有关硅橡胶复合绝缘子的几个问题资料
硅橡胶复合绝缘子憎水性与污闪特性研究

硅橡胶复合绝缘子憎水性与污闪特性研究一、本文概述随着电力工业的发展,电力设备的绝缘性能对电力系统的稳定运行至关重要。
硅橡胶复合绝缘子作为现代电力系统中的重要组成部分,其憎水性和污闪特性直接影响到电力设备的长期运行安全。
因此,对硅橡胶复合绝缘子的憎水性与污闪特性进行深入研究,不仅有助于提升电力设备的绝缘性能,也对保障电力系统的安全稳定运行具有重要意义。
本文旨在全面分析和研究硅橡胶复合绝缘子的憎水性与污闪特性。
通过对硅橡胶复合绝缘子的材料特性、制备工艺和表面结构进行详细阐述,为后续的憎水性和污闪特性研究提供理论基础。
利用先进的实验手段,对硅橡胶复合绝缘子的憎水性进行定量评估,分析不同环境因素对憎水性的影响规律。
通过模拟污秽环境下的污闪试验,探究硅橡胶复合绝缘子的污闪特性及其影响因素。
结合实验结果,提出优化硅橡胶复合绝缘子憎水性和污闪特性的有效措施,为电力设备的设计和运维提供指导。
本文的研究不仅有助于深入了解硅橡胶复合绝缘子的绝缘性能,还能为提升电力设备的安全性和可靠性提供理论依据和技术支持。
本文的研究成果也可为其他类型的绝缘材料研究提供参考和借鉴。
二、硅橡胶复合绝缘子材料特性硅橡胶是一种具有优异电气性能和化学稳定性的高分子材料,广泛应用于电气绝缘领域。
硅橡胶复合绝缘子结合了硅橡胶的优良绝缘性能和复合材料的结构优势,表现出独特的材料特性。
硅橡胶具有出色的憎水性。
其表面能低,不易被水分润湿,即使在潮湿环境下也能保持良好的电气绝缘性能。
这种憎水性使得硅橡胶复合绝缘子在潮湿或污染环境中具有更高的耐污闪能力,有效提高了电力系统的运行安全性。
硅橡胶复合绝缘子具有优异的耐老化性能。
硅橡胶材料在紫外线、臭氧、高温等恶劣环境下仍能保持稳定,不易发生老化。
这种耐老化性能保证了硅橡胶复合绝缘子具有较长的使用寿命,减少了维护和更换的频率,降低了运行成本。
硅橡胶复合绝缘子还具有良好的抗电晕性能。
在高压电场下,硅橡胶材料能够抵抗电晕放电的侵蚀,保持绝缘性能的稳定。
复合绝缘子断串原因分析及防范措施

复合绝缘子断串原因分析及防范措施发表时间:2019-03-05T14:38:58.207Z 来源:《防护工程》2018年第35期作者:赵普振刘晓林[导读] 复合绝缘子在电网中使用比例逐步增大。
然而,随着复合绝缘子使用量的剧增,其发生事故的概率也日趋增大。
河南送变电建设有限公司河南郑州 450007摘要:复合绝缘子的断串是威胁输电线路安全稳定运行的关键问题。
本文对复合绝缘子断串类型及成因进行了系统的分析,并提出了有效的防范措施,提升复合绝缘子运行的稳定性和安全性。
关键词:复合绝缘子;断串原因;防范措施1 前言复合绝缘子因其耐污闪性能好、重量轻、运行维护方便等优点,在高压输电线路中得到了广泛应用。
伴随着近年来输电线路复合化趋势,复合绝缘子在电网中使用比例逐步增大。
然而,随着复合绝缘子使用量的剧增,其发生事故的概率也日趋增大。
2 断串的主要类型2.1 金具破损引起的掉串复合绝缘子端部通过端部金具连接导线和杆塔,在长久运行过程中,容易在外力作用下弯曲变形,导致球头脱落造成掉串事故。
