二次函数单调性

合集下载

一次函数,二次函数的单调性,奇偶性,周期性.定点,对称性表格

一次函数,二次函数的单调性,奇偶性,周期性.定点,对称性表格

竭诚为您提供优质文档/双击可除一次函数,二次函数的单调性,奇偶性,周期性.定点,对称性表格篇一:第二章函数3-函数的性质:单调性奇偶性周期性对称性(3)函数的性质:单调性奇偶性周期性对称性1.单调性(1)确定函数的单调性或单调区间的常用方法:①在解答题中常用:a.定义法(取值――作差――变形――定号)、b.导数法(在区间内为增函数,则如已知函数));内,若总有,则为增函数;反之,若在区间,请注意两者的区别所在。

在区间上是增函数,则的取值范围是____(答:②在选择填空题中还可用数形结合法、特殊值法等等,特别要注意型函数的图象和单调性在解题中的运用:增区间为,减区间为。

如(1)若函数在区间(-∞,4]上是减函数,那么实数的取值范围是______(答:));(2)已知函数在区间上为增函数,则实数的取值范围_____(答:);(3)若函数的值域为R,则实数的取值范围是______(答:且));③复合函数法:复合函数单调性的特点是同增异减。

如函数的单调递增区间是________(答:(1,2))。

(2)特别提醒:求单调区间时,一是勿忘定义域,如若函数在区间上为减函数,求的取值范围(答:-1-);二是在多个单调区间之间不能添加符号“”和“或”;三是单调区间应该用区间表示,不能用集合或不等式表示。

(3)你注意到函数单调性与奇偶性的逆用了吗(①比较大小;②解不等式;③求参数范围)。

如已知奇函数是定义在上的减函数,若,求实数的取值范围。

(答:2.奇偶性⑴偶函数:f(x)f(x))设(a,b)为偶函数上一点,则(a,b)也是图象上一点.偶函数的判定:两个条件同时满足①定义域一定要关于y轴对称,例如:yx21在[1,1)上不是偶函数.②满足f(x)f(x),或f(x)f(x)0,若f(x)0时,⑵奇函数:f(x)f(x)设(a,b)为奇函数上一点,则(a,b)也是图象上一点.奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:yx3在[1,1)上不是奇函数.②满足f(x)f(x),或f(x)f(x)0,若f(x)0时,f(x)1.f(x)f(x)1.f(x)d,d(3)设f(x),g(x)的定义域分别是12,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇.3.函数的周期性。

