高频电路实验一 操作指导书

合集下载

高频电子线路(通信电子线路)实验指导书

高频电子线路(通信电子线路)实验指导书

实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。

2)、掌握ICL8038的应用方法。

二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。

三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。

它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。

外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。

恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。

当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。

当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。

若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。

C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。

将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。

1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。

高频电路(仿真)实验指导书

高频电路(仿真)实验指导书

高频电路(仿真)实验指导书光电学院电子科学与技术系2014年2月实验一、共射级单级交流放大器性能分析一、实验目的1、学习单级共射电压放大器静态工作点的设置与调试方法。

2、学习放大器的放大倍数(A u)、输入电阻(R i)、输出电阻(R o)的测试方法。

3、观察基本放大电路参数对放大器的静态工作点、电压放大倍数及输出波形的影响。

4、熟悉函数信号发生器、示波器、数字万用表和直流稳压电源等常用仪器的使用方法。

二、实验原理如图所示的电路是一个分压式单级放大电路。

该电路设计时需保证U B>5~10U BE,I1≈I2>5~10I B,则该电路能够稳定静态工作点,即当温度变化时或三级管的参数变化时,电路的静态工作点不会发生变化。

U B=V CC I C I E由上式可知,静态工作时,U B是由R1和R2共同决定的,而U BE一般是恒定的,在0.6到0.7之间,所以I C、I E只和有关。

当温度变化时或管子的参数改变时(深究来看,三极管的特性并非是完全线性的,在很多的情况下,必须计入考虑),例如,管子的受到激发而I C欲要变大时,由于R E的反馈作用,使得U BE节压降减小,从而I B减小,I C减小,电路自动回到原来的静态工作点附近。

所以该电路不仅有较好的温度稳定性,还可以适应一定非线性的三极管,只要电路设计得当。

调整电阻R1、R2,可以调节静态工作点高低。

若工作点过高,使三极管进入饱和区,则会引起饱和失真;反之,三极管进入截止区,引起截止失真。

图1-1 分压式单级放大电路如图1-1,C1、C2为耦合电容,将使电路只将交流信号传输到负载端,而略去不必要的直流信号。

发射极旁路电容C E一般选用较大的电容,以保证对于交流信号完全是短路的,即相当于交流接地。

也是防止交流反馈对电路的放大性能造成影响。

电路的放大倍数A U=,输入电阻R i=R1∥R2∥r be,输出电阻R O=R L’,空载时R O=R C。

高频实验指导书正文

高频实验指导书正文
(2) 频率特性仪零dB校正
a. 频标方式选择外标或10/1MHZ,扫频方式选择窄扫,
图4-3频率特性仪调回路谐振曲线方框图
b. dB衰置X1、dB衰减键全弹出.
c.将RF输出、Y输入端与被测电路输入、输出端连,出现双平行线,调Y增益旋钮,并读0dB校正线高度:H=5格。完成0dB校正后,Y增益旋钮在以后的实验步骤里不要再调动.
AV=
Q=
(2) R=2KΩ,VOP-P=0.21V,BW2=2Δf0.7=
AV=
Q=
(3) R=470Ω,VOP-P=0.12V,BW3=2Δf0.7=
b.接通被测电路电源,以波峰高度满5大格为1计算读出其幅频曲线0.707高的频带宽度T0.7=______小格,则0.707通频带宽度Δf0.7=Δf×T0.7=______MHz。同理,可测0.1高的频带宽度T0.1=_____小格, 则0.1通频带宽度Δf0.1=Δf×T0.1=______MHz。计算出此电路的矩形系数Kr0.1=Δf0.1/Δf0.7=______.
(4)通频带测量
a.用外接频标法:
断开电源,频标外接,SIZE旋钮旋至最右,“MARKER OUT/IN”与“YM8177A”相连,输出电平99dBμV ,调频率从9MHz到8MHz,频标移动小格数T=______小格,则每小格的频宽Δf=1000KHz/T=_______KHz/T,中心频率f0=______MHz.接通被测电路电源, 扫频仪波峰高度H=___5___大格, 中心频率9MHz.
表4-1三极管静态工作点
实测
实测
实测
据Vce判断V是否工作在放大区
原因
Re(R54)
Vb
Ve
Ic
Vce

高频实验指导书

高频实验指导书

高频电路原理与分析实验指导书闽江学院物理学与电子信息工程系2013年10月实验一单调谐回路谐振放大器实验一、实验目的1.掌握单调谐回路谐振放大器的组成及电路中各元件的作用;2.通过对谐振回路的调试,对放大器处于谐振时的技术指标进行测试,包括电压放大倍数,通频带,矩形系数等;3.进一步掌握高频小信号调谐放大器的工作原理。

二、实验原理实验电路如图1-1所示。

电路采用共发射极接法,晶体管的集电极负载为LC并联谐振回路,该电路同时完成放大高频信号和选频作用。

晶体管的静态工作点由电阻WA1、RA2,RA3及RA6决定,其计算方法与低频单管放大器相同。

图1-1 单调谐回路谐振放大器三、调谐放大器的性能指标及测量方法高频小信号调谐放大器的主要性能指标有谐振频率f,谐振电压放大倍数0v A ,放大器的通频带BW 和选择性。