我国500kV紧凑型输电线路曾发生多起Ⅴ型复合绝缘子掉串事故,且掉串绝缘子串均是夹角在90°以内的背风侧复合绝缘子。
事故时复合绝缘子球头自碗头中脱出,严重将碗头中R销冲击变形。
目前,国内已通过采用槽型连接金具等措施,有效避免复合绝缘子弯曲变形,解决因金具破损而导致的绝缘子掉串事故。
2.2 芯棒断裂引起的断串复合绝缘子芯棒作为内绝缘件和机械负荷的载体,其电气与机械性能直接关系到复合绝缘子的运行可靠性。
脆断是复合绝缘子的一种特有故障现象。
根据国际大电网会议CIGRE的统计和估计,全世界脆断复合绝缘子占全部运行复合绝缘子的比例不超过万分之一。
一般认为,脆断是复合绝缘子芯棒在机械负荷与酸性液体的共同作用下发生的应力腐蚀断裂。
近年来,国内绝缘子标委会大力推动复合绝缘子采用耐酸芯棒,从而有效减少芯棒脆断事故率。
酥朽断裂是近年来发现的第二种断裂形式,并不是一种单纯的机械破坏。
硅橡胶复合绝缘子护套伞裙表面存在竖直合模缝时的结构性能差异分析

硅橡胶复合绝缘子护套伞裙表面存在竖直合模缝时的结构性能差异分析(转)1引言复合绝缘子因其特有的防污性能和显而易见的优越性,而具有广阔的应用前景。
其复合绝缘部分是以硅橡胶为基材,填充多种填充剂,通过混炼后经硫化后成型的。
目前,普遍采用的芯棒连续挤压护套和外套粘伞裙的外绝缘组装工艺,经权威研究机构近十几年分析、研究和运行的验证,已是较为成熟的生产工艺。
但近几年来国外玻璃绝缘子生产厂家和瓷绝缘子的生产和研制机构用塑料注射方法成型,对复合绝缘子外绝缘亦采用此注射成型方法,这种工艺制成的护套伞裙表面会出现两条对称的贯穿性竖直合模缝,合模缝处的材质结构分布状况、机电技术参数及耐老化性能必然与其它部位有所不同,有必要对其外绝缘结构性能的差异进行分析和论证,供用户参考。
2材质分布结构分析注射成型方法是把芯棒放在上、下伞套模具中间,将硅橡胶外绝缘材料通过注射机高速注满伞套模具腔,然后经加热硫化成型。
这种注射方法会在护套伞裙表面竖直方向出现两条对称贯穿性的合模缝,此处的材料组成状况与其它部分有所不同。
硅橡胶外绝缘材料模具腔内形成的表面都是由硅氧烷分子构成的,不存在颗粒状填充剂裸露现象[1],而由模具间隙形成的竖直方向合模缝是在注射过程中形成的,产品注射用的胶料中有直径几百pm的硅氧烷分子,占胶料体积10%的粒径十几nm的白碳黑颗粒和占胶料体积40%的粒径为几μm的氢氧化铝及其它少量填充剂颗粒。
在较高温度下高速注入伞套腔时,极易流动填满缝隙,而颗粒大的填充剂则易滞留在其缝隙的入口处,尤其是比硅氧烷分子直径大2000多倍的氢氧化铝及其它填充剂颗粒更容易留在模具接口处。
按人们尽量减少模具配合间隙的习惯设计加工,将会更加重填充剂的堆积。
护套伞裙表面的竖直合模缝形成的薄边修掉后,必然会有一定量的填充剂颗粒裸露于表面。
用能量扩散X射线分析方法,在电子扫描镜下进行检测,发现其表面层材质结构分布极不均匀,分散性较大[2],而其它部位的表面层材质结构基本是均匀分布的,分散性极小。
高速列车车顶硅橡胶复合绝缘子伞裙撕裂原因及其应对措施研究

高速列车车顶硅橡胶复合绝缘子伞裙撕裂原因及其应对措施研究高速列车车顶硅橡胶复合绝缘子伞裙撕裂原因及其应对措施研究摘要:随着高速列车的飞速发展,车顶硅橡胶复合绝缘子伞裙撕裂问题逐渐凸显。