二次函数知识点

二次函数知识点

一、二次函数的定义1.一般地,形如 2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,,,a b c 分别为二次函数的二次项、一次项和常数项系数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的性质1.二次函数2y ax =0a ≠()的性质:(1) 抛物线2y ax =的顶点是坐标原点(0,0),对称轴是0x =(y 轴). (2) 函数2y ax =的图像与a 的符号关系. ① 当0a >时⇔抛物线开口向上⇔顶点为其最低点; ② 当0a <时⇔抛物线开口向下⇔顶点为其最高点;2. 2y ax c =+的性质:3. 二次函数2y ax bx c =++0a ≠()的相关性质若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: (1) 开口方向:00a a >⇔⎧⎨<⇔⎩向上向下, (2) 对称轴:2b x a=-(或x h =),(3) 顶点坐标:24(,)24b ac b aa--(或(,)h k )(4) 最值:0a >时有最小值244ac b a -(或k )(如图1);a <时有最大值244ac b a-(或k )(如图2);图2(5)单调性:二次函数2y ax bx c =++(0a ≠)的变化情况(增减性) ① 如图1所示,当0a >时,对称轴左侧2b x a<-,y 随着x 的增大而减小,在对称轴的右侧2b x a<-,y 随x 的增大而增大;② 如图2所示,当0a >时,对称轴左侧2b x a<-, y 随着x 的增大而增大,在对称轴的右侧2b x a<-,y 随x 的增大而减小;(6)与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=)成立的x 值. 3. 二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.三、二次函数的图像与系数关系1. a 决定抛物线的开口方向:当0a >时⇔抛物线开口向上;当0a <时⇔抛物线开口向下a 决定抛物线的开口大小:a 越大,抛物线开口越小; a 越小,抛物线开口越大.注:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反. 2. b 和a 共同决定抛物线对称轴的位置.(对称轴为:2b x a=-)当0b =时,抛物线的对称轴为y 轴; 当,a b 同号时,对称轴在y 轴的左侧; 当,a b 异号时,对称轴在y 轴的右侧.3. c 的大小决定抛物线与y 轴交点的位置.(抛物线与y 轴的交点为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴.二、二次函数的三种表达方式(1)一般式:()20y ax bx c a =++≠ (2)顶点式:()2y a x h k =-+()0a ≠(3)双根式(交点式):()()()120y a x x x x a =--≠2.如何设点:⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12b x a=-时,该点为抛物线顶点.⑶ 点()11x y ,关于()00x x ,的对称点为()010122x x y y --,. 4.如何设解析式:① 已知任意3点坐标,可用一般式求解二次函数解析式;② 已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式;③ 已知抛物线与x 的两个交点坐标,可用交点式求解二次函数解析式.④ 已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例) 注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、二次函数与一次函数的联系一次函数()0y kx n k =+≠的图像l 与二次函数()20y ax bx c a =++≠的图像G 的交点,由方程组2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.二、二次函数与方程、不等式的联系1.二次函数与一元二次方程的联系: 1.直线与抛物线的交点:(1)y 轴与抛物线2y ax bx c =++得交点为(0, c ).(2)与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点(h ,2ah bh c ++). (3)抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0∆>⇔抛物线与x 轴相交; ②有一个交点(顶点在x 轴上)⇔0∆=⇔抛物线与x 轴相切; ③没有交点⇔0∆<⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是2ax bx c k ++=的两个实数根.(5)抛物线与x 轴两交点之间的距离:若抛物线2y ax bx c =++与x 轴两交点为()()1200A x B x ,,,,由于1x 、2x 是方程20ax bx c ++=的两个根,故1212,b c x x x x aa +=-⋅=12AB x x =-====2.二次函数常用解题方法 ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:3.二次函数与一元二次方程之根的分布(选讲)所谓一元二次方程,实质就是其相应二次函数的零点(图象与x 轴的交点问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用数形结合的方法来研究是非常有益的.设()()20f x ax bc c a =++≠的二实根为1x ,2x ,()12x x <,24b ac ∆=-,且()αβαβ<,是预先给定的两个实数.⑴ 当两根都在区间()αβ,内,方程系数所满足的充要条件:∵12x x αβ<<<,对应的二次函数()f x 的图象有下列两种情形:当0a >时的充要条件是:0∆>,2b aαβ<-<,()0f α>,()0f β>. 当0a <时的充要条件是:0∆>,2b aαβ<-<,()0f α<,()0f β<.两种情形合并后的充要条件是:()()0200ba f f αβαααβ⎫∆><-<⎪⎬⎪>>⎭,, ……①⑵ 当两根中有且仅有一根在区间(),αβ内,方程系数所满足的充要条件; ∵1x αβ<<或2x αβ<<,对应的函数()f x 的图象有下列四种情形:从四种情形得充要条件是: ()()0f f αβ⋅< ……②⑶ 当两根都不在区间[]αβ,内方程系数所满足的充要条件: 当两根分别在区间[]αβ,的两旁时; ∵12x x αβ<<<对应的函数()f x 的图象有下列两种情形:当0a >时的充要条件是:(0f α<0f β<当0a <时充要条件是:()0f α>,()0f β>. 两种情形合并后的充要条件是:()0f αα<,()0f αβ< ……③ 当两根分别在区间[,]αβ之外的同侧时:∵12x x αβ<<<或12x x αβ<<<,对应函数()f x 的图象有下列四种情形:当12x x α<<时的充要条件是:0∆>,2b a α-<,()0f αα> ……④当12x x β<<时的充要条件是:0∆>,2b aβ->,()0f αβ> ……⑤4区间根定理如果在区间()a b ,上有()()0f a f b ⋅<,则至少存在一个()x a b ∈,,使得()0f x =. 此定理即为区间根定理,又称作勘根定理,它在判断根的位置的时候会发挥巨大的威力.二次函数与三角形在直角坐标系中,已知三角形三个顶点的坐标,如果三角形的三条边中有一条边与坐标轴平行,可以直接运用三角形面积公式求解三角形面积.如果三角形的三条边与坐标轴都不平行,则通常有以下方法:1.如图,过三角形的某个顶点作与x 轴或y 轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A BS S S AD y y S S CE x x ∆∆∆∆∆=+=⋅-=+=⋅-其中D ,E 两点坐标可以通过BC 或AB 的直线方程以及A 或C 点坐标得到. 2.如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBF S S S S S ∆∆∆∆=---. 所涉及的各块面积都可以通过已知点之间的坐标差直接求得. 3.如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()111222ABCAD E B C FEBADF C ABA B BC BcCAS S S S x x y yxx y y x x y y∆=-++=-++-++-+4.如图,作三角形的高,运用三角形的面积公式求解四边形的面积.该方法不常用,如果三角形的一条边与0x y ±=平行,则可以快速求解.12ABC S h BC∆=⋅.。

