高中全国卷一北师大版高中数学必修一专题复习.docx

合集下载

高中数学必修一(全部)测试题(北师大版)教学资料

高中数学必修一(全部)测试题(北师大版)教学资料
1 (x
50
x 3000
50 (100
)
50
2
4050) 37050
150
………………… 8 分
当 x 4050 时 , y max 30705
……………………………………… 11 分
y
ax 2
1
bx 的顶点横坐标的取值范围是 ( ,0 ) …………………… 12 分
2
18.(本小题 12 分)每题 6 分
高一第一学期期中试题(数学)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分
. 共 120 分,考试时间 100 分钟 .
第Ⅰ卷(选择题,共 40 分)
一、选择题(本大题共 10 小题,每小题 5 分,共 50 分, 在每小题给出的四个选项中只有一个正确)
1.已知全集 U {1, 2 ,3, 4,5, 6.7}, A { 2,4 ,6}, B { 1,3,5 ,7 }. 则 A ( C U B )等于 (
x
不需证明)
x 为何值? (直接回答结果,
-3-
参考答案
一、选择题:每小题 4 分, 10 个小题共 40 分 .
1.A 2.C 3.B 4.A. 5.C 6.C 7.A 8.C 9.B 10.D
二、填空题:每小题 4 分,共 16 分.
11 . [ 4, 2) ( 2 , ) 12.2x- 1 或- 2x+1 13 .3 14 . 0, 1
4 函数 f ( x ) x ( x 0 ) 在区间( 0, 2)上递减;
x
4 函数 f ( x ) x ( x 0 ) 在区间
x
上递增 .
当x
时, y 最小
.
4 证明:函数 f ( x ) x ( x 0 ) 在区间( 0, 2)递减 .

北师大版高一数学必修1第一单元试题及答案(K12教育文档)

北师大版高一数学必修1第一单元试题及答案(K12教育文档)

北师大版高一数学必修1第一单元试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版高一数学必修1第一单元试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版高一数学必修1第一单元试题及答案(word版可编辑修改)的全部内容。

高一年级数学第一单元质量检测试题石油中学 李芳玲一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.方程组3212{=+-=-y x y x 的解构成的集合是( )A .)}1,1{( B. }1,1{ C .)1,1( D .}1{2.下面关于集合的表示正确的个数是( )①}9,5{}5,9{≠;②}623|{}623|),{(=+==+y x y y x y x③}1|{>x x =}1|{>y y ;④}1|{}1|{=+==+y x y y x x ;A .0B .1C .2D .33.设全集},|),{(R y x y x U ∈=,}134|),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么)(M C U ∩)(N C U = ( )A .∅B .)}4,3{( C. )4,3( D.}1|),{(+≠x y y x4.下列关系正确的是( )A .},|{32R x x y y ∈+=∈πB .)},{(y x =)},{(x yC .}1|),{(22=-y x y x }1)(|),{(222=-y x y xD .}12|{2=-∈x R x =∅5. 已知集合A 中有10个元素,B 中有6个元素,全集U 有18个元素,≠⋂B A ∅,设集合)(B A C U ⋃有x 个元素,则x 的取值范围是 ( )A .83≤≤x ,且N x ∈B .82≤≤x ,且N x ∈C 。