本文通过对120辆高速列车车顶硅橡胶复合绝缘子伞裙的样本进行调查分析,发现车顶硅橡胶复合绝缘子伞裙撕裂主要由三个因素引起:制造工艺问题、材料老化和外界环境影响。
针对这些原因,本文提出了相应的应对措施,包括优化制造工艺、改进材料配方以及加强维护保养。
希望通过研究,能够提高车顶硅橡胶复合绝缘子伞裙的使用寿命,确保高速列车安全运行。
1. 引言高速列车的快速发展使得车辆在高速行驶时面临着更大的外部挑战,例如风压、气温变化以及湿度等。
因此,车辆的安全运行面临着更高的要求。
车顶硅橡胶复合绝缘子伞裙作为车顶设备的重要组成部分,其安全可靠性一直备受关注。
然而,在实际使用过程中,我们发现车顶硅橡胶复合绝缘子伞裙存在撕裂问题,严重影响了车顶设备的正常运行。
因此,本文对车顶硅橡胶复合绝缘子伞裙撕裂的原因进行了深入研究,以期提出相应的解决方案。
2. 研究方法本次研究选取了120辆高速列车车顶硅橡胶复合绝缘子伞裙样本进行试验。
首先,通过现场实地考察,观察车顶硅橡胶复合绝缘子伞裙的撕裂情况,并进行详细记录。
然后,将样本送回实验室,通过显微镜观察、拉伸实验等手段,对样本进行一系列的物理性能测试。
3. 撕裂原因分析通过对样本的观察及测试,我们发现车顶硅橡胶复合绝缘子伞裙撕裂主要由三个因素引起。
3.1 制造工艺问题制造工艺的不完善是车顶硅橡胶复合绝缘子伞裙撕裂的一个重要原因。
在制造过程中,如模具设计不合理、注射过程中温度不稳定等问题,都会导致伞裙表面出现裂纹,从而降低其使用寿命。
3.2 材料老化材料老化是车顶硅橡胶复合绝缘子伞裙撕裂的另一个主要原因。
在实际使用过程中,车辆面对着高温、紫外线等环境因素。
这些因素会导致硅橡胶材料老化、硬化,失去原有的柔韧性,从而增加了伞裙撕裂的风险。
复合绝缘子典型故障

复合绝缘子典型故障1.引言1.1 概述复合绝缘子是一种常见的用于高压输电线路的电力设备。
它是由绝缘子套筒、绝缘子芯、金属螺栓和钢帽等部分组成的复合材料制品。
复合绝缘子具有良好的绝缘性能和机械强度,既能保证线路的安全运行,又能适应复杂的气象环境。
然而,复合绝缘子在长期使用过程中,也会出现一些典型故障。
这些故障可能会导致电力系统的损坏、线路的故障,甚至对人身安全构成威胁。
因此,及时发现和处理复合绝缘子的故障,对于确保电力系统的可靠运行至关重要。
本文将重点介绍复合绝缘子的典型故障,并提供预防和处理的建议。
通过对复合绝缘子故障的深入了解,可以有效地指导电力工程技术人员进行维护和管理工作,提高电力系统的可靠性和稳定性。
希望本文能对读者对复合绝缘子故障有所了解,并能在实践中取得应有的效果。
1.2 文章结构文章结构主要包括引言、正文和结论三个部分。
具体来说,引言部分主要是对整篇文章的概述,介绍复合绝缘子典型故障这个主题,并说明文章的目的。
正文部分则包括复合绝缘子的基本原理和结构以及常见故障的分析。
最后,在结论部分对复合绝缘子的典型故障进行总结,并提出对故障的预防和处理建议。
引言部分的目的是引起读者的兴趣,帮助他们了解和认识复合绝缘子典型故障的重要性。
首先,我们将对复合绝缘子和其在电力系统中的作用进行概述,强调复合绝缘子在电力传输中的重要性。
