2017考研数一真题及答案解析

合集下载

2017考研数一真题答案及详细解析

2017考研数一真题答案及详细解析

O 在 式中令y '=o得x = — l,x = l.
当x 分别取 — 1和1时 ,由x3 +y 3 -3x+3y — 2 = 0得 y ( —1) = O,y (1) =1.
将x = — l,y ( —l) = O 及 y '(-1) = 0代入@式得 y" ( —1) = 2.
因为y'c -1) =o,y"c -1)>o,所以y ( — 1) = 0是 y (x)的极小值.
2017年(数 一)真题答案解析
一、选择题
Cl) A
l —cos石 解由f(x) = { ax'
b'
x>O
'在
x
=
O
处连续

得limf(x) x一o+
=
b.
x�O
l — cos石
x
又limf(x)= lim-
= lim
=上 =b.
x-o +
_,. •ll I
ax
ce�千o + 2ax 2a
所以ab = —2 .故应选 A.
xn
=l
X +x·
所以,S(x )
=(1
X +x)
1
1 =o三) 2
,x
E
C — 1,1).
故应填 Cl+x)
2
·
03) 2
解 (Aa 1 ,Aa 2 ,Aa 3 ) = ACa 1 ,a z ,a 3 ),因为a 1 ,a z ,a 3 线性无关,故矩阵(a 1 心心)可逆, 所以,r(Aa 1 ,Aa 2 ,Aa 3 ) = r(A),易知,r(A) = 2. 故应填2. (14) 2

2017年考研数学一真题及答案解析

2017年考研数学一真题及答案解析

2017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。

(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追6上甲的时刻记为0t (单位:s ),则( )0000()10()1520()25()25A t B t C t D t =<<=>【答案】C【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=TE 。

2016-2017年考研数学一真题及答案

2016-2017年考研数学一真题及答案

2016考研数学一真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式100010014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______. 三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。

2017年全国研究生入学考试考研数学(一)真题及答案解析

2017年全国研究生入学考试考研数学(一)真题及答案解析

一点的密度为 9 x2 y2 z2 ,记圆锥面与柱面的交线为 C 。
(I)求 C 在 xOy 面上的投影曲线的方程;
3
(9)已知函数
f
(x)
1 1 x2
,则
f
(3) (0)
_______。
【答案】 0
【解析】
因为
f
(
x)
1
1 x2
1 x2
x4
x6
n
( x2 )
n0
n
(1) x2n
n0
n
f (x) (1) 2n(2n 1)(2n 2)x 2n3
n0
将 x 0 带入 f (0) 0
(10)微分方程 y 2 y 3y 0 的通解为 y _______。
程或演算步骤.
(15)(本题满分 10 分)设函数
f (u, v) 具有 2 阶连续偏导数,y
f (ex , cos x) ,求 dy dx
d2y
x0

dx2
x0 。
【解析】由复合函数求导法则,可得:
dy dx
f1ex
f2(sin x)
dy 故 dx
x0
f1(1,1)
进一步地:
5
d2y dx2
ex
[V2
(t
)
V1
(t
)]dt
,由定积分的几何意义可知,
25
0 [V2
(t)
V1 (t )]dt
20
10
10
,可知
t0
25
,故选(C)。
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则
(A) E T 不可逆
(B) E T 不可逆