北师版高中数学(必修1)专题一

北师版高中数学(必修1)专题一

高中数学北师大版(必修1)专题一集合的含义与基本关系一、重难点知识归纳1、集合与元素的含义集合:指定的某些对象的全体.元素:集合中的每个对象.属于:如果a是集合A的元素,就说a属于集合A,记作.不属于:如果a不是集合A中的元素,就说a不属于集合A,记作.2、集合元素的特性(1)确定性:设A是给定的一个集合,a是某一具体对象,则a或者是A的元素或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:对于给定的集合中任意两个元素都是不同的,即元素不能重复.(3)无序性:在给定的集合中元素之间无顺序关系,即集合中的两元素交换次序后所得的集合与原来的集合是同一个集合.3、列举法与描述法列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.描述法: 用集合所含元素的共同特征表示集合的方法称为描述法.在学习过程中,要学会如何选择表示法表示集合,列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.一般情况下,对有限集,在元素不太多的情况下,宜采用列举法,它具有直观明了的特点;对无限集,一般采用描述法表示.4、集合的分类按集合的元素个数的多少,可分为有限集、无限集.空集就是不含任何元素的集合,空集可用“”表示.5、子集、真子集子集:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,即若a∈A,则a∈B,就说集合A包含于集合B,或集合B包含集合A,记作(或).真子集:对于两个集合A与B,如果,并且A≠B,就说集合A是集合B的真子集,记作(或).Venn图:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.6、集合符号的区分(1)∈与的区别:前者表示元素与集合之间的关系,如0∈N,而后者则表示集合与集合之间的关系,如.(2)a与{a}的区别:a表示一个元素,而{a}表示只有一个元素的集合.(3){0}与的区别:{0}是含有一个元素的集合,是不含任何元素的集合.7、子集的理解(1)空集是任何集合的子集.(2)空集是任何非空集合的真子集.(3)任何集合是它本身的子集.(4)子集、真子集都具有传递性.二、典型例题剖析例1、具有下列性质的对象能否构成集合,若能构成集合,用适当的方法表示出来.(1)10以内的质数;(2)x轴附近的点;(3)不等式3x+2<4x-1的解;(4)比3大于1的负数;(5)方程2x+y=8与方程x-y=1的公共解.例2、写出{a,b,c,d}的所有子集,并指出哪些是真子集.例3、用列举法表示下列集合:(1);(2).例4、以下各组是什么关系,用适当的符号表示出来.(1)0与{0};(2)0与;(3)与{0};(4){0,1}与{(0,1)};(5){( b,a)}与{(a,b)}.例5、若集合A={x|x2+x-6=0},B={x|mx+1=0},,求m的值.例6、设集合,且若a∈A,则8-a∈A,试问这样的A共有多少个?例1、分析:首先分析集合中元素的特征: 确定性,互异性,无序性. 则只有(2)不能构成集合,其次要了解列举法与描述法的区别,有限集用列举法,无限集用描述法.解:(1)能.用列举法表示为:{2,3,5,7}.(2)不能.无法确定哪些点是x轴附近的点.(3)能.用描述法表示为:{x|3x+2<4x-1}.(4)能.这个集合中没有元素,为空集,用φ表示.(5)能.可表示为:.例2、分析:本题着重考察了子集与真子集的区别,对于非空集合而言,子集比真子集要多一个,而那一个恰好就是集合本身.解:子集为:、{a}、{b}、{c}、{d}、{a,b}、{a,c}、{a,d}、{b,c}、{b,d}、{c,d}、{a,b,c}、{a,b,d}、{a,c,d}、{b,c,d}、{a,b,c,d},共16个,其中前15个是{a,b,c,d}的真子集.点拨:一般的集合{a1,a2,a3,…,a n}共有2n个子集,有2n-1个真子集.例3、分析:集合P、Q中元素的形式不一致,要正确认识.解:(1)∵x∈N,且,∴1+x=1,2,3,6,∴x=0,1,2,5.∴P={0,1,2,5}.(2)结合(1)知,,∴Q={6,3,2,1}.点拨:要注意P与Q的区别,集合P中的元素是自然数x,满足条件的是整数;集合Q中的元素是整数,满足条件的x是自然数.例4、解析:首先要分清是“元素与集合”的关系,还是“集合与集合”的关系.如果是“集合与集合”间的关系时,还要分清是子集,还是真子集.故有:(1)0∈{0};(2);(3);(4){0,1}≠{(0,1)};(5)当a=b时,{(a,b)}={(b,a)};当a≠b时,{(a,b)}≠{(b,a)}.例5、分析:要解答本题,首先要搞清楚集合A的元素是什么,然后根据,求m 的值.解:A={x|x2+x-6=0}={-3,2},∵,∴mx+1=0的解为-3或2或无解.当mx+1=0的解为-3时,由m·(-3)+1=0,得;当mx+1=0的解为2时,由m·2+1=0,得;当mx+1=0无解时,m=0.综上所述,或或m=0.点拨:在这里易出现未考虑“,即方程mx+1=0无解”这一情形的错误.例6、解析:由“若a∈A,则8-a∈A”可知,1与7、2与6、3与5成对地出现在A 中,各取一个数作“代表”,于是问题转化为求集合{1,2,3,4}的子集的个数.故这样的集合A共有24=16个.集合的含义与基本关系检测一、选择题1、方程组的解集为()A.(1,2)B.C.D.2、集合是()A.第二象限内的点集B.第四象限内的点集C.第二、四象限内的点集D.非第一、三象限内的点集3、集合P={x|x=(2n+1)π,n∈Z},Q={x|x=(4m±1)π,m∈Z},则P与Q之间的关系是()A.P Q B.Q P C.P=Q D.P≠Q4、已知方程组的解集是{(a,b)},若{a+b}是方程x2+(a+b)x+c=0的解集的一个真子集,则这一方程的解集的又一个真子集是()A.{3}B.{6} C.{-6}D.{0}5、在以下六个写法中:①{0}∈{0,1};②{0};③{0,-1,1}{-1,0,1};④0∈;⑤Z={全体整数};⑥{(0,0)}={0}.其中错误写法的个数是()A.3个B.4个C.5个D.6个6、已知集合M={a,b,c}中的三个元素是一个三角形的三边长,那么此三角形一定不是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形7、满足条件{1,2}{1,2,3,4,5}的集合M的个数是()A.3个B.6个C.7个D.8个8、已知a,b,c为非零实数,代数式的值所组成的集合为M,则下列判断中正确的是()A.0M B.-4M C.2∈M D.4∈M9、下列四个命题,其中正确命题的个数为()①与1非常接近的全体实数能构成集合②{-1,(-1)2}表示一个集合③空集是任何一个集合的真子集④任何两个非空集合必有两个以上的子集A.0B.1 C.2D.310、设集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M,y0∈N,则x0y0与集合M、N的关系是()A.x0y0∈M B.x0y0M C.x0y0∈N D.x0y0N二、填空题11、设集合,若,则实数m的取值范围是_________.12、集合的元素个数是_________.三、解答题13、设可表示为两整数的平方差的整数的集合为M.(1)证明所有奇数都属于M.(2)为使偶数2t∈M,t应满足什么条件?(3)证明属于M的两个整数之积属于M.14、已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},且B A,求实数a的值.15、已知三元素集合A={x,xy,x-y},B={0,|x|,y},且A=B,求x与y的值.16、已知数集A满足条件a≠1,若a∈A ,则.(1)已知2∈A,求证:在A中必定还有两个元素;(2)请你自己设计一个数属于A,再求出A中其他的所有元素;(3)从上面两小题的解答过程中,你能否悟出什么“道理”?并证明你发现的这个“道理”.答案及分析:1-10 BDCBB DCDCC1、解方程组可得x=1,y=2,所以解集为{(1,2)}.2、注意x和y可以等于0,即坐标轴上点也满足题意.3、当n为偶数时,可设n=2k,k∈Z,则x=(2·2k+1)π=(4k+1)π,当n为奇数时,可设n=2k-1,k∈Z,则x=[2(2k-1)+1]π=(4k-1)π.所以P={x|x=(4k±1)π,k∈Z },∴P=Q.4、由题知a=-3,b=0,故-3是方程x2-3x+c=0的一个根,由-3+x2=3,得x2=6.故方程的解集的另一真子集为{6}.5、仅②③正确.6、由集合中元素的互异性可知.7、M包含元素1,2,所以求{3,4,5}的非空子集的个数.8、分a,b,c同正、同负、二正一负、一正二负4种情况讨论.9、命题②④正确.10、由(3m+1)(3n+2)=9mn+6m+3n+2=3(3mn+2m+n)+2,∵m、n∈Z,∴3mn+2m+n∈Z,∴(3m+1)(3n+2)∈N.11、提示:注意A集合可以为空集.12、8 提示:由x∈Z,y∈Z知x可取-11,-7,-5,-4,-2,-1,1,5,y可取-1,-2,-4,-8,8,4,2,1,∴M={-1,-2,-4,-8,8,4,2,1}.13、(1)证明:设n∈Z,∵2n-1=,∴2n-1∈M.(2)解:若2t∈M,即设2t=,∵x+y与x-y的奇偶相同,即同是奇数或同是偶数,而2t是偶数,∴x+y与x-y都是偶数,则(x+y)(x-y)=4k(k∈Z),∴t应是偶数.(3)证明:设p∈M,q∈M,即p=,q=(x,y,u,v是适当的整数),则p·q=()()==∈M.14、解:化简集合A={0,-4},由B A,得B=,或B={0},或B={-4},或B={0,-4}.当B=时,△=[2(a+1)]2-4(a2-1)=8(a+1)<0,∴a<-1.同理:B={0}时,a=-1.B={-4}时,无解,即此种情况不可能.B={0,-4} a=1.综上所述:当a≤-1或a=1时,B A.15、解:∵0∈B,A=B,∴0∈A.∵集合A为三元素集,∴x≠xy,∴x≠0,y≠1.又∵0∈B,y∈B,∴y≠0.从而,x-y=0,x=y.这时,A={x,x2,0},B={0,|x|,x}.∴x2=|x|,x=0(舍去)或x=1(舍去),或x=-1.经验证x=-1,y=-1是本题的解.16、解:(1),而,故若2∈A,A中必定还有且仅有另外两个元素-1和.(2)不妨设3∈A,则,而,故若3∈A,则A中同样还有且仅有两个元素.(3)由(1)(2)可猜想A中只有3个元素,即.下面证明这三个数存在且不相等:先证存在性:∵a≠1,∴存在且不为0,必有意义.再证互不相等:若,∴a2-a+1=0,∴△<0,故不可能.,同理可证成立.。