高中数学-含参数二次函数的最值、单调性、恒成立问题

高中数学-含参数二次函数的最值、单调性、恒成立问题

复习专题之含参数二次函数的最值、单调性、恒成立问题1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.有两相异实根)(,2121x x x x <有两相等实根a b x x 221-==无实根{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R {}21x x x x <<∅∅方法点睛:研究二次函数在区间上的最值,通常分为四种情况:(1)轴定区间定;(2(3)轴动区间定;(4)轴动区间动;这四种情况都需要按三个方向来研究函数的最值:对称轴在区间的左侧、中间、右侧,从而知道函数的单调性,即可求出函数的最值.例1.已知函数()y f x =的表达式为()21f x ax mx =-+(a 、m R ∈).(1)若0a =,()3f x <的解集为()2,1-,求实数m 的值;(2)若1a =,()y f x =在[]1,2上的最大值为3,求实数m 的值.例2.已知二次函数()f x 满足对任意x ∈R 都有()()122f x f x x =-+-,且函数()f x 的图象过点()3,2﹒(1)求函数()f x 的解析式;(2)设函数()()g x f x mx =-,若函数()g x 在区间[]1,2的最小值为3,求实数m 的值﹒1.(2021·河南·安阳县高级中学高一期中)已知关于x 的不等式20ax bx c ++>解集为{}23x x -<<,则下列说法错误的是()A .0a <B .不等式0ax c +>的解集为{}6x x <C .0a b c ++>D .不等式20cx bx a -+<的解集为1132x x ⎧⎫<<⎨⎬⎩⎭2.(2021·辽宁·渤海大学附属高级中学高一阶段练习)若函数()()224f x x m x =--+在区间()1,2内存在最小值,则实数m 的取值范围是()A .()3,4B .()4,6C .[]5,9D .[]11,7--3.(2021·河南商丘·高二阶段练习(理))若不等式x 2+ax +1≥0在x ∈[-2,0)时恒成立,则实数a 的最大值为()A .0B .2C .52D .34.(2021·山东文登·高三期中)关于x 的不等式2||20ax x a -+≥的解集是(,)-∞+∞,则实数a 的取值范围为()A .4⎫+∞⎪⎣⎭B .,4⎛-∞ ⎝⎦C .44⎡⎤-⎢⎥⎣⎦D .,,44⎛⎤⎫-∞+∞ ⎪⎢⎝⎦⎣⎭5.(2020·湖南·嘉禾县第一中学高一阶段练习)若不等式2(1)20a x x -++ 对x ∈R 恒成立,则a 的取值范围为()A .9,8⎡⎫+∞⎪⎢⎣⎭B .[1,)+∞C .[2,)+∞D .5,4⎡⎫+∞⎪⎢⎣⎭6.(2021·甘肃省会宁县第一中学高一期中)已知函数()()2212f x x a x =+-+在[)4,+∞上是增函数,则实数a 的取值范围是()A .(],3-∞-B .[)3,-+∞C .(],5-∞D .[)5,+∞7.(2021·辽宁·大连市第三十六中学高一期中)若不等式20ax bx c ++>的解集为{}23x x -<<,那么不等式()21(1)2a x b x c ax ++-+>的解集为()A .{}32x x -<<B .{3x x <-或}2x >C .{}14x x -<<D .{1x x <-或}4x >8.(2021·全国·高一课时练习)若不等式250x ax +->在{}12x x ≤≤上有解,则a 的取值范围是()A .12a a ⎧⎫<⎨⎬⎩⎭B .12a a ⎧⎫>⎨⎬⎩⎭C .{}4a a <D .{}4a a >二、多选题9.(2021·江苏省天一中学高一期中)下列叙述中正确的是()A .,,a b c ∈R ,若二次方程20ax bx c ++=无实根,则0ac >B .“0a >且240b ac ∆=-≤”是“关于x 的不等式20ax bx c ++≥的解集是R ”的充要条件C .“1a <-”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件D .“1a >”是“11a<”的充分不必要条件10.(2021·重庆十八中高一期中)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 可以取值有()A .0B .1C .2D .311.(2021·全国·高一课时练习)(多选)若不等式223221x x m x x ++≥++对任意实数x 恒成立,则正整数m 的值可能为()A .3B .4C .1D .212.(2021·全国·高一课时练习)对于给定的实数a ,关于x 的一元二次不等式()()10a x a x -+>的解集可能为()A .φB .{}1x x a -<<C .{}1x a x <<-D .{1x x <或}x a >三、填空题13.(2021·上海·复旦附中高一期中)关于x 的一元二次不等式280x x a -+≤的解集中有且仅有3个整数,则a 的取值范围是______.14.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.15.(2021·全国·高一课时练习)若关于x 的不等式22230ax ax a -++<的解集为空集,则实数a 的取值范围是_______.16.(2021·全国·高一专题练习)若函数2()f x x ax =+在区间[1,2]上的最大值为1a +,则a 的取值范围为__________四、解答题17.(2021·广西·南宁二中高一阶段练习)(1)已知关于x 的不等式20ax x b ++>的解集为()1,2-,求不等式20bx x a ++>的解集;(2)解关于x 的不等式()210x k x k -++≤.18.(2021·福建·莆田第五中学高一期中)已知函数()21f x ax ax =-+.(1)设()()()22g x f x a x =+-,求()g x 在区间[]1,2上的最小值;(2)求不等式()f x x >的解集.19.(2021·福建·莆田二中高一期中)二次函数()f x 满足()()12f x f x x +-=,且()01f =.(1)求()f x 的解析式;(2)若不等式()2f x x m >+在区间,[]1,1-上恒成立,求实数m 的取值范围.。