考研数学一二维随机变量及其分布历年真题试卷汇编2_真题(含答案与解析)-交互

考研数学一二维随机变量及其分布历年真题试卷汇编2_真题(含答案与解析)-交互

考研数学一(二维随机变量及其分布)历年真题试卷汇编2(总分150, 做题时间180分钟)选择题1.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y(z)为随机变量Z=XY的分布函数,则函的概率分布P(Y=0)=P(Y=1)=1/2.记FZ数F(z)的间断点的个数为( ).ZSSS_SINGLE_SELAB1C2D3分值: 7.5答案:BF(z)=P(Z≤z)=P(XY≤z)=P(XY≤z|Y=0)P(Y=0)+P(XY≤z|Y=1)P(Y=1)Z=[P(XY≤z|Y=0)+P(XY≤z|Y=1)]/5.又X,Y相互独立,故 F(z)=[P(X·0≤z)+P(X≤z)]/2.Z(z)=[+ф(z)]/2=ф(z)/2.当z<0时, FZ(z)=[P(Ω)+P(X≤z)]/2=[1+ф(z)]/2.当z≥0时, FZ综上所述,得到因(z)只有一个间断点z=0.仅B入选.所以FZ2.[2012年] 设随机变量X与Y相互独立,且分别服从参数为1和参数为4的指数分布,则P(X<Y)=( ).SSS_SINGLE_SELA1/5B1/3C2/5D4/5分值: 7.5答案:A由题设有而X与Y相互独立,故f(x,y)=fX (x)fY(y)=则P(X<Y)= f(x,y)dxdy=∫0+∞∫x+∞4e-(x+4y)dxdy=一∫+∞e-x dx∫x+∞e-4y d(一4y)=∫0+∞e-x·e-4x dx=∫+∞e-5x dx=仅A入选.3.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则( ).SSS_SINGLE_SELAa=0.2,b=0.3Ba=0.4,b=0.1Ca=0.3,b=0.2Da=0.1,b=0.4分值: 7.5答案:B由=(a+0.4)+(b+0.1)=a+b+0.5=1(归一性)知,a+b=0.5.又由事件{X=0}与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故 a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4.从而b=0.5一a=0.1.填空题4.[2003年] 设二维随机变量(X,Y)的概率密度为则P(X+Y≤1)=______.SSS_FILL分值: 7.5答案:首先求出积分区域D ∩ G.D ∩ G实质上是G={(x,y)|0≤x≤y≤1}与D={(x,y)|x+y≤1}交集.可知,0≤x≤y≤1是在y=x上方的区域,而x+y≤1是直线x+y=1下方的区域.两者之交即为D ∩ G(见图),故5.[2015年] 设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY—Y<0}=_______.SSS_FILL分值: 7.5答案:因(X,Y)~N(1,1;0,1;0),ρ=0,故X,Y相互独立,则P{XY—y<0}=P{(X一1)Y<0}=P{X一1<0,Y>0}+P{X一1>0,Y<0}=P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1}=P{X>1}=.因Y~N(0,1),故P{Y>0}=P{Y<0}=.所以6.[2006年] 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P(max{X,Y}≤1)=______.SSS_FILL分值: 7.5答案:1/9P(max(X,Y)≤1)=P({X≤1}{Y≤1})=P(X≤1,Y≤1)=P(X≤1)P(Y≤1)=[(1一0)/(3—0)][(1一0)/(3一0)]=(1/3)×(1/3)=1/9.解答题[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=一1,0,1),Y的概率密度为记Z=X+Y.SSS_TEXT_QUSTI7.求P(Z≤1/2|X=0);分值: 7.5答案:由于X,Y相互独立,有P(Z≤1/2 |X=0)=P(X+Y≤1/2|X=0)=P(y≤1/2|X=0)SSS_TEXT_QUSTI8.求Z的概率密度fZ(z).分值: 7.5答案:因X的可能取值为一1,0,1,而fY(y)取非零值的自变量的变化范围为0≤y≤1,一1≤z=x+y≤2.(1)当z≥2时,X,Y的所有取值均满足上式,故F(z)=P(Z≤z)=P(X+Y≤z)=1.(2)当z=x+y<一1时,X,Y的取值为空值,则P(X+Y≤z)==0.(3)当一1≤z<2时,下面用全概率公式求出FZ(z)的表示式:FZ(z)=P(Z≤z)=P(X+Y≤z)=P(X+Y≤z|X=一1)P(X=一1)+P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=1)P(X=1)(Fy(z)为y的分布函数),则fZ (z)=F'Z(z)=[FY(z+1)+fY(z)+fY(z—1)].当0<z+1<1或0<z<1或0<z—1<1,即一1<z<2时,FZ(z)=;其他情况下,fZ(z)=0.