(完整版),高中数学北师大版必修1全册知识点总结,推荐文档

(完整版),高中数学北师大版必修1全册知识点总结,推荐文档

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合.(2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数N N *N +Z Q 集,表示实数集.R (3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.a M a M ∈a M ∉(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.x x x ④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().∅【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B (1)A A⊆(2)A ∅⊆(3)若且,则B A ⊆B C ⊆A C ⊆(4)若且,则B A ⊆B A ⊆A B=A(B)或B A真子集A B≠⊂(或B A )≠⊃,且B A ⊆B 中至少有一元素不属于A(1)(A 为非空子A ≠∅⊂集)(2)若且,则A B ≠⊂B C ≠⊂A C ≠⊂B A 集合相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A (1)A B ⊆(2)B A⊆A(B)(7)已知集合有个元素,则它有个子集,它有个真子集,它A (1)n n ≥2n 21n -有个非空子集,它有非空真子集.21n -22n -【1.1.3】集合的基本运算(8)交集、并集、补集3∁u (∁uA )=A,4∁u (A ∩B )=(∁uA )∪(∁uB ),5∁u(A ∪B)=(∁uA)∩(∁uB)⑼ 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:)()()();()()(C A B A C B A C A B A C B A ==0-1律:,,,A A A U A A U A UΦ=ΦΦ=== 等幂律:.,A A A A A A == 求补律:A∩ A∪=U ∁uA =∅CuA ∁uU =∅∁u∅=U反演律:(A∩B)=(A)∪(B) (A∪B)=(A)∩(B)∁u ∁u ∁u ∁u ∁u ∁u 第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A→B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。

高中数学北师大版必修1全册知识点总结(K12教育文档)

高中数学北师大版必修1全册知识点总结(K12教育文档)

高中数学北师大版必修1全册知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学北师大版必修1全册知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学北师大版必修1全册知识点总结(word版可编辑修改)的全部内容。

高中数学必修1知识点第一章集合与函数概念【1.1。

1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合。

(2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集。

(3)集合与元素间的关系对象a与集合M的关系是a M∉,两者必居其一。

∈,或者a M(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合。

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。

③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅)。

【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集{|,}x x U x A∈∉且⑴(⑵⑶⑷⑸⑼集合的运算律:交换律:.;ABBAABBA==结合律:)()();()(CBACBACBACBA==分配律:)()()();()()(CABACBACABACBA==0-1律:,,,A A A U A A U A UΦ=ΦΦ===等幂律:.,AAAAAA==求补律:A∩ A∪=U反演律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)第二章函数§1函数的概念及其表示一、映射1.映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的元素,在集合B中都有元素和它对应,这样的对应叫做到的映射,记作 .2.象与原象:如果f:A→B是一个A到B的映射,那么和A中的元素a对应的叫做象,叫做原象。

北师大高中数学必修1综合测试卷及答案1

北师大高中数学必修1综合测试卷及答案1

班级:____________________ 姓名:____________________ 学号:____________________◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇订◇◇◇◇◇◇线◇◇◇◇◇◇内◇◇◇◇◇◇请◇◇◇◇◇◇勿◇◇◇◇◇◇答◇◇◇◇◇◇题◇◇◇◇◇◇◇◇2012-2013学年度高一(上)必修一检测(1)已知集合{}34A x x =-≤<,{}25B x x =-≤≤,则A B =(A ){}35x x -≤≤(B ){}24x x -≤<(C ){}25x x -≤≤(D ){}34x x -≤<(2)设集合2{650}M x x x =-+=,2{50}N x x x =-=,则MN 等于 ( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}(3)已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg 32 (C )1lg32(D )1lg 25(4)已知函数()y f x =是R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()2f a f ≥-,则a 的取值范围是 (A )2a ≤ (B )2a ≥ (C )22a a ≤-≥或 (D )22a -≤≤(5)函数23y ax bx =++在(],1-∞-上是增函数,在[)1,-+∞上是减函数,则 (A )0b >且0a < (B )20b a =<(C )20b a =>(D )a ,b 的符号不确定(6)设x x e1e )x (g 1x 1x lg)x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 (7)使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) (8)函数362+-=x kx y 图像与x 轴有交点,则k 的取值范围是( )A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且 (9)若函数()()22log 43f x kx kx =++的定义域为R ,则k 的取值范围是 (A )()30,4 (B )[)30,4(C )[]30,4(D )(]()3,0,4-∞+∞ (10)若2()f x x =,则对任意实数x1,x2,下列不等式总成立的是 ( )(A )12()2x x f +≤12()()2f x f x + (B )12()2x x f +<12()()2f x f x + (C )12()2x x f +≥12()()2f x f x + (D )12()2x x f +>12()()2f x f x +二.填空题:本大题共5小题,每小题5分,共25分。

