基因毒性杂质(genotoxic模板
基因毒性杂质测定方法学验证报告模板(版本号01;定稿日期20160612)

验证编号XX中基因毒性杂质XX测定方法学验证报告验证报告审批变更记载目录1.概述 (5)2.参考文献 (5)3.验证的结果与结论 (5)4.验证所需要的仪器、试剂及样品信息 (5)5.方法学验证内容 (6)5.1专属性 (6)5.2定量限与检测限 (7)5.3线性与范围 (7)5.4系统适用性 (7)5.5进样精密度 (8)5.6重复性 (8)5.7中间精密度 (9)5.7准确度 (9)5.8溶液稳定性 (9)5.9耐用性 (10)5.10****测定结果 (11)1. 概述此报告总结了基因毒性杂质****测定分析方法验证的试验过程与结论。
2.参考文献《中国药典》2015版通则9101《药物质量标准分析方法验证指导原则》 恒瑞研究院DP-041 基因遗传毒性杂质研究的一般要求3. 验证的结果与结论表1 基因毒性杂质测定方法学验证总结4. 验证所需要的仪器、试剂及样品信息表2 验证使用的主要仪器5.方法学验证内容5.1 专属性1)空白溶剂干扰:在**方法色谱条件下,对空白溶剂(****)进样分析,结果表明空白在****出峰位置没有干扰峰,相关图谱见图****。
2)分离试验:在**方法色谱条件下,对各工艺中间体**、**…与已知杂质**、**、**…进行进样分析,结果表明各杂质均可以与****完全分离,混合进样色谱图见图**。
或:在**方法色谱条件下,对各残留溶剂进行进样分析,结果表明各残留溶剂对****测定均无干扰,混合进样色谱图见图**。
3)样品中其他杂质干扰:在**方法色谱条件下,对本品粗品(批号****)进样分析,结果表明在GTIs出峰位置无其他干扰峰。
色谱图见图**。
4)强制降解:将样品按照下表进行强制降解试验,试验结果见表5表中数据表明,各降解条件下产生的降解杂质均可以与****完全分离,不影响****测定。
5.2定量限与检测限在编号为****的分析方法下,取****对照品(批号:****)约**mg,置50ml量瓶中,加稀释液(****,下同)溶解并稀释定容至刻度,作为储备液A,将储备液A逐级稀释并进样分析。
基因毒性杂质全面信息资料

No or unknow
Yes
Not tested
Class3:AlertUnrelated to parent
Class5:No Alerts
Class4:AlertRelated to parent
Impurity Genotoxic?1
该杂质是否有 基因毒性?
No
API Genotoxic2
该原料是否有 基因毒性?
No
(Staged)TTC (see Table 1)
PDE(e.g.ICH Q3 appendix 2 reference
整理ppt
Control as an ordinary impurity
20
Step 3:
TTC=1.5微克/天
表1:短期用药推荐容许日摄入量
TTC值
疑似基因毒素 的日摄入量
号,作用部位,TTC值等等一系列信息。 近30年的关于基因毒性方面研究的出版物
(PDF版) 用不同分类方法统计的致癌物质列表。
Standard limits for impurities in APIs API中杂质的标准限度
Maximun
Reporting Identification
Daily Dose1 Threshold2,3 Threshold*
每日最大剂量 报告限度
鉴定限度
≤2g /天
0.05%
0.10%或者每天 摄入量1.0mg
整理ppt
1
1
背景知识介绍
2
杂质与杂质限度
3
确定毒性阈值的步骤
4
最大限度地控制杂质
整理ppt
2
1
背景知识介绍
2
基因毒性杂质及其警示结构

基因毒性杂质及其警示结构古语有云:“是药三分毒”。
这句话不管在传统中药还是现代化学药都是基本成立的。