[2017年] 设随机变量X,Y相互独立,,Y的概率密度为fY(y)=SSS_TEXT_QUSTI9.求P{Y≤E(Y)};分值: 7.5答案:因E(Y)=∫-∞+∞yfY(y)dy=∫1y·2ydy=,故SSS_TEXT_QUSTI10.求Z=X+Y的概率密度.分值: 7.5答案:Z的分布函数FZ(Z)=P{X+Y≤z,X=0}+P{X+Y≤z,X=2} =P{X=0,Y≤z}+P{X=2,Y+2≤z}=,故Z的概率密度函数为[2014年] 设随机变量X的概率分布为P(X=1)=P(X=2)=,在给定X=i的条件下,随机变量y服从均匀分布U(0,i)(i=1,2).SSS_TEXT_QUSTI11.求Y的分布函数F(y);Y分值: 7.5答案:记U(0,i)的分布函数为F(x)(i=1,2),则i(y)=p(Y≤Y)=P(x=1)P(Y≤y|X=1)+P(X=2)P(Y≤y|X=2)于是FY因在X=i的条件下,Y服从均匀分布U(0,i)(i=1,2),故当y≤0时,(y)=0.Fi当0<y≤1时,当1<y<2时,当y≥2时,所以SSS_TEXT_QUSTI12.求期望E(Y).分值: 7.5答案:(y)可得概率密度函数为由Y的分布函数FY+∞yfy(y)dy=故E(Y)=∫-∞[2013年] 设随机变量X的概率密度为令随机变量,SSS_TEXT_QUSTI13.求y的分布函数;分值: 7.5答案:+∞f(x)dx=,得到a=9.此时,X的利用概率密度函数的归一性,由1=∫-∞概率密度为(y).由题设知,Y的取值范围为1≤Y≤2,故设Y的分布函数为FY(y)=P{Y≤y}=0;P(1≤Y≤2)=1.因而当y<1时,FY当1≤Y<2时,F(y)=P{Y≤y}=P{Y<1}+P{Y=1}+P{1<Y≤y}Y=0+P{X≥2}+P{1<X≤Y}=(y)=P{Y≤y}=P{Y≤2}=1.当Y≥2时,FY综上得到y的分布函数为SSS_TEXT_QUSTI14.求概率P{X≤Y}.分值: 7.5答案:由随机变量y的分段表示式易看出,满足x≤y的x的取值范围为x<2.因而所求概率为P{X≤Y}=P{X<2}=[2016年]设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<y<)上服从均匀分布.令SSS_TEXT_QUSTI15.写出(X,Y)的概率密度;分值: 7.5答案:易求得区域D的面积,故(X,Y)的概率密度SSS_TEXT_QUSTI16.问U与X是否相互独立?并说明理由;分值: 7.5答案:考查事件{U=0}与乘积的概率是否与事件{U=0}的概率的乘积相等.事实上,它们不相等.易求得显然,故U与X不独立.SSS_TEXT_QUSTI17.求Z=U+X的分布函数FZ(z).分值: 7.5答案:下面用全集分解法求f(u,v)的分布函数FZ(z)=P(Z≤z)=P(U+X≤z).FZ(z)=P(U+X≤z)=P(U=0,U+X≤z)+P(U=1,U+X≤z)=P(U=0,X≤z)+P(U=1,U≤z—1)=P(X>y,X≤z)+P(X≤Y,X≤z一1)注意到x取值的边界点为0,1,而U取值边界点也为0,1,因而z的取值的分段点为0,1,2.于是应分下述四种情况分别求出FZ(z)的表示式.①z<0时,则P(X≤z)==0,P(X≤z—1)==0,故FZ(z)=0.②0≤z<1时,③1≤z<2时,④z≥2时,FZ(z)=P(X>Y)+P(X≤y)=P(U=0)+P(U=1)=1.综上所述,Z的分布函数为[2009年] 袋中有一个红球、两个黑球、三个白球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球个数.SSS_TEXT_QUSTI18.求P(X=1|Z=0);分值: 7.5答案:(I)用缩减样本空间的方法求之.求时应注意两次取球取到的是不同类的球,要讲次序.因而两次都没取到白球(Z=0)的条件下,只能取红、黑两种球,且每次都要取到一个红球,其可能性为C11×C21+C21×C11=4,总的可能性为C 31×C31=3×3=9,故SSS_TEXT_QUSTI19.求二维随机变量(X,Y)的概率分布.分值: 7.5答案:由题设知X与Y的所有可能取值均为0,1,2,而取值的概率可由古典概率的计算公式得到.计算时要注意两次取球取到的是不同类的球要讲次序,取到的是同类的球不讲次序.故(X,Y)的概率分布为20.设随机变量X的概率密度为f(x)=e-|x|/2,一∞<x<+∞,问随机变量X 与|X|是否相互独立?为什么?SSS_TEXT_QUSTI分值: 7.5答案:因X和|X|为两个随机变量,下面证明对于给定的a(0<a<+∞),式P(X<x,Y<y)=P(X<x)P(Y<y)不成立,从而X与|X|不相互独立.事实上,因事件{|X|<a}包含在事件{X<a}之中,即{X<a} {|X|<a},故P(X<a,|X|<a)=P({X<a}∩{|X|<a})=P(|X|<a).又P(X<a)<1,P(|X|<a)>0,因而P(X<a)P(|X|<a)<P(|X|<a).于是P(X<a,|X|<a)=P(|X|<a)>P(X>a)P(|X|<a),故P(X>a,|X|<a)≠P(X<a)P(|X|<a) (0<a<+∞).可知,X与|X|不相互独立.1。