然后,我们将简要介绍整篇文章的结构,明确各个部分的内容以及本文的目的,以便读者能够更好地理解和阅读后续的正文部分。
通过以上的引言,读者能够了解到这篇文章的主题和目的,并形成对复合绝缘子故障的整体认识。
接下来的正文部分将详细介绍复合绝缘子的基本原理、结构以及常见故障的分析,帮助读者更深入地了解复合绝缘子的特点和存在的问题。
最后,在结论部分,我们将总结复合绝缘子的典型故障,从而给出对复合绝缘子故障的预防和处理建议,以期提高电力系统的可靠性和稳定性。
通过以上的文章结构安排,读者可以清晰地了解到本文的内容安排和逻辑推导,有助于他们更好地理解和掌握复合绝缘子典型故障的相关知识。
硅橡胶复合绝缘子

硅橡胶复合绝缘子硅橡胶复合绝缘子是一种常用的绝缘材料,广泛应用于电力系统中。
本文将从硅橡胶复合绝缘子的特点、优势以及应用领域等方面进行介绍。
硅橡胶复合绝缘子具有优良的绝缘性能。
硅橡胶是一种高温耐热、耐电弧和耐候性能较好的材料,能够在恶劣的环境条件下保持稳定的绝缘性能。
它具有良好的电气性能,可以有效地防止电力设备发生漏电和击穿等故障。
硅橡胶复合绝缘子具有较强的机械强度。
硅橡胶具有较高的拉伸强度和抗撕裂性能,能够承受较大的机械应力。
复合绝缘子采用硅橡胶作为外层绝缘材料,能够有效地保护内部的绝缘材料,提高绝缘子的机械强度和耐久性。
硅橡胶复合绝缘子具有良好的耐候性能。
硅橡胶具有较强的耐老化性能和耐候性,能够长期在户外环境中使用而不受损。
它能够抵抗紫外线、高温、寒冷等极端气候条件的侵蚀,保持良好的绝缘性能。
硅橡胶复合绝缘子的应用领域非常广泛。
首先,它广泛应用于输电线路和变电站中。
硅橡胶复合绝缘子能够承受高电压和大电流的作用,保证电力系统的正常运行。
其次,它还常用于高压开关设备和变压器等电力设备中,起到绝缘和支撑的作用。
此外,硅橡胶复合绝缘子还常用于雷电防护装置和绝缘子串、绝缘子链等电力系统的附件中。
在使用硅橡胶复合绝缘子时,需要注意以下几点。
首先,要正确选择和安装绝缘子,保证其与设备的匹配性。
其次,要定期检查绝缘子的绝缘性能,及时发现并处理存在的问题。
此外,还应注意绝缘子的清洁和防护工作,避免灰尘、污垢等物质对绝缘子的影响。
硅橡胶复合绝缘子是一种优良的绝缘材料,具有良好的绝缘性能、机械强度和耐候性能。
它广泛应用于电力系统中,保证了电力设备的安全运行。
在使用过程中,需要注意绝缘子的选择、安装和维护,以保证其良好的工作状态。
复合绝缘子的应用及存在问题分析

复合绝缘子的应用及存在问题分析复合绝缘子与电瓷绝缘子相比,除了耐污闪性能好之外,还有如下优点:(1)用于相同电压等级的复合绝缘子长度比电瓷绝缘子短。
这可以减少相间和对地的绝缘距离,从而减小线路走廊宽度,降低铁塔和高度和塔头尺寸,便于架设紧凑型线路(2)重量轻,金属部件少,强度高,不容易破裂,便于安装,不用清扫,不需要检测零值,便于检修、维护。
(3)原材料稳定,制造程序简便,比较容易实现自动化和大规模生产。
尽管复合绝缘子有上述优点,但是在电力生产实际中发现复合绝缘子还是存在一些不可避免的缺陷。
