岩石力学实验方案
岩石力学实验报告_3

试验一、岩石单向抗压强度的测定一、仪器设备材料试验机、游标卡尺。
二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm的长方体。
三、测定步骤:1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值)填入记录表内。
2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。
四、测定结果的计算: 试件的抗压强度:FP R式中:R ——试件抗压强度,MPaP ——试件破坏载荷,N F ——试件面积,mm 2试验二、岩石抗拉强度的测定(劈裂法)一、仪器设备:材料试验机、劈裂法实验夹具、游标卡尺。
二、试件规格标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。
三、测定步骤:1、2同抗压强度相同。
3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。
4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。
四、测定结果计算:DLPR L 14.32式中:R L ——岩石单向抗拉强度,MPaP ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm抗拉强度测定记录表。
一种岩石力学参数实验方案设计

( ) 2 岩石 抗压强度 计算 。在岩 石三 ( ) 单 轴实验 中 ,岩石 试样
S l " = —O 3
式申 : . 一轴向压力 ;盯: T :P 围压 ) =(, (
的抗压强度 由差应力 ( 来表 示 : s)
( 3)
由 于 表岩心处在半风化状 态 ,为消除因岩样个体差 别导致的结 地
技 术 创 新
南 I 科 效 2 1年第7 仁 02 期
一
种 岩石 力学 参数实 验 方案设计
梁 鲜① 夏 宏 泉① 刘远 征 ②
6 0 0 成 都 ;② 川 庆 钻 探 有 限 公 司 川 西 钻 探 公 司 15 0
①西 南石油 大学石油 工程测井 实验室
摘 要
目前 ,实验 室内一般 用钻 井所得 岩心模拟岩石在地下 所处得 环境 ( 温度 、围压 、孔 隙压力) 进行 实测得到 的静 态岩石 力学参
验采用有效应 力法对岩 心施 加围压 ,最终得到所需岩石 力学 参数。
1 实 验 方 法 及 原 理
5 4 1 2 8 41 4 2 2 3 6 4 68 2 4 7 3 l 1 6 17 8 H 7 4 24 01 45 2 3 2 9 4 3 3 40 1 6 H 4 3 2 8 4 4 2 2 3 1 4 43 2 5 7 0 0 1 8 1 9 8 8 24 1 O7 5 6 4 2 3 6 7 2 3 8 8 7 6
据 ( 1 表 ),然后 分别 对纵 、横 波波 速 ( 差 ) 据 按照 波速 ( 时 数 时 差) 相近原 则进行 配对 ( 、图6 图5 ),选取实验所用岩心 。
岩样 直 编 号 径 P波 S波 P实 S实 纵波
时 差 fIr u/m
岩石力学特性研究 – 试验和模型分析

•
•
1951年,在奥地利创建了地质力学研究组,并形成了独具一格的奥地
利学派(Muller和Stini)。
同年,国际大坝会议设立了岩石力学分会。
1956年,美国召开了第一次岩石力学讨论会。
1957年,第一本《岩石力学》专著出版(J.Talobre,法国)。
1959年,法国马尔帕塞坝溃决,引起岩体力学工作者的关注和研究。
•稳定性计算与评价
围岩