完整版2017考研管理类联考综合能力真题及答案解析

完整版2017考研管理类联考综合能力真题及答案解析

(A) 12(B) 15 (C) 30(D ) 45(E) 902017考研管理类联考综合能力真题及答案解析一、问题求解(本大题共5小题,每小题3分,共45分)下列每题给出5个选项中,只有 一个是符合要求的,请在答题卡上将所选择的字母涂黑。

【答案】 【解析】穷举法:满足 a b 的有(2,1) (3, 1) (3,2);满足 a共六组,因此概率为J 6°2、已知ABC 和满足ABC 和A1C 的而积比为(AB : A' B' AC : AC' ' 2 : 3,【答案】E 【解析】特值法:假设 AB AC 2, A' B ' A'C ' 3, AA' 2,则 S : S'八2 2 2「2 33 4:9【答案】B1、甲从 记为b,1、2、3中抽取一个数,规定当a b 或者a 记为且;乙从1、2、3、4中抽取一个数,b 时甲 获胜,则甲取胜的概率为()(B)(C)(D)兰12(A) 罷 (BWS 拆(02:3 (D)(日b 的有(1,3) (1,4)(2,4);3、将6人分成3组,每组2人,则不同的分组方式共有((A) 3 (B) 6 3(C) 24 (D) 96(E ) 648.则能切割成相同正方体的最少个数为(214因此,宽、高分别为12、9、6的长方体切割成正方体,且切割后无剩余,【解析】分组分配:均匀分组,注意消序C 126 •! 2-A 3----------- 15 4、甲、乙、丙三人每轮各投篮10次,投了三轮,投中数如下表:第一轮第二轮 第三轮甲2 5 8 乙 5 2 5 丙849记1, 2, 3分别为甲、乙、丙投中数的方差,贝1;()(A)(B 1 3 2 (C 2 1 (E)3【答案】【解析】计算方差、比较大小(D)【答案】c【详解】正方体的棱长应是长方体棱长的公约数,想要正方体最少,则找最大(A) 10 一 .(B) 10(C) 20 一 . (D) 20(E) 10 ・99公约数即3,因此得到的正方体个数为些9 6 243 3 36某品牌电冰箱连续两次降价10%后的售价是降价前的(【答案】B【答案】【解析】设甲乙丙分别载重量为a, b, c,由题得2b 2且95 3a 3c b 7b 245 b 35 ,因此所求 b c 3b 1058、 张老师到一所中学进行招生咨询,上午接到了 45名同学的咨询,其中的9位同学下午又咨询了张老师,占张老师下午咨询学生的老师咨询的10%,—天中向张学 生人数为() (A) 81.(B) 90. (C 115. (D) 126. (E) 135.【答案】D【解析】上午咨询的老师为45名,下午咨询的老师共90生上午和 名,其中9名学 下午都咨询了,因此学生总数为45+90-9二1269、 某种机器人可搜索到的区域是半径为101米的圆,若该机器人沿直线行走 平米,则其搜索出的区域的面积(单位:方米)为()(A) 80%(B) 81% (C) 82% (D) 83% (E) 85%【详解】假设降价前是1,则降价后为110% 1 10% 81%7、甲、乙、丙三种货车载重量成等差数列, 量为95吨,1辆甲种车和3辆丙种车载重量为150吨,各一辆车一 次最多运送货物为()2辆甲种车和 1辆乙种车的载重则甲、乙、丙分别(A) 125.( B) 120. (C) 115.(D 110.(E) 105.【答案】D【解析】如图,机器人走过的区域为:因此面积是长方形加一个圆:2 10 I2 20 10、不等式x 1 x 2的解集为(11、在1(A)27【答案】至U 100之间,能被9整除的整数的平均值是(D(B)36(C)45(D) 54 (E) 63【详解】考查整除, 19k100 1 k11,9的倍数有9, 1& 27,…,99,这些数值的3平均数为99911542 1112、某试卷由15道选择题组成,每道题有4个选项,其中只有一项是符合试题要求的,甲有6道题是能确定正确选项,有5道能排除2个错误选项,有4道能排除1个错误选项,若从每题排除后剩余的选项中选一个作为答案,则甲得满分的概率为()1 1 1 1 1 1 1 3 ° 1 :(A)——(B)——(0 一一(D) —4 _(E) - _9 29 29 ?9 49 4【答案】B【详解】5道题可排除个错误选项,因此答对每题的概率为\ , 5道题目全部做对的概1道题目可排除1个错误选项,因此答对每题的概率为3,4道题目全部做对的概率为丄因止匕概率为」313•某公司用1万元购买了价格分别为购1750禾口950的甲、乙两种办公设备,则买的甲、乙办公设备的件数分别为(、5, 3 (C) 4,4( D) 2,6 (巳6,2【答案】A【详解】系数中有5直接看个位,35X的个位必为0或者5,由于19y的个位不为0,因此19y的个位为5,那么35X的个位必为5,因此y二5, x=314.如图,积为(在扇形A0B中,AOB -,0A 1 , AC垂直于0B,则阴影部分的面4(A)-811 (0-O(E)4(A) 3, 5(B)考查不定方程, 设甲种办公设备为X,乙种办公设备为y,列方程为1750X 950y 10000 35X 19 y 200 ,4 4【答案】A 【详解】1S 阴影 S 扇形 S OCA"8 —仔 l2 1 ^2 = 81415•老师问班上50名同学周末复习情况,结果有20人复习过数 学,30人复习过语文,6人复习过英语,且同时复习过数学和语文 的有 过语文和英语的有2人,同时复习过英语和数学的有3门课 的人为0,则没有复习过这三门课程的学生人数为(【答案】C•条件充分性判断:第16-25小题,每小题3分,共30分。