导数与函数的单调性(含参-导函数为二次函数型)

导数与函数的单调性(含参-导函数为二次函数型)
导数与(二次)函数的单调性 专题知识点与方法
一、导数与函数的单调性
一、导数与函数的单调性
二、经典例题ຫໍສະໝຸດ 答案解析二、经典例题
答案解析
二、经典例题
答案解析
二、经典例题
答案解析
二、经典例题
答案解析
二、经典例题
答案解析
二、经典例题
答案解析
三、课后练习
答案解析
三、课后练习
答案解析
三、课后练习
答案解析
知识总结
导数二次型常见题型以及需要注意的事项: 题型一:求参数范围方法:①分离参数 ②根据二次函数根的分布求解
注意事项:①关注参数临界值。②审题注意“恒成立”“存在”的差异 题型二:讨论参数范围求解函数性质(单调性、最值性、极值性)
注意事项:①步骤得分 ②逻辑条理
课后总结
1、本节课的主讲内容是: 2、学生的学习状态(收获与不足) 3、针对学生的不足之处,老师的一个合理化建议是什么

高中数学二次函数知识点总结

高中数学二次函数知识点总结

二次函数知识点和常见题型一.二次函数的三种表示方法:(1)一般式cbx ax y ++=2(2)顶点式nm x a y ++=2)((3)两根式))((21x x x x a y --=1若()2f x x bx c =++,且()10f =,()30f =,求()1f -的值.变式1:若二次函数()2f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则A.1,4,11a b c ==-=-B.3,12,11ab c ===C.3,6,11a b c ==-=D.3,12,11a b c ==-=变式2:若()()223,[,]f x x b x x b c =-+++∈的图像x=1对称,则c=_______.变式3:若二次函数()2f x ax bx c=++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x 且2212269x x +=,试问该二次函数的图像由()()231fx x =--的图像向上平移几个单位得到?二.二次函数y=ax 2+bx+c(a ≠0)有如下性质:(1)顶点坐标24(,)24b ac b a a --;对称轴2b x a=-;(2)若a>0,且△=b 2-4ac≤0,那么f (x)≥0,2bx a=-时,2min4()4ac b f x a-=;(3)若a>0,且f (x)≥0,那么△≤0;(4)若a>0,且存在x 0∈(-∞,+∞),使得f (x 0)≤0,那么△≥0;若a<0,有与性质2、3、4类似的性质2将函数()2361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像.变式1:已知二次函数()2f x ax bx c=++,如果()()12fx fx =(其中12x x ≠),则122x x f +⎛⎫=⎪⎝⎭()A.2b a -B.ba-C.cD.244ac b a -变式2:函数()2fx xp x q=++对任意的x 均有()()11fxfx+=-,那么()0f 、()1f-、()1f的大小关系是()A.()()()110f f f<-<B.()()()011fff<-<C.()()()101f ff<<-D.()()()101f f f -<<y变式3:已知函数()2fx a x b x c=++的图像如右图所示,请至少写出三个与系数a、b、c 有关的正确命题_________.三.二次函数的单调性:当0>a ,x ∈(-∞,-b 2a ]时递减,x ∈[-b2a ,+∞)时递增当0<a ,x∈(-∞,-b2a ]时递增,x∈[-b2a,+∞)时递减3.已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈:(1)求()f x ,()g x的单调区间;(2)求()fx ,()g x 的最小值.变式1:已知函数()242fx x a x =++在区间(),6-∞内单调递减,则a 的取值范围是()A.3a ≥B.3a≤C.3a<-D.3a≤-变式2:已知函数()()215fx x a x =--+在区间(12,1)上为增函数,那么()2f 的取值范围是_________.变式3:已知函数()2f x x k x=-+在[2,4]上是单调函数,求实数k 的取值范围.四.二次函数在给定区间的最值设()()02>++=a c bx axx f,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:ab n m 2-<<n abm <-<2即[]n m ab,2∈-n m ab<<-2()()()()n f x f m f x f ==min max ()()(){}()⎪⎭⎫ ⎝⎛-==a b f x f m f n f x f 2,maxminmax ()()()()m f x f n f x f ==min max 对于开口向下的情况,讨论类似.