对于化学药来说,在活性药物成分(API)的生产过程中,一些起始物料、中间体、试剂和反应副产物不可避免地作为杂质存在于最终产品中,因此一种药物的安全性不仅决定于它本身的毒性情况,也决定于它所含有的杂质的毒性情况。
根据国际人用药品注册技术要求协调会(ICH)指南,原料药杂质可分为有机杂质(有关物质)、无机杂质及残留溶剂三个主要类别。
而大部分基因毒性(或称为遗传毒性)杂质(Genotoxic Impurities, GTIs)就属于一类特殊的有关物质。
近些年发生过多起由于基因毒性杂质残留而导致的药品召回事件,为确保用药安全,各国及地区的相关组织如欧洲药品管理局(EMA)、美国食品药品管理局(FDA)、国际人用药品注册技术要求协调会(ICH)等相继发布杂质控制的相关规程及指导原则。
2017年6月,原国家食品药品监督管理总局(CFDA)加入ICH,这意味着我国在药品安全方面正式向国际接轨;2019年1月,国家药典委员会官网发布了“关于《中国药典》2020年版四部通则增修订内容(第四批)的公示”,其中就包含有“遗传毒性杂质控制指导原则审核稿(新增)”。
因此对国内药企来说,不管是面对国内市场还是走出国门,对基因毒性杂质的控制都是绕不过的坎。
什么是基因毒性杂质?根据《中国药典》的相关文件定义,基因毒性杂质是指能引起基因毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA 损伤,导致DNA 突变,从而可能引发癌症的遗传毒性杂质;而非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
而潜在基因毒性杂质(Potential Genotoxic Impurities,PGIs)是指其结构中含有与基因毒性杂质反应活性相似的化学结构,即警示结构(Structural alerts, SAs),通常也作为基因毒性杂质来评估。
基因毒性杂质-基毒、重金属资料

遗传毒性杂质遗传毒性:泛指各种因素(物理、化学因素)与细胞或生物体的遗传物质发生作用而产生的毒性。
1、致突变性:与DNA相互作用产生直接潜在的影响,使基因突变(bacteria reverse mutation(Ames)试验)2、致癌性:具有致癌可能或倾向(需要长期研究!)3、警示结构特征:一些特殊的结构单元具有与遗传物质发生化学反应的能力,会诱导基因突变或者导致染色体重排或断裂,具有潜在的致癌风险。
遗传毒性物质:在很低的浓度下即可诱导基因突变以及染色体的断裂和重排,因此具有潜在的致癌性。
EMA通告(1)、具体事项:1、哪些品种中会出现甲磺酸酯(或甲磺酸烷基酯)。
特别是甲磺酸盐等形式的API或其合成中用到甲磺酸的API,甲磺酸烷基酯-甲磺酸甲酯、乙酯、其它低级醇酯,应认定为潜在杂质。
2、羟乙基磺酸盐、苯磺酸盐、对甲苯磺酸盐的API。
应说明类似物质磺酸烷基酯或芳基酯污染的危险。
3、限度要求:无其它毒性数据时,这些高风险杂质应依据TTC设定限度。
1.5μg÷以g为单位的最大日剂量得ppm限度。
4、法律依据:EP专论要求凡以甲磺酸盐和羟乙基磺酸盐形式存在的API,均应在其生产过程中采取以下安全措施:必须对生产工艺进行评估以确定家磺酸烷基酯(羟乙基磺酸烷基酯)形成的可能,特别是反应溶媒含低级醇的时候,很可能会出现这些杂质。
必需时需对生产工艺进行验证以说明在成品中未检出这类杂质。
(2)、落实措施:1、API生产是否涉及在甲磺酸(羟乙基磺酸盐、苯磺酸盐、对甲苯磺酸等低分子量磺酸)或相应酰氯存在下,使用甲醇、乙醇、正丙醇、异丙醇等低级脂肪醇(如甲醇、乙醇、正丙醇、异丙醇等)。
2、对相应酯形成的可能性是否降到最低。
3、是否有有效的清除精制步骤。
设备清洗-是否设计的低级脂肪醇的使用(方法,TTC限度)?起始物料(低分子量磺酸盐或酰氯)中是否控制了其低级脂肪醇酯(方法,TTC限度)?当被磺酸酯或相关物质污染的磺酸用于API合成时能否保证其中潜在的遗传毒性杂质不超过TTC?应考虑各种烷基或芳基磺酸酯杂质累积的风险。
基因毒性杂质(genotoxic