指标的测量方法如下:1、谐振频率0f放大器的调谐回路谐振时所对应的频率0f 称为放大器的谐振频率,其值为LC f π210=式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容,即ie oe C P C P C C 22211++=式中, Coe 为晶体管的输出电容;Cie 为晶体管的输入电容。

测量方法:采用函数信号发生器输出不同频率的等幅正弦波信号,测量输出端电压,找出输出幅值最大的频率点既为谐振频率点0f 。

2、电压放大倍数0v A放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量电路输出电压0u 和输入电压u i 的大小,然后通过下面的公式计算得到A V0。

iv u u A 00=(或dB u u A i v )lg(2000=) 3、通频带当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带B W ,其表达式为BW = 2△f 0.7 = fo/Q L其中,Q L 为谐振回路的有载品质因数。

高频电子线路试验指导书

高频电子线路试验指导书

实验须知1.实验不得无故缺席,否那么取消期未考试资格;2.实验前认真做好预习,明确实验目的和原理,了解实验内容和步骤,以及考前须知;3.实验过程中必须服从指导教师的指导,严格遵守平安及设备操作规章制度;4.损坏设备、仪器根据情节轻重按学校规定进展全部或局部赔偿;5.在实验过程中认真记录好实验数据,实验完毕后,实验数据及结果经指导教师认可并签字前方能离开实验室;6.实验报告格式在本指导书后;目录实验一单调谐回路谐振放大器及通频带展宽1 实验二高频功率放大器3实验三LC电容反应三点式振荡器4实验四振幅调制器〔集成模拟乘法器〕7实验五调幅波信号的解调9实验六变容二极管频率调制电路实验11图〔1━1〕单调谐放大器电路 实验一单调谐回路谐振放大器及通频带展宽一、实验目的1. 熟悉高频电路实验箱的组成及其电路中各电子元器件的作用。

2. 熟悉并联谐振回路的幅频特性分析、频带与选择性。

3. 熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4. 熟悉和了解单谐振回路谐振放大器的性能指标及其测试方法。

二、预习要求1.复习选频网络的特性分析方法; 2.复习谐振回路的工作原理;3.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。

三、实验原理小信号调谐放大器是接收机和各种电子设备中广泛应用的一种电压放大器。

它的主要特点是晶体管的集电极〔共发射极电路〕负载不是纯电阻,而是由L 、C 组成的并联谐振回路。

调谐放大器具有较高的电压增益,良好的选择性,当元件器件性能适宜和构造布局合理时,其工作频段可以做得很高。

小信号调谐放大器的类型很多,按调谐回路区分:由单调谐回路,双调谐回路和参差调谐回路放大器。

按晶体管连接方法区分,有共基极、共发射极和共集电极放大器。

实用上,构成形式根据设计要求而不同。

典型的单调谐放大器电路如图〔1━1〕所示。

图中W 、R1,R2和Re1、Re2是直流偏置电阻,调节W 可改变直流工作点。

高频电子线路实验指导书(八个实验)

高频电子线路实验指导书(八个实验)

目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三 LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (8)实验五振幅调制器(实验板3) (10)实验六调幅波信号的解调(实验板3) (13)实验七变容二极管调频管振荡器(实验板4) (16)实验八相位鉴频器(实验板4) (18)实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (20)实验十集成电路(锁相环)构成的频率解调器(实验板5) (23)实验十一利用二极管函数电路实现波形转换(主机版面) (25)实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图 1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。

(2)接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1*V E ,V B 是三极管的基极和发射极对地电压。

3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。

把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压V i ,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大。

《高频电子线路》实验指导书

《高频电子线路》实验指导书
整理并分析原因。 5.本放大器的动态范围是多少(放大倍数下降 1dB 的折
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE


原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷

高频电路实验一 操作指导书

高频电路实验一 操作指导书

实验1 高频小信号调谐放大器实验—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●单、双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

6.熟悉耦合电容对双调谐回路放大器幅频特性的影响;7.了解放大器动态范围的概念和测量方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;8.用示波器观察放大器动态范围。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 高频小信号调谐放大器实验—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●单、双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

6.熟悉耦合电容对双调谐回路放大器幅频特性的影响;7.了解放大器动态范围的概念和测量方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;8.用示波器观察放大器动态范围。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

其基本部分与图1-1相同。

图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1Q02为射极跟随器,主要用于提高带负载能力。

3.双调谐回路谐振放大器原理顾名思义,双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。

两者之间,可采用互感耦合,或电容耦合。

与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。

电容耦合双调谐回路谐振放大器原理图如图1-3所示。

与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图1-3中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。