其实无论开口向上还是向下,都只有以下两种结论:(1)若[]n m a b ,2∈-,则()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-=n f a b f m f x f ,2,max max()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-=n f a b f m f x f ,2,min min(2)若[]nmab,2∉-,则()()(){}n f m f x f ,maxmax =,()()(){}n f m f x f ,minmin=另外,当二次函数开口向上时,自变量的取值离开对称轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开对称轴轴越远,则对应的函数值越小.4.已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈:(1)求()f x ,()g x 的单调区间;(2)求()f x ,()g x 的最小值.变式1:已知函数()223fx xx =-+在区间[0,m]上有最大值3,最小值2,则m 的取值范围是A.[)1,+∞B.[]0,2C.[]1,2D.(),2-∞变式2:若函数234y x=-+的最大值为M,最小值为m,则M +m 的值等于________.变式3:已知函数()224422fx x a x a a =-+-+在区间[0,2]上的最小值为3,求a 的值.变式4:求二次函数2()26f x x x =-+在下列定义域上的值域:(1)定义域为{}03x Z x ∈≤≤;(2)定义域为[]2,1-.变式5:函数()2()2622f x x x x =-+-<<的值域是A.3220,2⎡⎤-⎢⎥⎣⎦B.()20,4-C.920,2⎛⎤- ⎥⎝⎦D.920,2⎛⎫- ⎪⎝⎭变式6:函数y=cos2x+sinx 的值域是__________.变式7:已知二次函数f (x)=a x 2+bx(a、b 为常数,且a ≠0),满足条件f (1+x)=f (1-x),且方程f (x)=x 有等根.(1)求f (x)的解析式;(2)是否存在实数m、n(m <n),使f (x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n 的值,如果不存在,说明理由.五.奇偶性:b =0时为偶函数,b ≠0时既非奇函数也非偶函数5.已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.画出函数()f x 的图像,并求出函数的解析式.变式1:若函数()()()22111fx m x mx =-+-+是偶函数,则在区间(],0-∞上()fx是A.增函数B.减函数C.常数D.可能是增函数,也可能是常数变式2:若函数()()2312f x ax bx a b a x a =+++-≤≤是偶函数,则点(),a b 的坐标是________.变式3:设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈.(I)讨论)(x f 的奇偶性;(II)求)(x f 的最小值.六.图像变换:已知2243,30()33,0165,16x x x f x x x x x x ⎧++-≤<⎪=-+≤<⎨⎪-+-≤≤⎩.(1)画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值和最小值.变式1:指出函数223y x x =-++的单调区间.变式2:已知函数)(|2|)(2R x b ax xx f ∈+-=.给下列命题:①)(x f 必是偶函数;②当)2()0(f f =时,)(x f 的图像必关于直线x=1对称;③若02≤-b a ,则)(x f 在区间[a,+∞)上是增函数;④)(x f 有最大值||2b a-.其中正确的序号是___③变式3:设函数,||)(c bx x x x f ++=给出下列4个命题:①当c=0时,)(x f y =是奇函数;②当b=0,c>0时,方程0)(=x f 只有一个实根;③)(x f y =的图象关于点(0,c)对称;④方程0)(=x f 至多有两个实根.上述命题中正确的序号为————.七.恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

