方波信号频率,顺时针频率降低6、 幅度:调节方波信号的幅值,顺时针幅值增大7、 光电接受:接受光信号转化为电信号8、 示波器:将接受到的信号连接到示波器上加以显示 9、 驱动电压表头:显示驱动方波的幅值电压 10、 光电流表头:显示接受到的信号的电流值 11、 电源开关:控制电源 实验步骤:图7液晶电光效应实验示意图、液晶电光特性测量1按图7所示将 激光器,起偏器、检偏器、液晶屏及光电池 放置在对应位置,摆好光路。

并将激光器、液晶屏及光电池插入机箱对应插孔内。

2、 调节激光器高度使激光器光斑入射到光电池入射孔内。

LB-LDG-A 液韜电光效应实验仪审 京号直卞跟才斗敌■[又器■开恍所输出 C)激光翻光>11转«&功申 输出mA比中;;直F1步M*jtmiE 收POWER3、取掉将起偏器旋转到0。

,旋转检偏器使激光光斑变到最暗状态,此时检偏器角度应为90°,将液晶屏重新放入对应插孔,可以发现此时光斑变亮。

4、打开机箱电源,调节频率旋钮,逆时针旋转到最小,此时频率为最大值,入射到激光器的光斑无闪烁现象,幅值电压表头及光电流表头数字稳定。

5、顺时针旋转幅值旋钮,缓缓增大输出方波信号的幅值,观察光电流表的数据,记录下幅值对应光电流值,填入表格1并绘制幅值与光电流关系图及透过率与幅值关系图(透过率在幅值为0时为100%),求出关断电压及阈值电压。

(注意调节幅值过程中,0~2V每次调节0.2V,2V~5V每次调节0.1V)表1二、液晶上升时间、下降时间测量,响应时间1、重复一实验的1、2、3部分。

2、打开控制箱电源,用Q9线连接示波器下旋钮到示波器CH1上,将同步连接到示波器的触发源上上,示波器的触发源拨到同步信号对应接口。

示波器周期拨到10ms左右,电压调到5mv 档。

3、顺时针调节频率旋钮,此时方波驱动的频率减小、周期增大,可以观察到光电池接受到的光斑开始闪烁,随着周期的增大,可以观察到光斑闪烁的间隔时间越来越长。

4、将幅值电压调到3V左右,缓缓增大方波周期,知道可以清晰的看到上升沿及下降沿现象。

(调节过程中方波幅值电压不应过强,否则输出波形将产生畸变)5、通过示波器测量上升时间及下降时间,估计液晶屏的响应速度。

6、改变信号的幅值,记录不同幅值下的响应时间。

三、液晶屏视角特性测量1、重复一实验1、2、3、4实验部分。

2、调节幅值电压0V,旋转液晶屏土80°,每隔20 °测量一次。

3、调节幅值电压为2V,重复上面测量过程。

注意事项1 •拆装时只压液晶盒边缘,切忌挤压液晶盒中部;保持液晶盒表面清洁,不能有划痕;应防止液晶盒受潮,防止受阳光直射。

2.驱动电压不能为直流。

3 •切勿直视激光器。

4.液晶样品受温度等环境因素的影响较大,如TN型液晶的闺值电压在20C±20C范围内漂移达15 %到35%,因此每次实验结果有一定出入为正常情况。

也可比较不同温度下液晶样品的电光曲线图。

实验示例:1、阈值电压测量:3002502001501005090%透过率时驱动电压幅值为 2.18V , 10%透过率幅值为3.21V,即该液晶屏的阈值电压为2.18V,关断电压为3.21V。

2、响应时间测量下降时间为12ms 上升时间为18ms ,则总的响应时间为 30ms 。

随着驱动电压幅值的增大, 可以观察到下降沿变抖,下降时间变小而上升时间变化不明显,总的响应时间变短。

、不同角度液晶屏的透过率幅值角度204060801001200 238 243 243 221 201 2213199 197 179 168 181 18210%及90%时对应的横坐标值,求其差值,可以测量得 通过实验过程在示波器上观察到如下图类似的响应波形。

通过读取幅值刻度值后,读取。

相关文档
最新文档