某些病毒和细菌会对基因产生直接或间接的毒 性作用。
辐射
包括电离辐射和非电离辐射等。
遗传突变
遗传突变本身就是一种基因毒性。
基因毒性杂质的危害和风险
危害
• 导致突变和基因突变累积 • 引发癌症和其他疾病 • 影响生殖健康 • 干扰正常的细胞功能
风险
• 与暴露水平和时间的累积有关 • 取决于个人基因型和应对能力 • 可能造成个人和群体的不同程度的受影响
健康生活方式
保持健康的生活习惯,如均衡饮 食、戒烟和进行适当的运动,以 减少基因毒性杂质的负面影响。
职业安全
制定和执行严格的职业安全措施, 减少工作环境中基因毒性杂质的 暴露。
结论和建议
基因毒性杂质对我们的基因健康构成潜在风险,但我们可以通过加强监测、 预防和减少暴露来保护我们自己和环境的基因。
基因毒性杂质(genotoxic)
通过深入了解基因毒性杂质,我们可以了解到基因健康的因素,不同类型的 基因毒性杂质,它们的危害和风险,以及检测和预防的方法。
定义
基因毒性杂质是指那些对基因结构和功能造成损害的化学物质或物理因素。 它们可以通过改变细胞的遗传物质,如DNA,从而导致遗传信息的变异。
影响基因健康的
体外检测
使用细胞培养、DNA修复实验和突变频率检测等方法来评估物质的基因毒性。
2
动物试验
通过暴露动物模型于潜在基因毒性杂质,观察其致突变和致癌能力。
3
流行病学研究
收集大量人类暴露与基因毒性杂质相关的数据,评估其与疾病发生的相关性。
预防和减少基因毒性杂质的措施
环境管理
加强对污染物排放的管控和环境 监测,降低环境中基因毒性杂质 的暴露风险。
1 环境因素
基因毒性杂质(genotoxic..

可接受风险的摄入量
对于那些可以与DNA进行反应的化合物,由于在 较低剂量时机体自身保护机制可以有效的运行, 按照摄入量由高到低所造成的影响进行线性推断 是很困难的。目前,对于一个给定诱变剂,很难 从实验方面证实它的基因毒性存在一个阈值。 特别是对于某些化合物,它们可与非DNA靶点进 行反应,或一些潜在的突变剂,在与关键靶点结 合之前就失去了毒性。由于缺乏支持基因毒性阈 值存在的有力证据,而使得我们很难界定一个安 全的服用量。
毒理学研究
为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。 但是这些方法都需要有足够的长期致癌性研究数 据。
EMA对基因毒性杂质分类
EMA对基因毒性杂质的指导原则适用于上市申请 和临床研究。 一、有足够实验数据的阈值
对于有足够的(实验性的)数据来支持阈值界定 的基因毒性杂质:可参考“Q3C Note for guidance on impurities: Residual Solvents” 中2级溶剂的规定,计算出了一个“允许的日摄入 量(PDE—permitted daily exposure)”
二、无足够实验依据的阈值 没有足够的(实验性的)证据来支持阈值界定的 基因毒性杂质的可接受剂量评价应该包括药学和 毒理学的评价。一般来说,如果不可能避免毒性, 那么药学的评价措施应该以尽可能低的控制水平 为指导。
药学研究
应根据现有处方和生产技术,提供生产方法的合 理性。申请人应该指明涉及到的所有具有基因毒 性或有致癌性的化学物质,如所用试剂、中间体、 副产品等。实际生产中应尽量避免使用该类物质。
基因毒性杂质(genotoxic

TTC用于计算未做研究的化学物质的接触量,这些 化学物质不会有明显的致癌性或者其他毒性。
ConcentrationLimit ( ppm) TTC (ug / day) dose(g / day)
TTC理论不可以应用于那些毒性数据(长期研究) 充分的致癌物质,也不可以做高风险毒性物质的风 险评价。
TTC是一个风险管理工具,它使用的是概率方法。所以 TTC不能被理解为绝对无风险的保障。
TTC
意思是:假如有一个基因毒性杂质,并且我们对 它的毒性大小不了解,如果它的每日摄入量低于 TTC值,那么,该基因毒性杂质的致癌风险将不 会高于100000分之一的概率。