有压隧洞
岩基
岩坡
13
岩
石
力
学
二、研究内容与研究方法
1.研究内容
❖ 以边坡为例
14
工
程
地
质
研
究
方
法
(地层、岩性、结构面
岩块、结构面力 应力条件(建筑物
学性质(室内试验: 作用力、天然应力、
特征及分布、地下水等)
求变形、强度参数)
边坡岩体地质特征
地质模型建立
综合
评价
法
岩体力学性质,力学参数
四个特征:
具有一定工程地质岩组
以不连续为特征的岩体结构
赋存于一定的地质物理环境
(地应力、地下水、地温)
作为工程作用对象的地质体
3
一、岩石和其物理性质
四个特性(DIANE):
Discontinuous
Inhomogeneous
Anisotropic
Non-elastic
基本物理指标
1. 容重和密度
容重:岩石单位体积(包括岩石孔隙体积)的重力。可分为:干容重、湿容重
和饱和容重。一般未说明含水状态时是指湿容重。
W
V
▪ 岩石的容重取决于组成岩石的矿物成分、孔隙大小以及含水的多少;
岩石力学与工程

岩石力学与工程岩石力学与工程是一门研究岩石的力学性质和在工程中的应用的学科。
它涉及到岩石的结构和性质,岩石力学实验技术,以及岩石在矿物加工,建筑结构,地质勘查,水利工程,排水系统,桥梁,隧道,路面和其他建设等方面的应用。
岩石力学包括研究岩石的力学性质,以及岩石在重力加速度,温度,温度,流动性等外部因素的影响。
这种外部环境的影响会影响岩石的坚硬度、抗压强度以及对不同外部施力的反应。
为了更好地研究岩石的力学性质,需要对这些外部环境因素进行深入调查,并建立适当的模型来模拟它们。
岩石力学实验技术是研究岩石力学特性的实验方法,其目的是评估岩石的力学特性,并对岩石的力学性质进行分析,从而对岩石的应用提出更准确的方案。
岩石力学实验技术包括拉伸实验,抗压实验,弯曲实验,运动学实验,柔韧性实验,以及其他实验,例如应力完整性实验,抗裂性实验,以及原位测试等。
所有这些实验都可以帮助我们更好地了解岩石的力学性质,从而能够制定更加有效的工程方案。
岩石在工程中的应用岩石被广泛应用于矿物加工、建筑结构、地质勘查、水利工程、排水系统,桥梁、隧道、路面建设等领域。
针对不同应用,建筑师需要考虑岩石的强度,坚硬度,密度,摩擦系数,抗高温性,耐冲击性,耐水曝气性,耐磨性,耐化学侵蚀性等参数,这些参数都与岩石的本质和力学特性有关,因此必须充分研究岩石的力学特性,以便更好地应用岩石。
岩石力学及其在工程中的应用是一门重要的学科,它研究岩石本质性质以及在不同应用领域的应用,为工程建设提供了重要依据。
此外,岩石力学实验技术也可以帮助我们更准确地了解岩石的力学特性,从而更准确地应用岩石。
因此,岩石力学及其在工程中的应用是一个十分重要的学科,为工程建设提供了重要依据,可以给我们带来更好的生活环境和更安全的娱乐环境。
岩石单轴抗压实验方案

岩石单轴声发射检测方案
一、概述;许多研究表明,声发射信息是反映岩石的损伤破坏情况与其内部原生裂隙的压密机新裂隙的产生、扩展、贯通等演化过程是密切相关的,岩石的声发射特征参量在现目前来说,是能较全面地描述岩石变形和损伤演化的过程,这即证明通过单轴压缩反演岩石的损伤模型是合理的。
二、检验方法;
方法概述;声发射检测是利用岩石在受压载过程中激发弹性波在介质中传播的原理,应用声发射探头将声波信号转换成电信号,进行岩石损伤发展检测和评价的技术方法,在加载条件下,岩石中的缺陷开裂和裂纹扩展都会发生弹性或者塑性变形从而产生声发射信号。
试件制备;按国际岩石力学试验建议方法加工成50mm×100mm的圆柱体标准试件,断面的平整度在±0.02 mm
试验设备;
如下图所示
对取自矿山现场的岩石试样进行单轴受压破坏实验,采集岩石受力过程的声发射信号.