在送电线路上运行的绝缘子会受到雷击、污秽、鸟害、冰雪、高湿、温差等环境因素的影响,在电气上要承受电场、雷电冲击电流、工频电弧电流的作用,在机械上压迫承受长期工作载荷、综合载荷、导线舞动等机械力的作用,综合分析三种类型绝缘子的运行性能及特点,研讨绝缘子在运行中出现的问题及解决措施,对于提高线路的运行可靠性,是很有必要的。
华北等地已发现硅橡胶绝缘表面憎水性下降的现象,根据分析有可能直接导致污闪的发生,运行经验表明,复合绝缘子在经过长时间受潮后,硅橡胶表面憎水性会有程度不同的下降,有些复合绝缘子在一段时间内几乎不呈现憎水性。
而在受潮条件小时后,不同伞裙配方的复合绝缘子其憎水性恢复速率不同,性能良好的硅橡胶,表面憎水性恢复速率快;而性能比较差的硅橡胶,表面憎水性恢复需要较长的时间。
因此,不难解释华东地区在晴好天气下的复合绝缘子闪络故障的原因。
运行若干年的复合绝缘子取下后进行机械强度试验时发现,芯棒在额定或低于机械破坏负荷下出现较大滑移,甚至在显著低于机械破坏符合下芯棒从端部金具中脱出;此外,还有库存产品也存在机械强度显著下降的事例。
目前,尽管复合绝缘子在使用中尚未造成导线掉线的恶性事故,但复合绝缘子机械强度下降的现象仍然是潜在威胁,机械强度下降对各种机械端头的连接方法都有,甚至国外采用压接式接头在运行一段时间后也未达到额定机械破坏符合即拉脱。
复合绝缘子用硅橡胶憎水性影响因素的探讨

科技创新导报2013 NO.11Science and Technology Innovation Herald创新技术科技创新导报 Science and Technology Innovation Herald41氢氧化铝用量(份数)漏电起痕性能751A3.5901A3.51051A4.51201A4.51351A4.5随着当前输电电压等级的提高,绝缘子不仅要求一定的力学性能,更需要较高的电性能。
特别对于污秽严重的地区,传统的瓷绝缘子、玻璃绝缘子在使用中暴露出性能上固有的缺陷,而复合绝缘子则表现出其优势,良好的憎水性能及憎水迁移性降低了绝缘子表面的闪络现象的发生。
因此,鉴于合成绝缘子优异的耐闪络性能源于其外绝缘硅橡胶良好的憎水性,有必要对复合绝缘子用硅橡胶的憎水性测量方法及影响因素进行研究。
1 憎水性的测量方法国际上憎水性的测量方法通常分为接触角法,喷水分级法和表面张力法。
而硅橡胶常用前两种方法,在表示憎水性强弱时,需要标明橡胶憎水性的测试方法。
1.1 接触角测量法静态接触角法是通过微注射器将水滴滴在材料表面,通过高速摄像机获取水滴在材料表面形态的图片,通过相应的图形处理软件测量水滴与材料表面的接触角。
测量时将水滴滴在表面水平硅橡胶材料上,在空气、水和硅橡胶材料的交界点做水滴表面切线,该切线与材料表面的夹角θ即为静态接触角。
这种方法测量简单、定量准确,被广泛用于材料表面憎水性的评估。
1.2 喷水分级法测量合成绝缘子憎水性的喷水分级法是由瑞典输配电研究所提出。
主要通过后退角及水膜面积这两个物理量来评估绝缘子的憎水性,将憎水性分为HC1-HC 7共7个等级,其中HC1和HC7级分别对应憎水性最强和最弱的状态。
一般而言,HC1-HC3属于憎水性表面,HC 4是一个中间过渡级,此时,水珠和水带同时存在,HC5-HC7属于亲水性表面。