某些特定情况,TTC值高于1.5μg/day也是可以 接受的。比如药物的短期接触,即治疗某些声明 预期在5年以下的某些严重疾病,或者这种杂质是 一种已知物质,人类在其他方式上对它的摄入量 会更高(比如在食品上)。这个需要根据实际情 况再进行推算。
应该有合理的分析方法去检测和量化这些杂质的 残留量。
毒理学研究
为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。
判断是否为基因毒性杂质
通过Carcinogenic potency database (CPDB) 数据库查询,数据库中现有1574种致癌物质的列 表。链接 /chemnamein dex.html ,还可查询到关于基因毒性方面研究 的出版物。
基因毒性杂质卤代烃的风险评估
有数据表明氯乙烷、氯甲烷为基因毒性杂质,因 此有理由怀疑其他低分子卤代烃类也有类似的作 用。在生产中应该对其进行相应的控制。
基因毒性杂质(genotoxic

TTC
意思是:假如有一个基因毒性杂质,并且我们对 它的毒性大小不了解,如果它的每日摄入量低于 TTC值,那么,该基因毒性杂质的致癌风险将不 会高于100000分之一的概率。 某些特定情况,TTC值高于1.5μg/day也是可以 接受的。比如药物的短期接触,即治疗某些声明 预期在5年以下的某些严重疾病,或者这种杂质是 一种已知物质,人类在其他方式上对它的摄入量 会更高(比如在食品上)。这个需要根据实际情 况再进行推算。
基因毒性杂质 (Genotoxic Impurity)
欧盟公布的药品评估十大缺陷中,Top 4为基因毒性杂质。 要求对杂质的潜在基因毒性杂质进行具体的讨论,并作为 总体杂质讨论的一部分。 常见的基因毒性物质: 苯并芘、黄曲霉素、亚硝胺 化疗药物的不良反应是由化疗药物对正常细胞的基因毒性 所致,如顺铂、卡铂、氟尿嘧啶等 氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;特 别敏感患者,仅使用一次或短期使用,就出现了听力受损。 研究表明,这些患者的一个基因上有一点(mtl555G) 与别人不同,这使他们对氨基糖甙类药物耳毒性的易感性 大大增加。
可接受风险的摄入量
是否可以做 个这样的试 验:剂量从 低到高,对 基因毒性杂 质影响性进 行线性推断?
生物系统的纠错功 能使试验不具备可 行性。
引入一个 新观点: 确定一个 可接受其 风险的摄 入量
TTC
可接受其风险的摄入量一般被定义为Threshold of Toxicological Concern (TTC)。 具体含义为:1.5μg/天的TTC值。 相当于人每天摄入1.5μg的基因毒性杂质,被认为对于大 多数药品来说是可以接受的风险(使人一生的致癌风险小 于100000分之一,现实生活中人一生得癌症的概率四分 之一)。按照这个阈值,可以根据预期的每日摄入量计算 出活性药物中可接受的杂质水平。 TTC是一个风险管理工具,它使用的是概率方法。所以 TTC不能被理解为绝对无风险的保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲磺酸烷基酯,如甲磺酸甲酯(MMS)和甲磺酸 乙酯(EMS),是甲磺酸与甲醇,乙醇,或其它 低级醇形成的酯。特别是在以甲磺酸盐或甲磺酸 酯形式存在的药物活性成分中或其合成过程中用 到了甲磺酸的药物活性成分中,甲磺酸烷基酯会 被视为潜在杂质。
在以羟乙基磺酸盐,苯磺酸盐和对甲苯磺酸盐形 式存在的药物活性成分中也会发现类似的磺酸烷 基酯或芳基酯污染。需说明出现这些污染的风险。
特别是对于某些化合物,它们可与非DNA靶点进 行反应,或一些潜在的突变剂,在与关键靶点结 合之前就失去了毒性。由于缺乏支持基因毒性阈 值存在的有力证据,而使得我们很难界定一个安 全的服用量。
可接受风险的摄入量
是否可以做 个这样的试 验:剂量从 低到高,对 基因毒性杂 质影响性进 行线性推断?