北师大版高中数学选择性必修一 精品单元测卷第一章 直线与圆

北师大版高中数学选择性必修一 精品单元测卷第一章 直线与圆

北师大版高中数学选择性必修一 精品单元测卷第一章 直线与圆学校:___________姓名:___________班级:___________考号:___________一、选择题1、已知点(2,3)P -,点Q 是直线l :3430x y ++=上的动点,则PQ 的最小值为( ) A.2B.95C.85D.752、两条平行直线3450x y +-=与6890x y +-=间的距离等于( ) A.110B.15C.45D.4103、经过点()1,4A -且在x 轴上的截距为3的直线方程是( ) A.3y x =--B.3y x =+C.3y x =-+D.5y x =-+4、已知点()2,3A -,()2,1B -,直线l 方程为20kx y k --+=,且直线l 与线段AB 相交,求直线l 的斜率k 的取值范围为( ) A.13k ≥或5k ≤-B.13k ≥或15k ≤-C.153k -≤≤D.3151k -≤≤5、设a ∈R ,直线1:22l x ay a +=+与直线2:1l ax y a +=+平行,则a 的值是( ) A.1±B.-1C.1D.06、圆心为()1,1C 且过点(4,3)A -的圆,该圆的标准方程是( ) A.()()22115x y -+-= B.()()22115x y +++= C.()()221125x y +++=D.()()221125x y -+-=7、圆221(1)(9:3)C x y -+-=和222(2)1:C x y +-=,,M N 分别是圆12,C C 上的点,P 是直线1y =-上的点,则PM PN +的最小值是( )A.4 1 C.6-8、过点()2,3P -的直线l 与圆222230x y x y ++--=相切,则直线l 的方程是( ) A.2x =-或280x y -+= B.280x y -+= C.2x =-或210x y ++=D.210x y ++=9、若直线10x y -+=与圆22()(1)2x a y -+-=没有公共点,则实数a 的取值范围是( )A.(,(2,)-∞+∞B.)+∞C.(,2)(2,)-∞-+∞D.(2,)+∞10、圆心在y 轴上,半径为2,且过点()2,4的圆的方程为( ) A.22(1)4x y +-= B. 22(2)4x y +-= C.22(3)4x y +-=D. 22(4)4x y +-=二、多项选择题11、下列说法错误的是( )A.圆()()22125x y -+-=的圆心为()1,2,半径为5B.圆()2222()0x y b b ++=≠的圆心为()2,0-,半径为bC.圆((222x y ++=的圆心为,D.圆()()22225x y +++=的圆心为()2,2,12、若直线l 经过点()1,2--,且原点到直线l 的距离为1,则直线l 的方程为( ) A.3450x y --= B.1x =-C.1y =-D.3450x y +-=三、填空题 13、若直线的截距式1x ya b+=化为斜截式为2y x b =-+,化为一般式为80bx ay +-=,且0a >,则a b +=_______________.14、若直线10ax y +-=与连接()()2,3,3,2A B -的线段总有公共点,则a 的取值范围是________. 15、已知圆221x y +=与圆22(2)()25x y a ++-=没有公共点,则实数a 的取值范围是_________________.16、已知两点(4,9)A ,(6,3)B ,则以AB 为直径的圆的方程为____________. 四、解答题17、已知圆22:4O x y +=上的一定点()2,0A ,点()1,1B 为圆内一点,,P Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若90PBQ ∠=︒,求线段PQ 中点的轨迹方程.18、已知线段BC 的中点为33,2D ⎛⎫⎪⎝⎭.若线段BC 所在直线在两坐标轴上的截距之和是9,求BC 所在直线的方程.参考答案1、答案:B解析:由题意得||PQ 的最小值为点P 到直线l的距离,min 9||5PQ ∴=. 2、答案:A解析:直线6890x y +-=方程可化为:93402x y +-=,由平行直线间距离公式可知所求距离110d ==. 3、答案:C解析:所求直线过点(1,4)A -,故可设为4(1)y k x -=+,0k ≠,令0y =,得134kx =--=,即1k =-,即所求直线的方程为3y x =-+,故选:C. 4、答案:A解析:直线l 方程为20kx y k --+=转化为(1)(2)0k x y ---=, 所以直线l 过定点(1,2)P ,且与线段AB 相交,如图所示, 则直线PA 的斜率是32521PA k --==--, 直线PB 的斜率是121213PB k -==--, 则直线l 与线段AB 相交时,它的斜率k 的取值范围是13k ≥或5k ≤-.故选:A.5、答案:C解析:当1a =-时直线1:0l x y -=,直线2:0l x y -+=,这两条直线重合不满足条件. 当0a =时直线1:2l x =直线2:1l y =,显然这两条直线的不平行故有1a ≠-,且0a ≠.再根据两条直线平行的条件可得11122a a a a +=≠+,解得1a =.所以C 选项是正确的. 6、答案:D解析:由题意可知,圆心为(1,1),且过点(4,3)A -,所以半径为5, 所以标准方程为22(1)(1)25x y -+-=. 7、答案:A解析:圆1C 关于1y =-的对称圆的圆心坐标()31,5C -,半径为3, 圆2C 的圆心坐标()0,2,半径为1,由图象可知当P ,2C ,3C 三点共线时,||||PM PN +取得最小值, ||||PM PN +的最小值为圆3C 与圆2C 的圆心距减去两个圆的半径和,即3231149452 4.C C --=+-=-. 故选A . 8、答案:B解析:把圆222230x y x y ++--=化为标准方程得:22(1)(1)5x y ++-=.因为(2,3)P -在圆上,所以过P 的切线有且只有一条.显然过点(2,3)P -且斜率不存在的直线2x =-与圆相交,所以过P 的切线的斜率为k ,因为切线与过切点的半径垂直,所以1311(2)k -⋅=----,解得:12k =,所以切线方程为:13(2)2y x --+,即280x y -+=.故选:B.9、答案:C解析:解:由题得圆心坐标为(,1)a>,||2a ∴>,2a ∴>或2a <-.所以实数a 的取值范围是(,2)(2,)-∞-+∞.10、答案:D解析:根据题意设圆心的坐标为(0,)b ,则有22(02)(4)4b -+-=,解可得4b =,则圆的方程为22(4)4x y +-=;所以D 选项是正确的. 11、答案:ABD解析:圆22(1)(2)5x y -+-=的圆心为()1,2,,A 错误;圆222(2)(0)x y b b ++=≠的圆心为(2,0)-,半径为b ,B 错误,C 正确;圆22(2)(2)5x y +++=的圆心为(2,2)--,,D 错误,故选ABD. 12、答案:AB解析:当直线l 斜率不存在时,方程为1x =-,满足题意;当直线l 斜率存在时,设直线l 的方程为()21y k x +=+,即20,kx y k -+-=∴原点到直线l 的距离为1d =,解得34k =,∴直线l 为35044x y --=,即3450x y --=.综上所述,直线l 的方程为1x =-或3450x y --=.故选AB. 13、答案:6 解析:由1x y a b +=,得b y x b a =-+,一般式为0bx ay ab +-=,2,8bab a ∴-=--=-,即28b a ab =⎧⎨=⎩,解得24a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩.0,2,4,6a a b a b >∴==∴+=.14、答案:(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭解析:可得直线10ax y +-=的斜率为a -,且过定点()0,1P ,则由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤, 11,3PA PB k k ==-,∴1a -≥或13a -≤-,1a ∴≤-或13a ≥.15、答案:(,()-∞-⋃-⋃+∞46>,解得a -<或a <-a >. 16、答案:22(5)(6)10x y -+-=解析:由题意,得圆心为AB 的中点(5,6),2221(46)(93)104r ⎡⎤=⨯-+-=⎣⎦,所以圆的方程为22(5)(6)10x y -+-=.17、答案:(1)设AP 的中点为(),,2M x y x ≠且0y ≠,则点P 的坐标为()22,2x y -. 因为点P 在圆224x y +=上, 所以()()222224x y -+=, 整理,得()2211x y -+=.故线段AP 中点的轨迹方程为()2211x y -+=,除去点()2,0.(2)设PQ 的中点为(),N x y . 在Rt PBQ 中,PN BN =. 连接ON ,则ON PQ ⊥,所以22222||||||||||OP ON PN ON BN =+=+,所以2222(1)(1)4x y x y ++-+-=,即2210x y x y +---=. 故线段PQ 中点的轨迹方程为2210x y x y +---=. 解析:18、答案:由已知得直线BC 的斜率存在且不为0.设直线BC 在x 轴上的截距为a ,在y 轴上的截距为b .故直线BC 的截距式方程为1x ya b+=. 由题意得9a b +=,① 又点33,2D ⎛⎫⎪⎝⎭在直线BC 上,331,6322b a ab a b∴+=∴+=,② 由①②联立得2221540a a -+=,即()()2960a a --=,解得92a =或6a =. 9,29,2a b ⎧=⎪⎪∴⎨⎪=⎪⎩或6,3.a b =⎧⎨=⎩∴直线BC 的方程为22199x y +=或163x y +=, 即2290x y +-=或260x y +-=. 解析:。