2 氢氧化铝对硅橡胶憎水性的影响2.1 复合绝缘子硅橡胶憎水性基本原理硅橡胶具有优异的憎水性能,与其分子结构特点不可分离,主链是由硅氧烷有规则排列成的长链,分子链呈螺旋状的结构,因si-o-s i与o-si-o的键角较大,使得s i-o 键的极性相互抵消,整个分子表现出强的非极性特性,对极性的水分子表现出较强的排斥力,因此,硅橡胶具有较好的憎水性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容摘要
本文简略地介绍了硅橡胶复合绝缘子的优异 特性、及其发展使用概况,分析比较其伞 裙护套的两种主要成型工艺的优缺点,指 出在当前的技术条件下,整体挤包穿伞工 艺是生产质优价镰的几个问题简介 • 1-1:有机外绝缘是输变电外绝缘发展的趋势 • 1-2:复合绝缘子的主要部件及其作用 • 1-3:复合绝缘子的优异特性 • 1-4:伞裙护套的成型工艺简介 • 1-5:关于界面问题 • 二:复合绝缘子的运行事故分析, • 2-1:国际大电网会议的调查结果 • 2-2:我国的运行情况介绍 • 三:结论
Rosenthal公司的两项技术改进为:A)采用耐水解芯棒并加厚护套的厚度,改进端部与金 具联接面的密封工艺, 以防止水分进入,确保芯棒不发生水解脆断。B)伞裙护套采 用高温硫化的硅橡胶原料,改进配方以提高伞裙护套的耐漏电起痕及耐电蚀的性能。 为此以高温硫化硅橡胶伞裙护套的复合绝缘子进入技术上成熟时期。
由于声发射监控技术的采用,压接质量才有保证,所以当前国内主要厂 家均采用压接式接头。
• 压接式接头结构是采用一定的机械挤压设备将横向挤压力作用在端部 金具上,使金具产生一定的塑性变形,在金具与芯棒的接触面上产生 一定的预压应力。当复合绝缘子承载时,由此压应力转换成切向摩擦 力承受载荷。这种连接结构的优点是接头金具的体积小,保证了芯棒 的完整性,且生产效率较高,但其要求金具的材料与芯棒材料的物理 性能必须有密切的配合及严格准确的监控手段才行 。
• 内楔式结构是将芯棒端部锯开一条缝,压入一个金属内楔, 靠内楔将芯棒端部撑大,锥形金属腔在芯棒承载时将撑大 的芯棒端部卡住,当芯棒向外移动时,内楔子随芯棒运动, 将芯棒越卡越紧,因而也具备有预紧力自锁的特点。内楔 式接头的缺点是破坏芯棒的完整性,但由于生产厂家对内 楔式端部的工艺条件做得成功合适,因此目前内楔式端部 连接的接头机械强度高且稳定,其产品目前乃在挂网运行 中。
我国生产的复合绝缘子的端部金具的连接方式主要有外楔式、内楔式及 压接式三种方式:
• 金具是复合绝缘子芯棒的连接部件及机械负荷的传递部件,金具及其 与芯棒连接的质量的好坏将直接影响芯棒强度的发挥及复合绝缘子的 机械性能。特别是金具与芯棒之间界面密封性能的好坏将直接决定芯 棒的寿命的长短,
• 外楔式结构是将一组金属楔压入金具锥腔与芯棒之间,靠金属楔与芯 棒间的压应力所产生的摩擦力承担机械负荷。外楔式结构的优点是不 破坏芯棒的完整性,缺点是对金属腔、外楔及芯棒园周的尺寸要求较 高。工艺难度较大,因此接头的机械强不易稳定,分散性也较大,因 此目前外楔式产品大多数都已退出运行。
1-2:复合绝缘子的主要部件及其作用 图一:硅橡胶复合绝缘子的照片