高中数学知识点:基本初等函数的单调性

高中数学知识点:基本初等函数的单调性

第 1 页 共 1 页 高中数学知识点:基本初等函数的单调性
1.正比例函数(0)y kx k =≠
当k>0时,函数y kx =在定义域R 是增函数;当k<0时,函数y kx =在定义域R 是减函数.
2.一次函数(0)y kx b k =+≠
当k>0时,函数y kx b =+在定义域R 是增函数;当k<0时,函数y kx b =+在定义域R 是减函数.
3.反比例函数(0)k y k x =≠
当0k >时,函数k y x =的单调递减区间是()(),0,0,-∞+∞,不存在单调增区间;
当0k <时,函数k y x
=的单调递增区间是()(),0,0,-∞+∞,不存在单调减区间.
4.二次函数2(0)y ax bx c a =++≠
若a>0,在区间(]2b a -∞-
,,函数是减函数;在区间[)2b a -∞,+,函数是增函数;
若a<0,在区间(]2b a -∞-
,,函数是增函数;在区间[)2b a -∞,+,函数是减函数.。

第二章 2·2函数的单调性与最值

第二章  2·2函数的单调性与最值

1.函数单调性的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数图象自左向右看图象是上升的自左向右看图象是下降的2.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M 称为单调区间.3.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.(3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.(×)(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1) 答案 A解析 A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =(12)x 在R上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误. 2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A .-2 B .2 C .-6 D .6 答案 C解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 由y =ax 在(0,+∞)上是减函数,知a <0; 由y =-bx 在(0,+∞)上是减函数,知b <0.∴y =ax 2+bx 的对称轴x =-b2a<0, 又∵y =ax 2+bx 的开口向下,∴y =ax 2+bx 在(0,+∞)上是减函数.故选B. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =(12)x D .y =x +1x(2)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(3)y =-x 2+2|x |+3的单调增区间为________. 答案 (1)A (2)D (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1) ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax (a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数, f (x )min =f (1)=a +3.所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用 命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0 D .f (x 1)>0,f (x 2)>0 答案 B解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)答案 C解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A .(8,+∞) B .(8,9]C .[8,9]D .(0,8)(2)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案 (1)B (2)D解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分] ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[6分](2)解 ∵m ,n ∈R ,不妨设m =n =1, ∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,[8分] f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4, ∴f (1)=2,∴f (a 2+a -5)<2=f (1),[10分] ∵f (x )在R 上为增函数,∴a 2+a -5<1⇒-3<a <2,即a ∈(-3,2).[12分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f (x )在给定区间上的单调性; 第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组; 第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒 本题对函数的单调性的判断是一个关键点.不会运用条件x >0时,f (x )>1,构造不出f (x 2)-f (x 1)=f (x 2-x 1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f (M )<f (N )的形式.解决此类问题的易错点:忽视了M 、N 的取值范围,即忽视了f (x )所在的单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.A 组 专项基础训练 (时间:35分钟)一、选择题1.下列四个函数中,在区间(0,1)上是减函数的是( ) A .y =log 2xB .y =x 13C .y =-⎝⎛⎭⎫12xD .y =1x 答案 D解析 y =log 2x 在(0,+∞)上为增函数;y =x 13在(0,+∞)上是增函数;y =⎝⎛⎭⎫12x 在(0,+∞)上是减函数,y =-⎝⎛⎭⎫12x 在(0,+∞)上是增函数;y =1x 在(0,+∞)上是减函数,故y =1x 在(0,1)上是减函数.故选D. 2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A .(0,1]B .[1,2]C .[1,+∞)D .[2,+∞) 答案 C解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c <b <a B .b <a <c C .b <c <a D .a <b <c 答案 B解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1, ∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A .(0,34) B .(0,34]C .[0,34)D .[0,34]答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数, 当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34,综上a 的取值范围是0≤a ≤34.二、填空题6.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 答案 [3,+∞)解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0, 解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在[3,+∞)上单调递增.又因为y =t 在[0,+∞)上单调递增,所以函数f (x )的增区间为[3,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又a x -a 是增函数,故a >1,所以a 的取值范围为1<a ≤2. 8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.三、解答题9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞) 答案 A解析 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2. 结合图象可知函数的单调减区间是[1,2].12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,ab =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12答案 C解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.(2015·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.答案 2解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞),当a =1时,定义域为{x |x >0且x ≠1}, 当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