考研数学一(一元函数积分学)历年真题试卷汇编5(题后含答案及解析)

考研数学一(一元函数积分学)历年真题试卷汇编5(题后含答案及解析)

考研数学一(一元函数积分学)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2010年]设m,n均是正整数,则反常积分的收敛性( ).A.仅与m的取值有关B.仅与n的取值有关C.与m,n的取值都有关D.与m,n的取值都无关正确答案:D解析:易看出所给的反常积分有两个瑕点x=0与x=1,因而先将该反常积分分解为两个单一型的反常积分之和,即记.下面讨论I1的敛散性.(1)设n>1,取,因知,I1收敛;(2)设n=1,m=1,2,则,此时I1已不是反常积分,当然收敛;(3)设n=1,m>2,取P=1—2/m,则0<p<1,且有可知I1也收敛.综上所述,无论m,n取何正整数,I1均收敛.下面讨论I2的敛散性.对任意0<p <1,知,对任意正整数n,m,有可得I2=∫1/21f(x)dx收敛.因此对任意正整数m,n,所给反常积分都收敛.仅D入选.知识模块:一元函数积分学2.[2016年]若反常积分收敛,则( ).A.a<1且b>1B.a>1且b>1C.a<1且a+b>1D.a>1且a+b>1正确答案:C解析:因收敛,故上述等式右端的两个反常积分收敛,当a<1时,收敛.当a+b>1时,收敛,因而仅C入选.知识模块:一元函数积分学3.[2017年] 甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,下图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0时刻,甲、乙的位移分别为∫0t0v1(t)dt与∫0t2v2(t)dt,要使乙追上甲,则有[v2(t)-v1(t)]dt=10,由定积分的几何意义可知,∫025[v2(t)-v1(t)]dt=20—10=10 ,可知t0=25.仅C入选.知识模块:一元函数积分学填空题4.[2002年] =______.正确答案:1解析:故知识模块:一元函数积分学5.[2013年]=______.正确答案:ln2解析:知识模块:一元函数积分学6.[2011年] 曲线y=∫0xtantdt 的弧长s=______.正确答案:解析:因y’(x)=tanx,故知识模块:一元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。

