实验流体力学2

合集下载

流体力学实验报告(全)

流体力学实验报告(全)

工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。

水与玻璃的浸润角很小,可认为cosθ=1.0。

于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。

重大流体力学实验 2(不可压缩流体恒定流动的能量方程)

重大流体力学实验 2(不可压缩流体恒定流动的能量方程)

《流体力学》实验报告开课实验室: DA126 2011 年 4月 18 日 学院 年级、专业、班姓名 成绩 课程 名称 流体力学实验实验项目 名 称不可压缩流体恒定流动的能量方程实验指导教师教师评语教师签名:年 月 日一、实验目的1、掌握均匀流的压强分布规律以及非均匀流的压强分布特点;2、验证不可压缩流体恒定流动中各种能量间的相互转换;3、学会使用测压管与测速管测量压强水头、流速水头与总水头;4、理解毕托管测速原理。

二、实验原理流线为平行线的流动为均匀流,流线不平行的流动为非均匀流。

对于恒定均匀流,元流上流体流速沿程不产生变化,无加速度产生。

非均匀流相反,元流上流通流速不断变化,有加速度产生,由此引起的惯性力不容忽略。

根据流线变化是否强烈,非均匀流又分为急变流与突变流,近似平行时,称渐变流;流线变化剧烈时称急变流。

均匀流、非均匀流上的压强分布规律各自不同。

由于渐变流流线变化较缓并近似平行,通常近似按均匀流处理。

均匀流、渐变流同一断面的压强分布规律满足如下的计算公式:z + p /ρg=c 但是非均匀流同一断面的压强不满足此式,也不能用能量方程求解,它根据流线弯曲方向不同而不同。

当其惯性力与重力出现叠加时压强增大,这种情况出现在流体流动的凹岸;当惯性力与重力出现削减时压强减少,它出现再流体流动的凸岸,因此,凹岸压强大,凸岸压强小。

实际流体在流动过程中除遵循质量守恒原理外,必须遵循动量定理,质量守恒原理在一维总流中的应用为总流的连续性方程,动能定理在一维总流中的应用为能量方程。

如下所示221121A v A v Q Q ===2122222211112//2//-+++=++w h g v a g p z g v a g p z ρρ 实际流体中,总水头线始终沿程降低,实验中可以从测速管的液面相对于基准面的高度读出。

测压管水头等于总水头减其流速水头。

Z+p/ρg=H-a 2v /2g,断面平均流速用总水头减去该断面的测压管水头得到:av 2/2g=H-(z+p/ρg).三、使用仪器、材料自循环供水器、恒压水箱、溢流板、稳水孔板、可控硅无级调速器、实验管道、流量调节阀、接水阀、接水盒、回水管测压计。

流体力学实验

流体力学实验

2.2 伯努利方程实验一、实验目的(一)观察能量转换情况,对实验出现的现象加以分析,加深对伯努利方程的理解;(二)掌握一种测量流量流体速度的原理。

二、实验原理粘流伯努利方程w h gvg p z g v g p z +++=++222222221111αραρ 测速原理h g u ∆=2三、准备工作开启水泵注满水,调节上水阀门使水箱水位始终保持不变,并有少量溢流。

四、实验条件以管径轴心位置最低处为基准面。

五、实验步骤(一)理解伯努利方程 调节出水阀门至一定开度,测定能量方程实验管的四个断面四组测压管的液柱高度,并用计量水箱(尺)和秒表测流量;改变阀门开度,重复上述方法进行测试,将数据记入表1。

(二)测速:能量方程实验管上的四组测压管上四组测压管的任一组都相当于一个皮托管,可测得瞬时流速(轴心处)。

进行能量方程实验的同时,就可以测定各点的轴心流速和平均流速,结果计入表2。

六、实验记录七、计算公式及其计算过程八、思考题1.启动水泵,先不开阀门,在水桶中有溢流时,4个测压管的液面读数为什么是相同的?2.为什么水流可以从压力小处向压力大处流动?2.3 沿程阻力系数的测定实验一、实验目的(一)验证沿程水头损失与平均流速的关系; (二)测定不同管径的管段的沿程阻力系数。

二、实验原理两测点间列伯努利方程:h gp g p h f ∆=-=ρρ21 根据管沿程水头损失计算公式:g v d l h f 22λ= 得 2/2lv gdh f =λ三、准备工作各阀门关闭,开启水泵,排放导压管中的空气,测量管内水的温度。

四、实验步骤1、开启粗管调节阀门,测量测压管水头差;2、用体积法测量粗管水的流量,并计算出平均流速;3、根据达西公式计算粗管沿程阻力系数;4、改变流量,再作两组粗管数据;5、依照上述相同操作步骤测量细管沿程阻力系数。