我国当前的芯棒均采用环氧树脂增强引拔的耐酸玻璃纤维芯棒,具有良 好耐酸蚀性能,具有较强的抗脆断的能力,它大大地提高了复合绝缘子 的使用寿命。
• 芯棒是复合绝缘子机械负荷的承载部件,同时又是内绝缘的主要部
分,它要求有较高的长期稳定的机械强度及绝缘性能,同时也要求有 较高的抗疲劳、抗老化的性能。芯棒采用环氧树脂增强的单向玻璃纤 维引拔棒。玻璃纤维是增强材料,起骨架作用,环氧树脂是基体材料, 它将玻璃纤维粘接成一整体,同时也起到保护玻璃纤维不受酸碱的侵 蚀。 • 伞裙护套是复合绝缘子的外绝缘部分,其作用是使复合绝缘子具有足 够高的防湿闪及污闪的能力,同时也起着保护芯棒免遭外部大气的侵 袭。伞裙护套长年暴露在户外大气中,经受日晒、雨淋、酷暑、严寒 等各种恶劣气象条件,承受自然(飞尘、盐碱及海水盐雾)污染和工 业污染,它在污秽潮湿的情况下可能遭遇火花放电及电弧的烧蚀。为 此要求伞裙护套必须具有优越的耐污闪、耐漏电起痕和耐电损蚀性能, 以及耐臭氧紫外线、耐高低温等大气老化作用。由于吸收国外成功经 验,我国复合绝缘子的伞裙护套一开始就采用高温硫化的硅橡胶为原 材料,其抗污闪及抗老化的性能是诸种有机绝缘材料中最好的,完全 能够满足作为电力系统外绝缘的要求。
一:复合绝缘子的几个问题简介 1-1:有机外绝缘是输变电外绝缘发展的趋势
: 1 随着电力系统的电压等级的不断提高,对绝缘子的要求也越来越高, 使用一百多年的瓷绝缘子的缺点也日益清楚地暴露出来,诸如笨重易 碎、运输安装不便、耐污性能差、容易发生内击穿形成零值瓶、运行 维护工作量大、制造工艺复杂成品率低、能耗大对环境污染严重等等。 也随着有机复合材料的出现,复合绝缘子在50年代就有人开始研究, 60年代后期开始试用,70年代后期总结、改进,80年代后期开始大 量使用,90年代以来各种输变电有机外绝缘产品迅速增多。30多年来 大量的工作集中在伞裙、芯棒的研究,制造工艺的改进、试验及使用 标准的制定方面,如今复合绝缘子已被各国电力部门所接受,进入了 推广应用的新时期! 2:早期复合绝缘子通常称为第一代复合绝缘子,其伞裙、护套使用材料
主要是脂环族环氧树脂、二元乙丙橡胶、三元乙丙橡胶、聚四氟乙烯 及室温硫化的硅橡胶等。它们在运行中都暴露出伞裙护套的老化、漏 电起痕及污闪电压下降快,同时其芯棒水解脆断、芯棒与护套界面击 穿、机械强度下降等等!
3:德国Rosenthal 公司进行了两项重大技术改进,使复合绝缘子技术进 入了成熟时期,其生产的复合绝缘子称为第二代复合绝缘子。
内密封形式如图3所示,即在芯棒与金具之间设有大小不同的多道密封槽, 采用“O”型密封圈加涂具有永久弹性的密封胶密封,封口不漏气进水,
• 运行经验表明,复合绝缘子寿命最重要的制约因素是两端金具的密封 质量,它决定复合绝缘子芯棒是否受大气中有害气体腐蚀而不是硅橡 胶材料本身的老化。复合绝缘子两端金具与芯棒的密封质量也是防止 芯棒脆断的主要措施之一。
• 金具与芯棒的密封目前有外密封及内密封两种形式,外密 封如图2所示,是用硅橡胶护套粘接在金具外表面上来实 现密封的目的,由于密封材料层是爆露在大气之中,除了 受到大气各种自然因素的侵袭外,同时还要受到端部强电 埸的电晕及放电电弧的侵蚀考验,可想而知其损坏的几率 相对而言是比较大的。