考研数学一(大数定律和中心极限定理、数理统计的基本概念)历年

考研数学一(大数定律和中心极限定理、数理统计的基本概念)历年

考研数学一(大数定律和中心极限定理、数理统计的基本概念)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn( ).A.有相同的数学期望B.有相同的方差C.服从同一指数分布D.服从同一离散型分布正确答案:C解析:列维一林德伯格中心极限定理成立的条件之一是X1,X2, (X)具有相同的、有限的数学期望和非零方差,而选项A、B不能保证同分布.可排除.而选项D虽然服从同一离散型分布,但不能保证E(Xi)与D(Xi)均存在,也应排除.仅C入选.知识模块:大数定律和中心极限定理2.[2005年] 设X1,X2,…,Xn是独立同分布的随机变量序列,且均服从参数为λ(λ>1)的指数分布.记ф(x)为标准正态分布函数,则( ).A.B.C.D.正确答案:C解析:由于随机变量序列X1,X2,…,Xn独立同服从参数为λ的指数分布,有E(Xi)=1/λ,D(Xi)=1/λ2(i=1,2,…,n),由列维一林德伯格中心极限定理知,当n→∞时,随机变量的极限分布为标准正态分布,即=P(Un≤x)=ф(x).仅C入选.知识模块:大数定律和中心极限定理3.设随机变量X和Y都服从标准正态分布,则( ).A.X+Y服从正态分布B.X2+Y2服从χ2分布C.X2和Y2都服从χ2分布D.X2/Y2服从F分布正确答案:C解析:因X~N(0,1),Y~N(0,1),故X2~χ2(1),Y2~χ2(1).仅C入选.知识模块:数理统计的基本概念4.[2017年] 设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记,则下列结论不正确的是( ).A.(Xi一μ)2服从χ2分布B.2(Xn一X1)2服从χ2分布C.服从χ2分布D.n(—μ)2服从χ2分布正确答案:B解析:若总体X~N(μ,σ2),则因为总体X~N(μ,1),所以再由得,从而综上所述,不正确的是B.仅B入选.知识模块:数理统计的基本概念5.[2003年] 设随机变量X~t(n)(n>1),Y=1/X2,则( ).A.Y~χ2(n)B.Y~χ2(n一1)C.Y~F(n,1)D.Y~F(1,n)正确答案:C解析:因X~t(n)(n>1),故存在随机变量U~N(0,1),V~χ2(n),且U与V独立,使即因V~χ2(n),U~N(0,1),因而U2~χ2(1),又V与U独立,得到.仅C入选.知识模块:数理统计的基本概念6.[2005年] 总体X~N(0,1),X1,X2,…,Xn为来自总体X的一个简单随机样本,,S2分别为样本均值和样本方差,则( ).A.B.C.D.正确答案:D解析:因X12~χ2(1),Xi2~χ2(n一1),且X12与相互独立,可知仅D 入选.知识模块:数理统计的基本概念7.[2013年] 设随机变量X~t(n),Y~F(1,n),给定α(0<α<0.5),常数c满足P(X>c)=α,则P(Y>c2)=( ).A.αB.1一αC.2αD.1—2α正确答案:C解析:因X~t(n),故X2~F(1,n),因而Y=X2.因t分布的概率密度函数为偶函数,所以给定α(0<α<0.5),存在c>0使P(X>c)=α时,必有P(X>c)=P(X<一c)=α,则P(Y>c2)=P(X2>c2)=P(X>c)+P(X<一c)=2P(X>c)=2α.仅C入选.知识模块:数理统计的基本概念填空题8.[2001年] 设随机变量X的方差为2,则根据切比雪夫不等式估计P(|X—E(X)|≥2)≤______.正确答案:解析:由切比雪夫不等式即得知识模块:大数定律和中心极限定理9.[2003年] 设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于______.正确答案:1/2解析:利用辛钦大数定律求之.由于X1,X2,…,Xn是来自总体X的简单随机变量样本,X1,X2,…,Xn相互独立,且都服从参数为2的指数分布.因而知X12,X22,…,Xn2也相互独立,且同分布.又X服从参数为2的指数分布,故E(Xi)=E(X)=1/2,D(Xi)=D(X)=(1/2)2=1/4 (i=1,2,…,n),则E(Xi2)=D(Xi)+[E(Xi)]2=1/4+(1/2)2=1/2 (i=1,2,…,n).根据辛钦大数定律知,一组相互独立、同分布且数学期望存在的随机变量X12,X22,…,Xn2,其算术平均值依概率收敛于数学期望:即表示依概率收敛于),亦即依概率收敛于1/2.知识模块:大数定律和中心极限定理10.设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1一2X2)2+6(3X3-4X4)2,则当a=______,b=______时,统计量X服从χ2分布,自由度为______.正确答案:a=1/20,b=1/100,χ2解析:因X1,X2,X3,X4为正态总体的简单随机样本,故X1,X2,X3,X4相互独立,且X1-2X2与3X3-4X4都服从正态分布:X1—2X2~N(0.5×22)=N(0,20),3X3—4X4~N(0,100),因独立,由题目知,即所以a=1/20,b=1/100,且X服从自由度为2的χ2分布.知识模块:数理统计的基本概念11.设随机变量X和Y相互独立且都服从正态分布N(0,32),而X1,X2,…,X9和Y1,Y2,…,Y9分别为来自总体X和Y的简单随机样本,则统计量服从______分布,参数为______.正确答案:t,9解析:将U的分子分母同除以9,则分子为=(X1+X2+…+X9)/9~N(0,9/9)=N(0,1).或由X1,X2,…,X9相互独立且Xi~N(0,32)知,X1+X2+…+X9~N(0,9×32)=N(0,92),故(X1+X2+…+X9)/9~N(0,1).而分母为又(Y1/3)2+(Y2/3)2+…+(Y9/3)2~χ2(9).这是因为Yi/3~N(0,1),且Y1,Y2,…,Y9相互独立;又由X,Y相互独立知,(X1+X2+…+X9)/9与(Y1/3)2+(Y2/3)2+…+(Y9/3)2相互独立.于是由t分布的典型模式知,即U服从t分布,参数为9.知识模块:数理统计的基本概念解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设函数
f
(u, v) 具有 2 阶连续偏导数,
y
f (ex , cos x) ,求 dy dx
d2y x0 , dx2
x0
【答案】 dy dx
x0
f1'
(1,1),
d 2y dx 2
x0
f ''
11
(1,1),
【解析】
x0
y f (ex , cos x) y(0) f (1,1)
dy dx x0
() 方程 f (x) 0 在区间 (0,1) 内至少存在一个实根;
() 方程 f (x) f '(x) ( f '(x))2 0 在区间 (0,1) 内至少存在两个不同实根。
【答案】 【解析】
(I) f (x) 二阶导数, f (1) 0, lim f (x) 0 x x0
解:1)由于 lim f (x) 0 ,根据极限的保号性得 x x0
【答案】C
【解析】
f
(x)
f
'(x)
0,
f f
(x) 0 (1)
'(x) 0