加载方式;。
矿山开采过程中的岩石力学参数测定与分析

岩石的弹性模量与泊松比测定
总结词
岩石的弹性模量是指其在弹性变形范围内应力与应变之比,而泊松比则表示横向应变与 轴向应变之比。
详细描述
岩石的弹性模量和泊松比通常通过实验室内进行的单轴或三轴压缩试验测定。在单轴压 缩试验中,对岩石试样施加逐渐增大的压力直至其达到弹性极限,然后测量其应力与应 变值,计算出弹性模量。在三轴压缩试验中,对岩石试样施加围压和轴压,同时测量其
含水率
岩石中含水分的重量与干 燥岩石重量的比值,影响 岩石的强度和变形特性。Biblioteka 岩石的力学性质弹性模量
表示岩石抵抗弹性变形的 能力,是衡量岩石刚度的 指标。
泊松比
表示岩石横向变形与纵向 变形的比值,反映岩石的 横向变形特性。
单轴抗压强度
岩石在单轴压力作用下的 极限抗压强度,是衡量岩 石强度的重要指标。
研究不足与展望
在实验过程中,未能完全模拟矿山实际开采条 件,如地应力场、温度场等,因此实验结果可
能存在一定误差。
同时,可以结合矿山实际开采情况,开展更深入的数 值模拟和理论研究,为矿山安全开采提供更加科学和
可靠的依据。
本研究仅针对部分岩石样本进行了实验和数值 模拟,未能全面反映不同地区和不同类型岩石 的力学特性。
岩石力学参数
包括岩石的物理性质、力学性质以及与岩石变形、强 度、破坏等相关的参数。
岩石力学参数测定
通过实验和测试方法,测定岩石的力学性质和相关参 数,为矿山开采和岩土工程提供基础数据。
岩石的物理性质
01
02
03
密度
岩石的质量与其体积的比 值,表示岩石的致密程度 。
孔隙率
岩石中孔隙体积与总体积 的比值,影响岩石的强度 和压缩性。
岩体力学参数确定的方法

岩体力学参数确定的方法岩体力学参数的确定方法在岩石工程实践中,首先需要了解作为研究对象的工程岩体的力学性质,并确定其特征参数。
岩石力学参数的合理确定一直是岩石力学研究和发展的难点之一。
在应用工程力学领域,如果完整地使用经典理论力学的连续性假设和定义,就会存在理解上的问题。
必须考虑假设的合理使用范围和每个物理量的适用定义。
本文讨论了地下岩体工程中根据不同的重点确定岩体参数的方法。
1、确定岩体参数的传统方法地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。
巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。
围岩体处于一种拉压相间出现的复杂应力状态。
该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。
需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。
地下巷道和硐室工程岩体力学参数的确定方法如下:(1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数;(2)进行岩体流变特性试验研究,获得有关岩体的流变参数。
目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。
二.建立力学模型确定岩体力学参数建立工程岩体力学参数模型主要是解决复杂岩体力学参数的确定问题。
为了确定复杂岩体的力学参数,需要将工程岩体视为一个连续模型。
采用确定岩体力学参数的新方法,建立了层状斜节理岩体的力学模型,并进行了力学试验,确定了岩体的基本力学参数。
1.工程岩体力学参数模型目前,关于岩石的力学性质和划分基本上有两种观点:一种观点认为岩石本身是一种连续的非各向异性材料,另一种观点认为岩石是由多晶系统组成的,存在空洞和裂缝等缺陷,这使得岩石本身的结构表现出各向异性和不连续性。
岩体一般被视为不连续介质,但在一定条件下仍满足连续介质力学的基本假设。
岩石力学评价报告模板

岩石力学评价报告模板1.引言1.1 概述岩石力学评价报告是对岩石力学特性进行综合评价和分析的报告,旨在为岩石工程设计和施工提供依据和参考。
本报告包括岩石力学基础知识、岩石力学测试方法、岩石力学参数评价等内容。
通过对岩石的各项力学性质进行评价,可以更好地了解岩石的力学行为,为岩石工程的设计和实施提供科学依据。