生物系统的纠错功 能使试验不具备可 行性。
可能在低于TTC值会有很强的毒性。
序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
基因毒性杂质名称
保护基溴化物 邻氨基甲苯 间氨基甲苯 对氨基甲苯 邻硝基甲苯 叠氮酸 叠氮酸 溴代异丙烷 联苯溴化物
联苯溴化物四氮唑 5-氰基苯酞 5-氨基苯酞 硝基化合物 氨基化合物 硫脲 对氟硝基苯 硝基吡格
氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;特 别敏感患者,仅使用一次或短期使用,就出现了听力受损。 研究表明,这些患者的一个基因上有一点(mtl555G) 与别人不同,这使他们对氨基糖甙类药物耳毒性的易感性 大大增加。
目录
基因毒性杂质定义及风险 可接受风险的摄入量(TTC阈值) EMA对基因毒性杂质的指导要求 判断是否为基因毒性杂质 决策树 Q&A
引入一个 新观点: 确定一个 可接受其 风险的摄 入量
TTC
可接受其风险的摄入量一般被定义为Threshold of Toxicological Concern (TTC)。
具体含义为:1.5μg/天的TTC值。 相当于人每天摄入1.5μg的基因毒性杂质,被认为对于大
多数药品来说是可以接受的风险(使人一生的致癌风险小 于100000分之一,现实生活中人一生得癌症的概率四分 之一)。按照这个阈值,可以根据预期的每日摄入量计算 出活性药物中可接受的杂质水平。
但是这些方法都需要有足够的长期致癌性研究数 据。
TTC用于计算未做研究的化学物质的接触量,这些 化学物质不会有明显的致癌性或者其他毒性。
ConcentrationLimit ( ppm) TTC (ug / day) dose(g / day)
TTC理论不可以应用于那些毒性数据(长期研究) 充分的致癌物质,也不可以做高风险毒性物质的风 险评价。
TTC是一个风险管理工具,它使用的是概率方法。所以 TTC不能被理解为绝对无风险的保障。
TTC
意思是:假如有一个基因毒性杂质,并且我们对 它的毒性大小不了解,如果它的每日摄入量低于 TTC值,那么,该基因毒性杂质的致癌风险将不 会高于100000分之一的概率。
某些特定情况,TTC值高于1.5μg/day也是可以 接受的。比如药物的短期接触,即治疗某些声明 预期在5年以下的某些严重疾病,或者这种杂质是 一种已知物质,人类在其他方式上对它的摄入量 会更高(比如在食品上)。这个需要根据实际情 况再进行推算。
药物活性成分的生产是否涉及到在甲磺酸(或羟乙基磺 酸,苯磺酸,对甲苯磺酸)或相应的酰氯存在的情况下, 使用了低级脂肪酯,如甲醇,乙醇,正丙醇或异丙醇的情 况?如果是这种情况的话,甲磺酸烷基酯或类似苯磺酯烷 基酯和对甲苯磺酸烷基酯的形成可能性是否已被降至最低? 是否存在有效的精制步骤? 设备(特别是接触到磺酸试剂的设备)的清洗程序是 否涉及到低级脂肪醇的使用? 是否有适宜的质量标准和已验证的分析方法可以证实 药物活性成分中的磺酸烷酯或磺酸芳基酯杂质处于TTC以 下?
ห้องสมุดไป่ตู้
是否检查了起始物料,如甲磺酸盐(苯磺酸盐, 对甲苯磺酸盐,羟乙基磺酸),中的烷基磺酸酯 或芳基磺酸酯杂质(如甲磺酸中的EMS 和MMS) 及相应的酰氯?是否有这些杂质的适宜标准和验 证过的方法?
当被磺酸酯或相关物质所污染了的磺酸作为起始 物料用于药物活性成分时,是否能保证药物活性 成分中潜在基因毒性杂质不超过其TTC值?应当 要考虑各种烷基或芳基取代磺酸酯杂质的累加风 险。
基因毒性杂质 (Genotoxic Impurity)
欧盟公布的药品评估十大缺陷中,Top 4为基因毒性杂质。 要求对杂质的潜在基因毒性杂质进行具体的讨论,并作为 总体杂质讨论的一部分。
常见的基因毒性物质:
苯并芘、黄曲霉素、亚硝胺
化疗药物的不良反应是由化疗药物对正常细胞的基因毒性 所致,如顺铂、卡铂、氟尿嘧啶等
应该有合理的分析方法去检测和量化这些杂质的 残留量。
毒理学研究
为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。
用药时间与毒性杂质限度
含有多个基因毒性杂质的评估
EMA: 结构不同的,单个杂质的限度应小于1.5ug/day. 结构相似的,总的基因杂质限度定为1.5ug/day.