f f
(x) 0 '(x) 0
(2)
,只有
C
选项满足
(1)
且满足
(2)
,所以选
C。
(3)函数 f (x, y, z) x2 y z2 在点 (1, 2, 0) 处沿向量 u 1, 2, 2 的方向导数为( )
(A)12 (B)6 (C)4 (D)2
【答案】D
【解析】 gradf {2xy, x 2, 2z}, gradf
(1,2,0)
{4,1, 0}
f u
gradf
u {4,1, 0}{ 1,
|u|
3
2, 3
2} 2. 3
选 D.
(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m)处,图中实线表示甲的速度曲线 v v1(t)(单 位:m / s ),虚线表示乙的速度曲线 v v2 (t) ,三块阴影部分面积的数值依次为 10,20,3,计时开始后乙追
(C) ( X i X )2 服从 2分布 i 1
B 2( X n X 1)2 服从 2 分布 D n( X )2 服从 2 分布
【答案】B 【解析】
X N (,1), X i N (0,1)
n
( Xi )2 2(n), A正确 i 1 n
(n 1)S 2 ( X i X )2 2(n 1),C 正确, i 1
(10) 微分方程 y'' 2 y' 3y 0 的通解为 y _________
【答案】 y ex (c1 cos 2x c2 sin 2x) ,( c1, c2 为任意常数)
【解析】齐次特征方程为 2 2 3 0 1,2 1 2i
故通解为 ex (c1 cos 2x c2 sin 2x)
不可逆。选项 B,由 r( T ) 1 得 T 的特征值为 n-1 个 0,1.故 E T 的特征值为 n-1 个 1,2.故可逆。
其它选项类似理解。
2 0 0 2 1 0 1 0 0 (6)设矩阵 A 0 2 1 , B 0 2 0 ,C 0 2 0 ,则( )
0 0 1 0 0 1 0 0 2
(C)ab 0
B ab 1
2
D ab 2
【答案】A
【解析】 lim 1 cos
x0
ax
x
lim
1x 2
1
, f ( x) 在 x 0 处连续
1
b ab 1 . 选 A.
x0 ax 2a
2a
2
(2)设函数 f (x) 可导,且 f (x) f '(x) 0 ,则( )
( A) f (1) f (1) B f (1) f (1) (C) f (1) f (1) D f (1) f (1)
22
2
2
x(x)dx EX 0 。令 x 4 t ,则 x( x 4)dx = 2 4 2t (t)dt 8 1 4 t(t)dt 8
2
2
因此 E( X ) 2 .
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或 演算步骤. (15)(本题满分 10 分)
(9)
已知函数
f (x)
1 1 x2
,则
f
(3) (0) =__________
【答案】 f (0) 6
【解析】
f
(x)
1 1 x2
1 1 (x2)
(x 2) n
n0
(1) nx 2n
n0
f ''' (x) (1)n 2n(2n 1)(2n 2)x2n 3 f ''' (0) 0
n2
3x2 3y2 y ' 3 3y ' 0
(1)
令 y ' 0 得 x 1
对(1)式两边关于 x 求导得 6x 6 y y '2 3y 2y '' 3y '' 0
(2)