数学北师大版高中必修1高三数学一轮复习:函数

数学北师大版高中必修1高三数学一轮复习:函数

高三数学一轮复习:函数一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈-∞,2]log 2x x ∈,+,则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x时.2x=4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02xx ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x- 1x lg x x,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a=1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y=f(-x)的图象与y=f(x)的图象关于y轴对称.将y=f(-x)的图象向右平移一个单位得y=f(1-x)的图象,故选A.解法2:由f(0)=0知,y=f(1-x)的图象应过(1,0)点,排除B、C;由x=1不在y=f(x)的定义域内知,y=f(1-x)的定义域应不包括x=0,排除D,故选A.6.(文)(2010·广东四校)已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g(f(x))的表格,其三个数依次为( )A.3,1,2C.1,2,3 D.3,2,1[答案] D[解析] 由表格可知,f(1)=2,f(2)=3,f(3)=1,g(1)=1,g(2)=3,g(3)=2,∴g(f(1))=g(2)=3,g(f(2))=g(3)=2,g(f(3))=g(1)=1,∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表:则方程g[f(x)]=x的解集为( )A.{1} B.{2}C.{3} D.∅[答案] C[解析] g[f(1)]=g(2)=2,g[f(2)]=g(3)=1;g[f(3)]=g(1)=3,故选C.7.若函数f(x)=log a(x+1) (a>0且a≠1)的定义域和值域都是[0,1],则a等于( ) A.13B. 2C.22D.2[答案] D[解析] ∵0≤x≤1,∴1≤x+1≤2,又∵0≤log a (x+1)≤1,故a >1,且log a2=1,∴a=2.8.(文)(2010·天津文)设函数g(x)=x2-2(x∈R),f(x)=⎩⎪⎨⎪⎧g x+x+4,x<g xg x-x,x≥g x,则f(x)的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞) B.[0,+∞)C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)[答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝ ⎛⎭⎪⎫x -122-94,故当x =12时,f (x )min =f ⎝ ⎛⎭⎪⎫12=-94, 当x =-1时,f (x )max =f (-1)=0,∴f (x )∈⎣⎢⎡⎦⎥⎤-94,0. 综上所述,该分段函数的值域为⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2-x x f x --f x -x,则f (2010)的值为( )A .-1B .0C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b 函数f (x )=log 12(3x-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝ ⎛⎭⎪⎫12x ,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝ ⎛⎭⎪⎫12x ,y =x -2与y =log 2x 的图象,y =⎝ ⎛⎭⎪⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝ ⎛⎭⎪⎫12x ,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是()A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B. (理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +cx ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-2+b -+c =c-2+b-+c =-2,解得⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧ x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x-x ≤4+[x +(4-x )]=8,且f2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2x ∈[0,π]的值域为________.[答案] ⎣⎢⎡⎦⎥⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3③h (x )=⎝ ⎛⎭⎪⎫13x④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f f+f f+…+f f=________.[答案] 2011 [解析] 令b =1,则f a +f a=f (1)=1,∴ff+f f+…+f f=2011.(理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0,如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12);∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张. (理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内?(2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x30=20-AD20,AD =20-23x , 矩形ABCD 的面积为S =20x -23x 2(0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20,当0<x <20时,V ′>0,当20<x <30时V ′<0,所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定:函数h (x )=⎩⎪⎨⎪⎧f xg x ,当x ∈Df 且x ∈Dg ,f x ,当x ∈Df 且x ∉Dg ,g x ,当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈-∞,∪,+,1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2, 则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x+α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t+20 t <25,t ∈N *-t +t ≤30,t ∈N *(2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 t <25,t ∈N *t 2-140t +t ≤30,t ∈N *=⎩⎪⎨⎪⎧-t -2+900t <25,t ∈N *t -2-t ≤30,t ∈N *若0<t <25(t ∈N *), 则当t =10时,y max =900;若25≤t ≤30(t ∈N *), 则当t =25时,y max =1125. 由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元)前5年的利润和为7958×5=39758(万元)设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950.当x =30时,W 2=4950(万元)为最大值, 从而10年的总利润为39758+4950(万元).∵39758+4950>1000,∴该规划方案有极大实施价值.第2章 第2节一、选择题1.已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内( ) A .至少有一实数根 B .至多有一实数根 C .没有实数根D .有唯一实数根[答案] D[解析] ∵函数f (x )在[a ,b ]上是单调减函数,又f (a ),f (b )异号.∴f (x )在[a ,b ]内有且仅有一个零点,故选D.2.(2010·北京文)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④[答案] B[解析] 易知y =x 12在(0,1)递增,故排除A 、D 选项;又y =log 12(x +1)的图象是由y =log12x 的图象向左平移一个单位得到的,其单调性与y =log 12x 相同为递减的,所以②符合题意,故选B.3.(2010·济南市模拟)设y 1=0.413,y 2=0.513,y 3=0.514,则( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 3<y 1D .y 1<y 3<y 2[答案] B[解析] ∵y =0.5x为减函数,∴0.513<0.514,∵y =x 13在第一象限内是增函数,∴0.413<0.513,∴y 1<y 2<y 3,故选B.4.(2010·广州市)已知函数⎩⎪⎨⎪⎧a -x -1 x ≤1log a x x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)[答案] C[解析] ∵f (x )在R 上单调增,∴⎩⎪⎨⎪⎧a >1a -2>0a --1≤log a 1,∴2<a ≤3,故选C.5.(文)(2010·山东济宁)若函数f (x )=x 2+2x +a ln x 在(0,1)上单调递减,则实数a 的取值范围是( )A .a ≥0B .a ≤0C .a ≥-4D .a ≤-4[答案] D[解析] ∵函数f (x )=x 2+2x +a ln x 在(0,1)上单调递减,∴当x ∈(0,1)时,f ′(x )=2x+2+a x =2x 2+2x +a x≤0,∴g (x )=2x 2+2x +a ≤0在x ∈(0,1)时恒成立,∴g (0)≤0,g (1)≤0,即a ≤-4.(理)已知函数y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内是减函数,则ω的取值范围是( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1[答案] B[解析] ∵tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2上是减函数, ∴ω<0.当-π2<x <π2时,有-π2≤πω2<ωx <-πω2≤π2, ∴⎩⎪⎨⎪⎧π2ω≥-π2-π2ω≤π2ω<0,∴-1≤ω<0.6.(2010·天津文)设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] D[解析] ∵1>log 54>log 53>0,∴log 53>(log 53)2>0,而log 45>1,∴c >a >b . 7.若f (x )=x 3-6ax 的单调递减区间是(-2,2),则a 的取值范围是( )A .(-∞,0]B .[-2,2]C .{2}D .[2,+∞)[答案] C[解析] f ′(x )=3x 2-6a ,若a ≤0,则f ′(x )≥0,∴f (x )单调增,排除A ;若a >0,则由f ′(x )=0得x =±2a ,当x <-2a 和x >2a 时,f ′(x )>0,f (x )单调增,当-2a <x <2a 时,f (x )单调减,∴f (x )的单调减区间为(-2a ,2a ),从而2a =2, ∴a =2.[点评] f (x )的单调递减区间是(-2,2)和f (x )在(-2,2)上单调递减是不同的,应加以区分.8.(文)定义在R 上的偶函数f (x )在[0,+∞)上是增函数,若f (13)=0,则适合不等式f (log127x )>0的x 的取值范围是( )A .(3,+∞)B .(0,13)C .(0,+∞)D .(0,13)∪(3,+∞)[答案] D[解析] ∵定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (13)=0,则由f (log 127x )>0,得|log 127x |>13,即log 127x >13或log 127x <-13.选D.(理)(2010·南充市)已知函数f (x )图象的两条对称轴x =0和x =1,且在x ∈[-1,0]上f (x )单调递增,设a =f (3),b =f (2),c =f (2),则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .b >c >aD .c >b >a[答案] D[解析] ∵f (x )在[-1,0]上单调增,f (x )的图象关于直线x =0对称, ∴f (x )在[0,1]上单调减;又f (x )的图象关于直线x =1对称, ∴f (x )在[1,2]上单调增,在[2,3]上单调减. 由对称性f (3)=f (-1)=f (1)<f (2)<f (2), 即a <b <c .9.(2009·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) [答案] C[解析] ∵x ≥0时,f (x )=x 2+4x =(x +2)2-4单调递增,且f (x )≥0;当x <0时,f (x )=4x -x 2=-(x -2)2+4单调递增,且f (x )<0,∴f (x )在R 上单调递增,由f (2-a 2)>f (a )得2-a 2>a ,∴-2<a <1.10.(2010·泉州模拟)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )A .最小值f (a )B .最大值f (b )C .最小值f (b )D .最大值f ⎝ ⎛⎭⎪⎫a +b 2[答案] C[解析] 令x =y =0得,f (0)=0, 令y =-x 得,f (0)=f (x )+f (-x ), ∴f (-x )=-f (x ). 对任意x 1,x 2∈R 且x 1<x 2,,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2)>0,∴f (x 1)>f (x 2), ∴f (x )在R 上是减函数,∴f (x )在[a ,b ]上最小值为f (b ). 二、填空题11.(2010·重庆中学)已知函数f (x )=ax +b x -4(a ,b 为常数),f (lg2)=0,则f (lg 12)=________.[答案] -8[解析] 令φ(x )=ax +b x,则φ(x )为奇函数,f (x )=φ(x )-4, ∵f (lg2)=φ(lg2)-4=0,∴φ(lg2)=4, ∴f (lg 12)=f (-lg2)=φ(-lg2)-4=-φ(lg2)-4=-8.12.偶函数f (x )在(-∞,0]上单调递减,且f (x )在[-2,k ]上的最大值点与最小值点横坐标之差为3,则k =________.[答案] 3[解析] ∵偶函数f (x )在(-∞,0]上单调递减,∴f (x )在[0,+∞)上单调递增.因此,若k ≤0,则k -(-2)=k +2<3,若k >0,∵f (x )在[-2,0]上单调减在[0,-k ]上单调增,∴最小值为f (0),又在[-2,k ]上最大值点与最小值点横坐标之差为3,∴k -0=3,即k =3.13.函数f (x )=ax -1x +3在(-∞,-3)上是减函数,则a 的取值范围是________. [答案] ⎝ ⎛⎭⎪⎫-∞,-13[解析] ∵f (x )=a -3a +1x +3在(-∞,-3)上是减函数,∴3a +1<0,∴a <-13.14.(2010·江苏无锡市调研)设a (0<a <1)是给定的常数,f (x )是R 上的奇函数,且在(0,+∞)上是增函数,若f ⎝ ⎛⎭⎪⎫12=0,f (log a t )>0,则t 的取值范围是______. [答案] (1,1a)∪(0,a )[解析] f (log a t )>0,即f (log a t )>f ⎝ ⎛⎭⎪⎫12, ∵f (x )在(0,+∞)上为增函数,∴log a t >12,∵0<a <1,∴0<t <a .又f (x )为奇函数,∴f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=0, ∴f (log a t )>0又可化为f (log a t )>f ⎝ ⎛⎭⎪⎫-12,∵奇函数f (x )在(0,+∞)上是增函数, ∴f (x )在(-∞,0)上为增函数,∴0>log a t >-12,∵0<a <1,∴1<t <1a,综上知,0<t <a 或1<t <1a.