FDA(和EMA类似): 单个杂质造成的癌症风险机率应该小于100000分 之一; 有相同作用机制的结构相似的杂质,其含量总和 应该参考TTC值进行评估。
新药合成、原料纯化、储存运输(与包装物接触)等过程 都可能产生基因毒性杂质
可接受风险的摄入量
对于那些可以与DNA进行反应的化合物,由于在 较低剂量时机体自身保护机制可以有效的运行, 按照摄入量由高到低所造成的影响进行线性推断 是很困难的。目前,对于一个给定诱变剂,很难 从实验方面证实它的基因毒性存在一个阈值。
如果在合成路线、起始物料方面没有更好选择, 则需要提供一个正当的理由。即物质中能引起基 因毒性和致癌性的结构部分在化学合成路线上是 不可避免的。
加入基因毒性杂质被认为是不可避免的,那么应 该采取技术手段尽可能的减少基因毒性杂质在产 品中的含量,使其符合安全的需要或使其降低到 一个合理的水平。对于活性中间体、反应物、以 及其它化合物的化学稳定性都应进行评估。
参考法规
EMA:2006年率先颁布《基因毒性杂质限度指南》,于 2007年1月1日证实实施。该指南为限制活性物质中的基 因毒性杂质提供了解决问题的框架和具体做法
ICH:2006年,Q3A(R2)step4 vision“新原料药中的杂 质”
FDA:2008年12月,Guidance for industryGenotoxic and carcinogenic impurities in Drug substances and products: Recommended approaches.介绍了欧盟和ICH的控制方法。原料药和制 剂中的基因毒性杂质生成的预防办法;上市申请和临床研 究申请的可接受限度。
基因毒性杂质卤代烃的风险评估
有数据表明氯乙烷、氯甲烷为基因毒性杂质,因 此有理由怀疑其他低分子卤代烃类也有类似的作 用。在生产中应该对其进行相应的控制。
在氨基物盐酸盐使用醇类溶剂精制的时候,基本 都会产生卤代烃。
产生的条件和温度、水分、浓度、时间等有关系。
对于控制低级卤代烃的方法可以参考控制甲磺酸 酯的相关建议。
① 在没有实验数据的情况下,提供某个化学药物 潜在的毒性信息;
② 建立最值得关注的潜在有毒物质;
③ 提供降低药物毒性的化学修饰方法
④ 提供毒性预测依据
基因毒性杂质磺酸盐的风险评估
EMEA/44714/2008 临床研究发现甲磺酸酯的DNA 烷基化作用会导致
诱变效应 ,其中甲磺酸甲酯和甲磺酸乙酯已有这 方面报导,因此有理由怀疑其它低分子量磺酸 (如对甲苯磺酸)的烷基酯可能也存在着类似的 毒性影响。尽管无数据表明这些酯对人的毒性影 响,然后依然有上述基因毒性物质以杂质的形式 存在于含磺酸酯类药物活性成分的药品中的潜在 风险。
判断是否为基因毒性杂质
可通过文献、计算机毒理学进行评价; 常通过MDL-QSAR, MC4PC, Derek for
Windows软件来评价是否具有structural alert,FDA、EMEA等官方机构也采取此 类软件用来判断。
Derek for Windows数据库:可以预算某个化 学药物对人类(或其他哺乳动物)是否具有毒性, 在世界范围内已被许多制药公司,化学公司和学 术研究机构所采用。可提供以下4种信息。
二、无足够实验依据的阈值
没有足够的(实验性的)证据来支持阈值界定的 基因毒性杂质的可接受剂量评价应该包括药学和 毒理学的评价。一般来说,如果不可能避免毒性, 那么药学的评价措施应该以尽可能低的控制水平 为指导。
药学研究
应根据现有处方和生产技术,提供生产方法的合 理性。申请人应该指明涉及到的所有具有基因毒 性或有致癌性的化学物质,如所用试剂、中间体、 副产品等。实际生产中应尽量避免使用该类物质。
定义
基因毒性杂质:是指能直接或间接损伤细胞DNA,产生致 突变和致癌作用的物质。
常用缩写
1、PGLs (potentially genotoxic impurities有潜在基 因毒性的杂质) 2、GTLs (genotoxic impurities基因毒性杂质) 风险:(体内)基因毒性物质在任何摄入量水平上对DNA 都有潜在的破坏性,这种破坏可能导致肿瘤的产生。但不 能说“不存在明显的阀值,或是任何的摄入水平都具有致 癌的风险”。
判断是否为基因毒性杂质
通过Carcinogenic potency database (CPDB) 数据库查询,数据库中现有1574种致癌物质的列 表。链接 /chemnamein dex.html ,还可查询到关于基因毒性方面研究 的出版物。