函数的单调性及函数解析式的求法

函数的单调性及函数解析式的求法

知识点五:函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).例6 (1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).变式.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.例7 已知2f (1/x )+f (x )=x(x ≠0) 。

求f (x )变式 已知f (1/x )+af (x )=ax(x ≠0,a ≠±1) 。

求f (x )1.3.1 函数单调性与最大(小)值知识点一 增函数、减函数、单调性、单调区间的概念:一般地,设函数f(x)的定义域为A ,区间如果对于内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间上是增函数;如果对于内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在区间上是减函数.如果函数f(x)在区间D 上是增函数或者减函数,那么函数f(x)在这一区间上具有严格的单调性,区间D 叫做函数的单调区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数解析式变动、区间不变,
5、已知函数f(x)=x2 -2ax+2,(a∈R) 求 f(x)在[-5,5]上的单调区间。
练习
求出函数f(x)=x2-2(2a+1)x+a(a∈R) 在闭区间[0,1] 上的单调区间.
1.若函数f(x)=x2+2(a-1)x+2在区 间(-∞,4]上是减函数,那么实数a 的取值范围是( )
A.a≥3
B.a≤-3
C.a<5
D.a≥-3
答案:B
2.函数f(x)=4x2-mx+5在区间[-2,+∞) 上是增函数,则f(1)的取值范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤25
D.f(1)>25
解析:选 A.由题意,知m8 ≤-2,∴m≤- 16,∴f(1)=9-m≥25.
二次函数的单调性
基础梳理
1.二次函数的表示形式 一般式:__f_(_x_)=__a_x_2_+__b_x_+__c_(_a_≠__0_).__
请分别画出二次函数
(1)f(x)=x2 -2x+2
(2)f(x)=-x2 +2x -3
的图像,并说出它的单调区间
2.二次函数的图像和性质
解析 f(x)=ax2+bx+
(1)f(x)=-x2 +2x, x∈[-1,2] (2)f(x)=x2 -4x+3, x∈[-2,2]
二次函数解析式不变、区间变动,
4、求出函数f(x)=x2-2x+2在闭区 间[t,t+1](t∈R)上的单调区间.
练习
求出函数f(x)=x2-4x-2在闭区间
[t,t+2](t∈R)上的单调区间.

c(a<0)
在 x∈(-∞,-2ba) 在 x∈(-∞,-2ba)
单调 上单调递减
上单调递增
性 在 x∈(-2ba,+∞)上 在 x∈(-2ba,+∞)
单调递增
上单调递减
3、判定二次函数 f(x)=x2 -2x+2, x∈[-1,3]的单调性,并说出它的单调区 间
相关文档
最新文档