本报告的编写旨在为相关岩石工程技术人员提供一套规范的评价模板,方便他们进行岩石力学评价工作,并为岩石工程的可靠性提供保障。
1.2 文章结构文章结构部分的内容:文章的结构包括引言、正文和结论三个部分。
在引言部分中,我们将简要概括本报告的背景与目的,引导读者了解本文的主要内容。
接着在正文部分,将详细介绍岩石力学的基础知识、测试方法和参数评价的相关内容,以及对相关研究的综述和分析。
最后在结论部分,将对文章进行总结,并对研究结果进行分析,给出进一步研究的建议和展望。
通过以上结构的安排,我们将全面而详细地呈现岩石力学评价的报告内容,为读者提供清晰的展望和阅读指南。
1.3 目的目的部分的内容可以包括对岩石力学评价报告的编写目的和重要性进行说明。
可以描述岩石力学评价报告的目的是为了评估岩石力学参数的情况,以便对岩石的稳定性和工程建设中可能出现的风险进行分析和预测。
同时,还可以强调岩石力学评价报告对工程设计、施工和监测等环节的指导作用,能够为工程项目的顺利进行提供重要依据。
最后,可以强调编写岩石力学评价报告的目的是为了保障工程的安全可靠,促进岩石工程领域的发展和进步。
2.正文2.1 岩石力学基础岩石力学是研究岩石受力及其变形行为的科学,它是岩土工程、矿山工程、地质工程和岩土材料工程的基础。
岩石力学基础包括以下几个重要内容:1. 岩石强度与变形特性:岩石的强度是指岩石抵抗外部力量作用而不发生破坏的能力,包括抗压强度、抗拉强度、抗剪强度等;而岩石的变形特性包括弹性变形、塑性变形和蠕变等。
2. 岩石的断裂特性:岩石在受力作用下会发生断裂,其断裂形式可分为拉伸断裂、压缩断裂、剪切断裂等,了解岩石的断裂特性对预测和控制岩石的破坏具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验方案实验一单轴压缩试验一、实验得目得以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。
当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比.本次试验主要测定饱与状态下试样得单轴抗压强度。
二、试样制备(1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。
(2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。
(3)试样制备得精度应満足如下要求:a沿试样高度,直径得误差不超过0.03cm;b试样两端面不平行度误差,最大不超过0.005cm;c端面应垂直于轴线,最大偏差不超过0、25°;d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。
三、主要仪器设备1、制样设备:钻石机、切石机及磨石机.2、测量平台、角尺、游标卡尺、放大镜、低温箱等。
3、压力试验机。
四、实验步骤1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h;2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4);3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况.五.成果整理与计算1、按下式计算岩石得单轴抗压强度:-———-岩石单轴抗压强度,MPa;———-最大破坏荷载,N;-—-—垂直于加载方向得试样横截面积,mm2。
2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单轴抗压强度50%水平交点连线得斜率。
—--—--割线弹性模量,MPa;--———-相当于50%抗压强度得应力值,MPa;—-----应力为抗压强度50%时得应变值。
实验二含水率试验一、实验得目得以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得饱与吸水率变化情况。