4.双调谐回路谐振放大器实验电路双调谐回路谐振放大器实验电路如图1-4所示,其基本部分与图1-3相同。

图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。

2K01用以改变集电极负载。

图中T1为输入变压器,将天线上的信号耦合至放大器的输入端。

图中2Q02用来对选频后的信号进行进一步放大。

图1-3 电容耦合双调谐回路放大器原理电路图 1-4 双调谐回路谐振放大器实验电路2R012Q012C042C032R022C022C10+12V12W012D012R04 2K022C012L032C082C09IN12TP01 2L01 2R032L022C052C062C07 2C112C121TP0 ÊäÈë 2P01 2K012L01A2L02A1 2TP02 Êä³ö2P022Q022R082R062R07 +12V1 2C14112 23 3 445 5 66 T1 2C13五、实验步骤1.实验准备(1)插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01。

(2)接通电源,此时电源指示灯亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

步骤如下:(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-3 扫频仪测量的幅频特性(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右(用三用表直流电压档测量1R1下端),这样放大器工作于放大状态。

高频信号源输出连接到单调谐放大器的输入端(1P01)。

示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为200mv(示波器CH1监测)。

调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。

此时回路谐振于6.3MHZ。

比较此时输入输出幅度大小,并算出放大倍数。

(2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。

表1-2输入信号频率f(MHZ)5.4 5.5 5.6 5.7 5.8 5.96.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.97.07.1输出电压幅值U(mv)(3)以横轴为频率,纵轴为电压幅值,按照表1-2,画出单调谐放大器的幅频特性曲线。

3.观察静态工作点对单调谐放大器幅频特性的影响。

顺时针调整1W01(此时1W01阻值增大),使1Q01基极直流电压为1.5V,从而改变静态工作点。

按照上述幅频特性的测量方法,测出幅频特性曲线。

逆时针调整1W01(此时1W01阻值减小),使1Q01基极直流电压为5V,重新测出幅频特性曲线。

可以发现:当1W01加大时,由于I CQ减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);而当1W01减小时,由于I CQ加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。

用扫频仪测出不同工作点时的特性曲线,如下图:1Q01基极直流电压为1.5V时扫频曲线1Q01基极直流电压为5V时扫频曲线4.观察集电极负载对单调谐放大器幅频特性的影响当放大器工作于放大状态下,按照上述幅频特性的测量方法测出接通与不接通1R3的幅频特性曲线。

可以发现:当不接1R3时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q 值增高,带宽减小。

而当接通1R3时,幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。

用扫频仪测出接通与不接通1R3的幅频特性曲线,如下图:不接1R3时的幅频特性曲线接1R3时的幅频特性曲线5.双调谐实验准备在实验箱主板上插上双调谐回路谐振放大器模块。

接通实验箱上电源开关,按下模块上开关2K1接通电源,此时电源指示灯点亮。

6.双调谐回路谐振放大器幅频特性测量本实验仍采用点测法,即保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性(如果有扫频仪,可直接测量其幅频特性曲线)。

⑴幅频特性测量①2K02往上拨,接通2C05(10 P),2K02至“off”。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(2P01)。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

调整双调谐放大器电位器2W01使输出为最大值。

②按照表1-3改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入表1-3。

表1-3放大器输入信号频率f(Mhz) 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4放大器输出幅度U(mv)放大器输入信号频率f(Mhz) 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2放大器输出幅度U(mv)③以横轴为频率,纵轴为幅度,按照表2-1,画出双调谐放大器的幅频特性曲线。

④按照上述方法测出耦合电容为2C06(20P)(2K02拨向下方)时幅频特性曲线。

7. 放大器动态范围测量2K02拨向下方,接通2C06。

高频信号源输出接双调谐放大器的输入端(2P01),调整高频信号源频率至谐振频率,幅度100mv。

示波器CH1接2TP01,示波器CH2接双调谐放大器的输出(2TP02)端。

按照表2-2放大器输入幅度,改变高频信号源的输出幅度(由CH1监测)。

从示波器CH2读取出放大器输出幅度值,并把数据填入表1-4,且计算放大器电压放大倍数值。

可以发现,当放大器的输入增大到一定数值时,放大倍数开始下降,输出波形开始畸变(失真)。

表1-4放大器输入(mV) 100 200 300 400 600 800 1000 1200 1400 1600 1800 2000 放大器输出(V)放大器电压放大倍数六、实验报告要求1.对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。

2.对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。

当放大器工作于放大状态下,测出接通与不接通31R的幅频特性曲线,可以发现:当不接31R 时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q值增高,带宽减小。

而当接通31R时,接通幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。

3.画出耦合电容为2C05和2C06两种情况下的幅频特性,计算幅值从最大值下降到0.707时的带宽,并由此说明其优缺点。

比较单调谐和双调谐在特性曲线上有何不同?4.画出放大器电压放大倍数与输入电压幅度之间的关系曲线。

5.当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?当放大器输入增大到一定数值时,放大倍数开始下降,输出波形开始失真。

输出波形被限幅了,出现双向压缩失真。

6.总结由本实验所获得的体会。

相关文档
最新文档