五、实验记录五、计算公式及其计算过程六、实验结果讨论1、根据尼古拉兹实验论述沿程阻力系数的影响因素;2、比较相同管径时沿程阻力系数的异同,说明原因;3、比较不同管径时沿程阻力系数的异同,说明原因。

流体力学实验 (2)

流体力学实验 (2)

流体力学实验
流体力学实验是研究流体运动、流体性质和流体力学现象的实验方法和实验技术。

在流体力学实验中,通常会使用各种仪器设备和测量装置来观测、记录和分析流体的运动状态、流速、压力、温度等重要参数。

流体力学实验的目的可以是验证理论模型、研究流体流动的规律、探究流体与固体的相互作用等。

以下是一些常见的流体力学实验:
1. 流体的静力学实验:通过测量流体中的压力分布,来研究流体静力学的规律,常用的实验方法有水压实验和气压实验。

2. 流体的动力学实验:研究流体运动的规律,常见的实验包括流体的流速测量、流体的流线观测、流体的密度测量等。

3. 流体的粘性实验:用来研究流体粘性特性的实验方法,通常会测量流体的粘度和黏滞阻力。

4. 流体与固体相互作用的实验:研究流体在固体表面上的附着和流动的实验,如流体在管道中的摩擦阻力实验、流体在物体表面的湿润实验等。

5. 流体流动模拟实验:通过模拟实验方法来研究流体流动的现象和规律,常见的方法有模型试验和数值模拟。

流体力学实验通常需要使用精密的仪器设备和仔细的实验操作,以确保实验结果的准确性和可靠性。

实验结果可以为理论研究提供验证和支持,也可以为工程应用提供参考和指导。

(完整word版)流体力学流动演示实验

(完整word版)流体力学流动演示实验

(完整word版)流体⼒学流动演⽰实验流体⼒学流动演⽰实验流体⼒学演⽰实验包括流线流谱演⽰实验、流动演⽰实验两部分。

各实验具体内容如下:第1部分流线流谱演⽰实验1.1 实验⽬的1)了解电化学法流动显⽰原理。

2)观察流体运动的流线和迹线,了解各种简单势流的流谱。

3)观察流体流经不同固体边界时的流动现象和流线流谱特征。

1.2 实验装置实验装置见图1.1。

图1.1 流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演⽰机翼绕流流线分布,Ⅱ型演⽰圆柱绕流流线分布,Ⅲ型演⽰⽂丘⾥管、孔板、突缩、突扩、闸板等流段纵剖⾯上的流谱。

流谱仪由⽔泵、⼯作液体、流速调节阀、对⽐度调节旋钮与正负电极、夹缝流道显- 1 -⽰⾯、灯光、机翼、圆柱、⽂丘⾥管流道等组成。

1.3 实验原理流线流谱显⽰仪采⽤电化学法电极染⾊显⽰技术,以平板间夹缝式流道为流动显⽰平⾯,⼯作液体在⽔泵驱动下从显⽰⾯底部流出,⼯作液体是由酸碱度指⽰剂配制的⽔溶液,在直流电极作⽤下会发⽣⽔解电离,在阴极附近液体变为碱性,从⽽液体呈现紫红⾊。

在阳极附近液体变为酸性,从⽽液体呈现黄⾊。

其他液体仍为中性的橘黄⾊。

带有⼀定颜⾊的流体在流动过程中形成紫红⾊和黄⾊相间的流线或迹线。

流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了⽂丘⾥管、孔板、突缩、突扩、闸板等流道内流动特性。

流体⾃下⽽上流过夹缝流道显⽰⾯后经顶端的汇流孔流回⽔箱中,经⽔泵混合,中和消⾊,循环使⽤。

实验指导与分析如下:1)Ⅰ型演⽰仪。

演⽰机翼绕流的流线分布。

由流动显⽰图像可见,机翼右侧即向天侧流线较密,由连续⽅程和能量⽅程可知,流线密,表明流速⼤、压强低;⽽机翼左侧即向地侧流线较稀疏,表明速低、压强较⾼。

这表明机翼在实际飞⾏中受到⼀个向上的合⼒即升⼒。

本仪器通过机翼腰部孔道流体流动⽅向可以显⽰出升⼒⽅向。

此外,在流道出⼝端还可以观察到流线汇集后,并⽆交叉,从⽽验证流线不会重和的特性。

流体力学及气体动力学综合实验报告册(二)

流体力学及气体动力学综合实验报告册(二)

流体力学及气体动力学综合实验实验报告册(二)班级姓名学号成绩西北工业大学动力与能源学院2015年11月实验三沿程损失实验一、实验目的1、验证沿程水头损失与平均流速的关系。