三、解答题15.(2010·北京市东城区)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的取值集合.[解析] (1)要使f (x )=log a (x +1)-log a (1-x )有意义,则⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1.故所求定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1.解得0<x <1.所以使f (x )>0的x 的取值集合是{x |0<x <1}.16.(2010·北京东城区)已知函数f (x )=log a 1-mxx -1是奇函数(a >0,a ≠1).(1)求m 的值;(2)求函数f (x )的单调区间;(3)若当x ∈(1,a -2)时,f (x )的值域为(1,+∞),求实数a 的值.[解析] (1)依题意,f (-x )=-f (x ),即f (x )+f (-x )=0,即log a 1-mx x -1+log a 1+mx-x -1=0,∴1-mx x -1·1+mx -x -1=1,∴(1-m 2)x 2=0恒成立, ∴1-m 2=0,∴m =-1或m =1(不合题意,舍去)当m =-1时,由1+xx -1>0得,x ∈(-∞,-1)∪(1,+∞),此即函数f (x )的定义域,又有f (-x )=-f (x ),∴m =-1是符合题意的解. (2)∵f (x )=log a 1+xx -1,∴f ′(x )=x -1x +1⎝ ⎛⎭⎪⎫1+x x -1′log a e=x -1x +1·x --x +x -2log a e =2log a e1-x2①若a >1,则log a e >0当x ∈(1,+∞)时,1-x 2<0,∴f ′(x )<0,f (x )在(1,+∞)上单调递减, 即(1,+∞)是f (x )的单调递减区间;由奇函数的性质知,(-∞,-1)是f (x )的单调递减区间. ②若0<a <1,则log a e <0当x ∈(1,+∞)时,1-x 2<0,∴f ′(x )>0,∴(1,+∞)是f (x )的单调递增区间;由奇函数的性质知,(-∞,-1)是f (x )的单调递增区间.(3)令t =1+x x -1=1+2x -1,则t 为x 的减函数∵x ∈(1,a -2), ∴t ∈⎝⎛⎭⎪⎫1+2a -3,+∞且a >3,要使f (x )的值域为(1,+∞),需log a ⎝ ⎛⎭⎪⎫1+2a -3=1,解得a =2+ 3.17.(2010·山东文)已知函数f (x )=ln x -ax +1-ax-1(a ∈R).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≤12时,讨论f (x )的单调性.[解析] (1)a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞).f ′(x )=x 2+x -2x 2,x ∈(0,+∞),因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln2+2,所以y =f (x )在(2,f (2))处的切线方程为y -(ln2+2)=x -2, 即x -y +ln2=0.(2)因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-ax2x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,①当a =0时,g (x )=1-x ,x ∈(0,+∞),当x ∈(0,1)时,g (x )>0,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,f (x )单调递增; ②当a ≠0时,f ′(x )=a (x -1)[x -(1a-1)],(ⅰ)当a =12时,g (x )≥0恒成立,f ′(x )≤0,f (x )在(0,+∞)上单调递减;(ⅱ)当0<a <12时,1a-1>1>0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,f (x )单调递减; x ∈(1,1a -1)时,g (x )<0,此时f ′(x )>0,f (x )单调递增; x ∈(1a-1,+∞)时,g (x )>0,此时f ′(x )<0,f (x )单调递减;③当a <0时,1a-1<0,x ∈(0,1)时,g (x )>0,有f ′(x )<0,f (x )单调递减 x ∈(1,+∞)时,g (x )<0,有f ′(x )>0,f (x )单调递增.综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,(1,+∞)上单调递增; 当a =12时,f (x )在(0,+∞)上单调递减;当0<a <12时,f (x )在(0,1)上单调递减,在(1,1a -1)上单调递增,在(1a -1,+∞)上单调递减.注:分类讨论时要做到不重不漏,层次清楚.第2章 第3节一、选择题1.(文)下列函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x(x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x(x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域内,则应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,故选A.(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x)D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x)为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.2.(2010·安徽理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A.3.(2010·河北唐山)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2+x +2),则f (1)等于( )A .-12B.12C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f+g =2f -+g -=1,∵f (x )为奇函数,g (x )为偶函数. ∴⎩⎪⎨⎪⎧f +g =2g-f=1,∴f (1)=12.4.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f x,当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f x,∴f (x +4)=f [(x +2)+2]=-1fx +=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2010·山东日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2010·辽宁锦州)已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.若g (x )=f (x )+2,则g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定 [答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,则函数f (x )=2⊗xx ⊕-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 [答案] B [解析] f (x )=4-x2|x -2|-2,∵x 2≤4,∴-2≤x ≤2,又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 则f (x )=4-x2-x,f (x )+f (-x )=0,故选B.7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数,∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.8.已知函数f (x )满足:f (1)=2,f (x +1)=1+f x1-f x ,则f (2011)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x )(x ∈N *).∴f (x )的周期为4, 故f (2011)=f (3)=-12.[点评] 严格推证如下:f (x +2)=1+f x +1-f x +=-1f x,∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4. 故f (4k +x )=f (x ),(x ∈N *,k ∈N *), 9.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1.∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,故选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,则f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()[答案] C[解析] ∵y =x sin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sinπ6=π3>1,排除B ,故选C.二、填空题11.(文)已知f (x )=⎩⎪⎨⎪⎧sinπxx f x --x,则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.[答案] -2[解析] f ⎝ ⎛⎭⎪⎫116=f ⎝ ⎛⎭⎪⎫56-1=f ⎝ ⎛⎭⎪⎫-16-2 =sin ⎝ ⎛⎭⎪⎫-π6-2=-52,f ⎝ ⎛⎭⎪⎫-116=sin ⎝⎛⎭⎪⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f xg x<0的解集是________.[答案] ⎝⎛⎭⎪⎫-π3,0∪⎝⎛⎭⎪⎫π3,π[解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f xg x <0,∴⎩⎪⎨⎪⎧f xg x ,或⎩⎪⎨⎪⎧fx g x,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.则f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0. (理)已知函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,则f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-x +2x ≤-10 -1≤x ≤1x -2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2010·山东枣庄模拟)若f (x )=lg ⎝ ⎛⎭⎪⎫2x 1+x +a (a ∈R)是奇函数,则a =________.[答案] -1 [解析] ∵f (x )=lg ⎝⎛⎭⎪⎫2x 1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎪⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a=lg ⎝ ⎛⎭⎪⎫2x 1+x +a ⎝ ⎛⎭⎪⎫2x x -1+a =0.∴⎝⎛⎭⎪⎫2x 1+x +a ⎝ ⎛⎭⎪⎫2x x -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1.[点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,则问题变得比较简单.f (x )=lga +x +a 1+x为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2010·吉林长春质检)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫-1+a 2+x 为奇函数,则使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝ ⎛⎭⎪⎫-1+a 2-x +lg ⎝ ⎛⎭⎪⎫-1+a 2+x=lg ⎝ ⎛⎭⎪⎫-1+a 2-x ⎝ ⎛⎭⎪⎫-1+a 2+x =0, ∴⎝ ⎛⎭⎪⎫-1+a 2-x ⎝ ⎛⎭⎪⎫-1+a 2+x =1, ∵a ≠0,∴4-ax 2-4=0,∴a =4, ∴f (x )=lg ⎝⎛⎭⎪⎫-1+42+x =lg 2-x x +2, 由f (x )<-1得,lg 2-x2+x <-1,∴0<2-x 2+x <110,由2-x 2+x>0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2. 三、解答题15.(2010·杭州外国语学校)已知f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1).令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2011).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时,f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2008)+f (2009)+f (2010)+f (2011)=0.∴f (0)+f (1)+f (2)+…+f (2011)=0. 17.(文)已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值;(2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a =0, 解得a =2.(2)∵y =2x-12x +1,∴2x=1+y 1-y ,由2x>0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x-t2x+1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x=u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-t ++t -2≤022-t ++t -2≤0,解得t ≥0.(理)设函数f (x )=ax2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧fxx >0-fx x <0.(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-x +2x >0x +2x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0.(3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c .又因为mn <0,m +n >0, 可知m ,n 异号. 若m >0,则n <0.则F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 若m <0,则n >0.同理可得F (m )+F (n )>0.综上可知F (m )+F (n )>0.第2章 第4节一、选择题1.(2010·陕西文)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数[答案] C[解析] ∵(x +y )α≠x α·y α,log a (x +y )≠l og a x +log a y ,a x +y=a x ·a y,cos(x +y )=cos x cos y -sin x sin y ≠cos x cos y ,∴选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版高一数学必修一专题复习例题练习知识点讲解第一章集合与函数概念知识架构第一讲集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互界性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:二:集合间的基本关系三:集合的基本运算①两个集合的交集:Ap|B= {x\xe A^xe B];②两个集合的并集:AUB = {x|xe Mxe B);③设全集是U,集合A^U f^\C u A={x\xe t/且兀电A]方法:常用数轴或韦恩图进行集合的交、并、补三种运算.★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。