x
1
代入原题给的等式中,得
x
y
11or
x
y
1

0
将 x 1, y 1 代入(2)得 y ''(1) 1 0
2017 年考研数学一真题及答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求
的,请将所选项前的字母填在答.题.纸.指定位置上.
(1)若函数
f
(x)
1 cos ax
x , x 0 在 x 0 处连续,则(

b, x 0
( A)ab 1 2
X ~N (, 1), n (X ) N (0,1), n(X ) 2 ~ 2(1), D 正确, n
~ N (0, 2), ( X n X1)2 ~ 2(1), 故B 错误. 2
由于找不正确的结论,故 B 符合题意。
二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
10
,当 t0
25 时满足,故选
C.
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则( )
( A)E T不可逆 BE T不可逆 (C)E 2 T不可逆 D E 2 T不可逆
【答案】A
【解析】选项 A,由 (E T ) 0 得 (E T )x 0 有非零解,故 E T 0 。即 E T
s
s
D:x2 y2 2 x
18
2
d
2cos r 2dr 64
f1'ex
f
' 2
sin
x
x0
f1' (1,1) 1 f2' (1,1) 0
f1' (1,1)
d2y dx2
f1'1' e2 x
f1'2' ex ( sin x)
f
e''
21
x
(
sin
x
)
f '' 22
sin2
x
f1'ex
f
' 2
cos
x
d2y dx2
x0
f ''
11
(1,1)
f1' (1,1)
将 x 1, y 0 代入(2)得 y ''(1) 2 0
故 x 1 为极大值点, y(1) 1 ; x 1 为极小值点, y(1) 0
(18)(本题满分 10 分)
设函数 f (x) 在区间[0,1] 上具有 2 阶导数,且 f (1) 0, lim f (x) 0 ,证明: x x0
(11) 若曲线积分
L
xdx aydy x2 y2 1
在区域
D
(x, y) | x2 y 2 1
内与路径无关,则
a __________
【答案】 a 1
【解析】
P y
(x2
2xy y2 1)2
,
Q x
(x2
2axy y2 1)2
,
由积分与路径无关知
P y
Q x
a
1
(12) 幂级数 (1)n1nxn1 在区间 (1,1) 内的和函数 S (x) ________ n1
f
' 2
(1,1)
结论:
dy dx
x0
f1' (1,1)
d2y dx2
x0
f ''
11
(1,1)
f1' (1,1)
f
' 2
(1,1)
(16)(本题满分
10
分)求
lim
n
n k 1
k n2
ln
1
k n
1
【答案】
4
【解析】
lim
n
n k 1
k n2
ln(1
k) n
1 x ln(1 x)dx 1
(B)P(B A) P(B A) (D)P(B A) P(B A)
【答案】A 【解析】按照条件概率定义展开,则A选项符合题意。
(8)设
X1, X2
X n (n 2) 为来自总体 N (,1) 的简单随机样本,记
X
1 n
n i 1
Xi
,则下列结论中不正确
的是( )
n
( A) ( X i )2 服从 2分布 i 1 n
相关文档
最新文档