岩石得吸水率就是判断岩石强度与抗冻性能得重要指标,就是计算岩石其她物理参数得必要参数,可根据岩石得饱与吸水率分析岩石冻融前后微裂纹得发育程度。
二、试样制备(1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。
(2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。
(3)试样制备得精度应満足如下要求:a沿试样高度,直径得误差不超过0.03cm;b试样两端面不平行度误差,最大不超过0.005cm;c端面应垂直于轴线,最大偏差不超过0、25°;d 方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°.三、主要仪器设备1、制样设备:钻石机、切石机及磨石机;2、烘干箱、干燥器、水槽、低温箱等;3、电子天平(感量0、01g);4。
真空抽气设备。
四.操作步骤1、用毛刷清除试件表面得尘土与松动颗粒。
对软岩与裂隙较发育得岩石,应用橡皮筋或细铁丝把试件四周缠起来,以防止试件在吸水过程中掉块或崩解.2、(1)取加工好得试件6块,放在105℃~110℃得烘箱中干燥24h后取出试件,放入干燥器中冷却到室温称取质量;(2)把干燥后得岩石试块放入抽真空设备中进行饱水处理,浸泡24h 后,从抽气罐中取出饱水后得岩石试块并用湿毛巾擦干试块表面水分称其各自质量,计算出冻结前三种岩石各自平均饱与吸水率;(3)取步骤(2)中饱与后得岩石岩样3块放入低温箱中,在恒温-10℃条件下冻结48h,冻结完毕后在常温(+20℃)环境中进行自然解冻直到微小孔隙裂隙中得小冰块全部融化;(4)把步骤(2)中剩余得3块饱与后得岩石岩样放入低温箱中,在恒温—30℃条件下冻结48h,冻结完毕后在常温(+20℃)环境中进行自然解冻直到微小孔隙裂隙中得小冰块全部融化;(5)重复步骤(1)~(2),计算出不同冻结温度下岩石得饱与吸水率,并分析对比冻融前后岩石饱与吸水率得变化情况。
五。
成果整理计算岩石得饱与吸水率,精确至0、01%。
—-—-饱与吸水率,%;----试件强制饱与后得质量,g;----试件烘干后得质量,g.实验三氮吸附实验一.实验目得以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定岩石在冻融前后试样内部孔隙结构(孔容、孔径与比表面积等)得变化情况,选择孔隙比表面积、孔容与孔径作为衡量岩石经过一次冻融循环后得损伤变量,从微观角度对比分析岩石冻融前后得损伤情况。
二.试样制备三。
试件描述岩石得名称、颜色、矿物成分、结构及风化程度等。
四.实验仪器设备1、钻石机、切石机及磨石机;2、电子天平秤、干燥箱、低温箱、比表面积分析仪等。
五.操作步骤1、把制备好得岩样放到真空干燥箱中烘干24h;2、把烘干后得样品转入样品管中并称其质量并进行编号;3、把编好号得样品管放到加热槽中加热并抽真空保证足够得抽真空时间;4、把样品管放入主机中得液氮冷浴中开始进行全自动试验,试验结束后系统会自动得出冻结前岩石样品得孔隙分析与比表面积分析报告;5、取出试验后得样品进行饱水处理并取出其中得一半样品放到低温箱中在恒温-10℃条件下冻结48h,另一半样品放到低温箱中在恒温-30℃条件下冻结48h;6、取出冻结后得岩样在常温(+20℃)环境中进行自然解冻48h;7、重复步骤1~4得出同种岩石不同冻结温度条件下解冻后岩石样品得孔隙分析与比表面积分析报告;8、对冻融前后两次测试报告进行数据分析与处理得到相应得结论。
六.实验数据整理及成果分析。
实验四 CT扫描实验一、实验目得CT识别技术就是通过发射X射线使其围绕物体旋转并收集X射线得衰减信息,以此来重建CT图像得先进无损检测技术.本实验以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,然后运用CT扫描技术,进行不同冻结温度下岩石细观结构得CT 扫描实验,获得冻结过程中岩石内部结构得CT 图像,通过CT 数得变化反映为CT图像灰色度与颜色得改变,从微观角度定量地分析岩石在不同冻结温度下各相介质得分布、细观结构得损伤情况,为研究冻结岩石得损伤特性提供依据.二。