难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。

重难点:1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特別注意集合屮元素的互异性,在解题过程中最易被忽视,因此要对结果进行检验;2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{x|y = /(%)}> {y]y ={(x,y)|y = /(x)}等的差别,如果对集合中代表元素认识不清,将导致求解错误:问题:已知集合看+召= l},N = {y|扌+* = 1},则McN二( )A.①;B. {(3,0), (0,2)};C. [-3,3];D. {3,2}2 2[错解]误以为集合M表示椭圆—+ ^- = 1,集合W表示直线-4-^ = 1,由于这直9 4 3 2线过椭圆的两个顶点,于是错选B[正解]C;显然M = {x|-3<x<3}, N = R,故MC\N =[-3,3](3)Venn图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。

3.集合间的关系的几个重要结论(1)空集是任何集合的子集,即(2)任何集合都是它本身的子集,即Ac A(3)子集、真子集都有传递性,即若Acfi, BuC ,则AcC4.集合的运算性质(1)交集:①= ② API A = A;③ 4介0 = 0;④ AQ B c A , ApBc B⑤AC\B = A^ A Q B;(2)并集:① AUB=BUA;② A\JA = A;③ A\J(/)= A;④ A\JB^A, A\J B B ⑤ A\JB = A^ B Q A;(3)交、并、补集的关系①AP\C U A=(P;②C U(AP\B) = © A) U © B) ;C〃(A U B) = (C u A) A © B)★热点考点题型探析考点一:集合的定义及其关系题型1:集合元素的基本特征[例1](2008年江西理)定义集合运算:A*3 = {z| z = E,兀w 3}・设A = {l,2},B = {0,2},则集合A*B的所有元素之和为()A. 0;B. 2;C. 3;D. 6[解题思路]根据A^B的定义,让兀在A屮逐一取值,让y在B屮逐一取值,兀y在值就是A * B 的元素[解析]:正确解答本题,必需清楚集合A^B中的元素,显然,根据题中定义的集合运算知={0,2,4},故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点, 这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。

题型2:集合间的基本关系[例2].数集X ={(27?+1X/?G Z}与丫 = {(4£±1)龙,£丘乙}2的关系是()A. xiy ;B. yix ; c. x =Y; D.X[解题思路]可有两种思路:一是将x和y的元素列举出来,然后进行判断;也可依选择支之间的关系进行判断。

[解析]从题意看,数集x与丫之间必然有关系,如果A成立,则D就成立,这不可能;同样,B也不能成立;而如果D成立,则A、B中必有一个成立,这也不可能,所以只能是C 【名师指引】新定义问题是高考的一个热点,解决这类问题的办法就是严格根据题中的定义, 逐个进行检验,不方便进行检验的,就设法举反例。

[新题导练]1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合2{参加北京奥运会比赛的运动员},集合扫{参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是()A. A<^BB. BcCC. AC\B = CD. B\JC = A[解析]D;因为全集为A,而BUC二全集二A2 . (2006 •山东改编)定义集合运算:A®B = {z| =巧+兀〉,2,辭册,设集合A = {1,0}, B = {2,3},则集合A®B的所有元素之和为 ________________________[解析]18,根据A®B的定义,得到A0B = {0,6,12},故A®B的所有元素之和为183. (2007-湖北改编)设P和Q是两个集合,定义集合P-Q = {x\xe如果P = [x|log3 x<l}, Q = {兀|彳 < 1},那么P-Q等于 ________[解析]{x|l<x<3};因为P = {x|log3x<l}=(0,3),2 = {^|%|<1}=(-1,1),所以P-<2 = (1,3)4•研究集合A = {^y = x2-4], B = {y\y = x2-4\f C = {(x,y)|y = x2间的关系[解析]A与C, B与C都无包含关系,而B^A;因为A = {^\y = x2-4]表示y = x2 - 4的定义域,故A = R : B = {y]y = x2-4}表示函数y = %2 - 4的值域,B =[-4,+oo): C = ^x,y)\y = x2-4}表示曲线 ^ = x2-4 上的点集,可见,而A 与C, 3与C都无包含关系考点二:集合的基本运算[例3]设集合A={4『_3X +2= O},B = {^x2 + 2(a + l)x + (a2 -5) = o}(1)若AQB = {2},求实数G的值;(2)若AUB二A,求实数d的取值范围若A^B = \2},[解题思路]对于含参数的集合的运算,首先解出不含参数的集合,然后根据已知条件求参数。

[解析]因为A =卜卜2-3x + 2 = 0}= {1,2},(1)由AQB = {2}知,2G B,从而得224-4(^+1)+(6Z2-5)=O,即a2 + + 3 = 0,解得Q =-1或。

=一3当a = -\时,B - {x|x2 - 4 = o}= |_2,-2j,满足条件;当。

=一3时,〃 ={加2_4兀+ 4二0}={2},满足条件所以Q = -1或G = -3(2)对于集合B,由△ = 4(a + l)2_4(a2_5) = 8(d + 3)因为AUB = A,所以BeA①当△<(),即a<-3时,B =(p,满足条件;②当△ = (),即a = —3时,3 = {2},满足条件;③当△>(),即a>—3时,B = A = {\,2}才能满足条件,[1 + 2 = —2(ci +1) a =—由根与系数的关系得彳/ n 2,矛盾1X2=672-5 2 ra =7-故实数Q的取值范圉是aS-3【名师指引】对于比较抽彖的集合,在探究它们的关系时,要先对它们进行化简。

同时,要注意集合的子集要考虑空与不空,不要忘了集合本身和空集这两种特殊情况.[新题导练]6.若集合5={>{y = 3\x€ /?}, T = {y\y = x2-\.xE /?},则SAT 是()A. S;B. T :C. 0 ;D.有限集[解析]A;由题意知,集合S = {)卜=3”,兀丘/?}表示函数J =3\XG R的值域,故集合S = (0,+oo): T = {)jy = x2-1,XG /?}表示函数y = F -15XG /?的值域,T = [-l,+oo),故SC\T = S7.已知集合M ={(%, j)|x+y = 2}, N = {(%, J)|x-J = 4},那么集合M r\N为( )A. x = 3, y = —1 ;B. (3,-1) ;C. {3,—1};D. {(3,-1)}[解析]D;M^N表示直线x+y = 2与直线x-y = 4的交点组成的集合,A、B、C均不合题意。

& 集合A = {x| ^-1 = 0}, B = {%| x2 -3% + 2 = 0j,且= 3,求实数a的值.[解析]0,1,*;先化简B 得,B = {1,2}.由于= AcB,故IwA 或2w A ・因此a -1 = 0 或2a —1 = 0,解得a = 1 或a =—.2容易漏掉的一种情况是:A = 0的情形,此时a = 0.故所求实数a的值为0,1,|・备选例题仁已知M={yy = x + 1}, N = {(x, y) x2 + y2 = 1},则M C\N中的元素个数是( )A. 0;B. 1;C.2;D.无穷多个[解析]选A;集合M表示函数y = x + \的值域,是数集,并且M = R,而集合N表示满足/+)' = 1的有序实数对的集合,即表示圆/ + y2 =1上的点,是点集。

所以,集合耐与集合N中的元素均不相同,因而MRN = e,故其中元素的个数为0 [误区分析]在解答过程中易出现直线y = x +1与圆/ + y2= 1有两个交点误选C;或者误认为y = x + l + R,而兀2+),2二1屮一15),51,从而M"N = [—1,1]有无穷多个解而选Do注意,明确集合屮元素的属性(是点集还是数集)是准确进行有关集合运算的前提和关键。

备选例题2:已知集合A和集合B各有12个元素,AC\B含有4个元素,试求同时满足下面两个条件的集合C的个数:(I)C呈AUB,且C中含有3个元素;(II)CAA^^ (0农示空集)[解法一]因为A、3各有12个元素,A^B含有4个元素,因此,A\JB的元素个数是12 + 12-4 = 20 故满足条件(I )的集合C的个数是C;o 上面集合中,述满足= 0的集合C的个数是C;因此所求集合C的个数是C;°-C;=1084[解法二]市题目条件可知,属于B而不属于A的元素个数是12 — 4 = 8 因此,在ADB屮只含有A屮1个元素的所要求的集合C的个数为C\2Cl 含有A屮2个元素的所要求的集合C的个数为C$C;含有A屮3个元素的所要求的集合C的个数为所以,所求集合C的个数是C;2C:+G;C;+G; =1084★抢分频道基础巩固训练:1.(09年吴川市川西中学09届第四次月考)设全集[/=R?A={X|X(X +3)<0},B={X|X<-1},则右图中阴影部分表示的集合为()A. {兀卜>0};B. {x\-3 < x< 0} ;C. {x|-3<x<-l} ;D. -1][解析]C;图中阴影部分表示的集合是而4 =忖一3<兀v0},故AC|B = {x-3<x< -1}2.(韶关09 届高三摸底考)已知A = {x|x(l-x)>0},B = {x|log2x<0}则A\jB =A. (0,1);B. (0,2);C. (-8,0);D. (-oo,0)U(0,+oo)[解析]A;因为A = {x|0<x<l}, B = {斗Ovxvl},所以AUB = {x|0<x<l}3.(苏州09届高三调研考)集合{-1,0,1}的所有子集个数为______________[解析]8:集合{-1,0,1}的所有子集个数为23 =84.(09年无锡市高三第一次月考)集合4中的代表元素设为兀,集合B中的代表元素设为y, [解析]B^A或由子集和交集的定义即可得到结论5.(2008 年天津)设集合S 二&| 卜—2|>3},T={X|GVXVG +8},SUT=/?,则d 的取值范围是( )A. -3 < 67 < -1 ;B. -3 < 67 < -1C. aW-3或口》-1;D. GV-3或。

相关文档
最新文档