试样制备试样制备如实验一三.试样描述与实验原理1、试样描述岩石得名称、颜色、矿物成分、结构及风化程度等。
2、实验原理CT 识别技术得工作原理:将X 射线源与检测接收器固定在同一机架上,将其与被检测物体进行同步联动扫描,扫描机架每转动一个角度就进行一次扫描,在每次扫描结束后,扫描机架转动到下一个角度再进行下一次得扫描,如此反复重复上述过程,就可以采集到很多组扫描数据.最后这些扫描信息进行处理后,则可得被检测物体某一扫描层面得真实数字图像。
四.实验仪器设备1、制样设备:钻石机、切石机及磨石机。
2、测量平台、角尺、游标卡尺、低温箱、真空抽气机、水槽等。
3、X射线螺旋CT 机。
五.实验步骤1、对干燥岩样各扫描层面进行连续CT 扫描,得到岩样初始细观结构及损伤图像;2、对饱水岩样进行连续CT 扫描试验,观测水补给后岩样内细观结构得CT 扫描图像;3、把已加工好得岩样平均分为两组,一组岩样放入低温箱中,在恒温-10℃条件下冻结48h,然后进行岩样得连续CT扫描,观察—10℃时岩样内部细观结构及各相介质分布情况;4、另一组岩样放入低温箱中,在恒温-30℃条件下冻结48h,然后进行岩样得连续CT扫描,观察—30℃时岩样内部细观结构及各相介质分布情况;5、使步骤3与4中得岩样在常温(+20℃)环境中进行自然解冻直到微小孔隙裂隙中得小冰块全部融化,然后分别进行岩样得连续CT 扫描,观察两组岩样内得细观结构及各相介质分布得变化情况。
注:本实验中对岩样所做得干燥与饱水处理过程与实验一中方法相同。
六。
数据整理与成果分析孔隙度编辑词条B添加义项?岩样中所有孔隙空间体积之与与该岩样体积得比值,称为该岩石得总孔隙度,以百分数表示。
储集层得总孔隙度越大,说明岩石中孔隙空间越大。
从实用出发,只有那些互相连通得孔隙才有实际意义,因为它们不仅能储存油气,而且可以允许油气在其中渗滤。
因此在生产实践中,提出瞧了有效孔隙度得概念。
有效孔隙度就是指那些互相连通得,在一般压力条件下,允许流体在其中流动得孔隙体积之与与岩样总体积得比值,以百分数表示。
显然,同一岩石有效孔隙度小于其总孔隙度。
孔隙度编辑本段定义所谓孔隙度就是指岩石中孔隙体积(或岩石中未被固体物质充填得空间体积)与岩石总体积得比值。
控制,而且不同类型盆地得主要控制因素又各不相同,造就了陆相盆地沉积类型多、相变快、横向连续性差、纵向上层序厚度变化大,频繁得湖侵湖退使湖盆沉积垂向上韵律变化快;因此陆相层序地层得形成、结构与模式更为复杂,研究更为困难、在研究与实践中,中国学者特别就是构造与气候显得十分重要,它们直接控制了湖平面得变化、陆相地层层序研究得方层分析与层序地层得数值模拟方法、在油气勘探中得区带勘探阶段、目标勘探阶段与开发阶段,层序地层学都能发挥不可替代得作用、在自然状态下材料中得得孔隙体积与材料体积之比,叫材料得孔隙度。
它包括材料中所有得孔隙,不管它们就是否连通。
但在研究油贮得孔隙度时,所测量得孔隙度为连通得孔隙空间多数油贮得孔隙度,变化在5~30%之间,最普通得就是10~20%范围之内。
孔隙度不到得断裂、裂缝及孔穴之类。
根据现场经验中粗略得孔隙度估计,储集岩可以分为:孔隙度0~5%无价值孔隙度5~10%不好孔隙度10~15% 中常孔隙度15~20% 好孔隙度20~25%极好孔隙度就是储层评价得重要参数之一、核磁共振(NMR)孔隙度只对孔隙流体有响应,在确定地层孔隙度方面具有其她测井方法无法比拟得优势、但就是,在中国陆相复杂地层得应用中常常发现NMR孔隙度与地层实际孔隙度存在差异,有时差异甚至很明显,影响了NMR 测井得应用效果、介绍了NMR孔隙度得理论基础,在对NMR孔隙度影响因素分析得基础上,重点考察了国内现有得NMR孔隙度测井方法对测量结果得影响,通过对大量人造岩样与不同:占性得天然岩样得实验测量,提出了适合中国陆相地层得孔隙度测井方法,改善了NMR孔隙度得测量效果、针对中国陆相地层得复杂性,建议不同地区应根据;具体情况进行岩心分析,确定恰当得NMR测井方法,以获得比较准确得NMR孔隙度、孔隙度得定性方法编辑本段孔隙度得测定就是在实验室中进行得,用得就是小块得岩芯或岩屑.此外,还有几种估计孔隙度得定性方法:测量岩石得自然电位(SP),计算单位为mv(毫伏)。