2、掌握管道沿程阻力系数λ的测量方法。

二、实验设备实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。

接水盒图3-1 沿程损失实验原理图三、实验原理四、实验方法与步骤1. 确定出水阀完全开启,进水阀半开启。

启动水泵,排出实验管道、测压计中的气泡。

2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重法测定流量。

每次测量流量的时间应大于10秒。

3. 调整流量,继续测量,直至进水阀全开。

4. 如此测量10次以上,其中层流流动时测量3~5次。

5. 每次实验均要测量温度。

6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。

五、实验成果及要求实验台号No1.记录计算有关常数:管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。

运动粘度621.7751010.03370.000221t t υ-⨯==++2/m s2.实验数据记录与计算六、实验分析与讨论:1.什么是沿程损失,影响沿程损失的因素有哪些?2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。

实验四局部损失实验一、实验目的1、掌握管路中测定局部阻力系数的方法。

2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。

3、加深对局部阻力损失机理的了解。

二、实验装置实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。

实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。

《流体力学》实验指导书

实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。

雷诺数的物理意义,可表征为惯性力与粘滞力之比。

在实验过程中,保持水箱中的水位恒定,即水头H 不变。

如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。

此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。

如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。

如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。

图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。

tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。

三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。

启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。

2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。

3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。

流体力学综合实验

实验报告课程名称:过程工程原理实验(甲) 指导老师: 成绩:__________________ 实验名称:流体力学综合实验(一、二) 实验类型:工程实验 同组学生姓名:姿 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得1、流体流动阻力的测定实验1.1 实验目的:1.1.1 掌握测定流体流经直管、阀门时阻力损失的一般实验方法 1.1.2 测定直管摩擦系数λ与雷诺数 的关系,验证在一般湍流区内λ与 的关系曲线 1.1.3测定流体流经阀门时的局部阻力系数ξ1.1.4 识辨组成管路的各种管件、阀门,并了解其作用 1.2 实验装置与流程: 1.2.1 实验装置:实验对象部分由贮水箱、离心泵、不同管径和材质的水管、阀门、管件、涡轮流量计、U 形流量计等所组成。

实验管路部分有两段并联长直管,自上而下分别用于测定粗糙管直管阻力系数和光滑管直管阻力系数。

同时在粗糙直管和光滑直管上分别装有闸阀和截止阀,用于测定不同种类阀门的局部阻力阻力系数。

水的流量使用涡流流量计或转子流量计测量,管路直管阻力和局部阻力采用压差传感器测量。

1.2.2 实验装置流程示意图,如图1,箭头所示为实验流程:其中:1——水箱 2——离心泵 3——涡轮流量计 4——温度计 5——光滑管实验段 6——粗糙管实验段 7——截止阀 8——闸阀 9、10、11、12——压差传感器 13——引水漏斗图 1 流体力学综合实验装置流程示意图Re Re1.3 基本原理:流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成的机械能损失成为直管阻力损失。

流体通过管件、阀门时由于流体运动方向和速度大小的改变所引起的机械能损失成为局部阻力损失。

1.3.1直管阻力摩擦系数λ的测定:由流体力学知识可知,流体在水平等径直管中稳定流动时,阻力损失为:(1) 公式中:fp ∆:流体流经l 米直管的压力将,Pa ;λ:直管阻力摩擦系数,无因次; d :直管内径,m ;fh :单位质量流体流经l 米直管的机械能损失,J/kg ;ρ:流体密度,kg/ ; l :直管长度,m ;u :流体在管内流动的平均速度,m/s ;由上面的式子可知: (2)雷诺数: ρμ式子中:μ:流体粘度,kg/(m ·s)。

《流体力学》实验教案(全)

《流体力学》实验教案(一)一、实验目的1. 理解流体力学的基本概念和原理。

2. 掌握流体力学实验的基本方法和技能。

3. 培养观察、分析问题和解决问题的能力。

二、实验原理1. 流体的定义和分类。

2. 流体静力学原理:帕斯卡定律、压力与深度关系。

3. 流体动力学原理:牛顿第二定律、流速与压力关系。

三、实验器材与步骤1. 实验器材:流体容器、压力计、流量计、计时器、尺子等。

2. 实验步骤:a. 准备工作:将流体容器放在水平位置,连接压力计、流量计等器材。

b. 测量静态压力:记录不同位置的压力值。

c. 测量动态压力:改变流体速度,记录不同位置的压力值。

d. 数据处理:根据实验数据,分析流体静力学和流体动力学原理。

四、实验注意事项1. 确保实验器材的准确性和可靠性。

2. 操作过程中要注意安全,避免液体喷溅。

3. 实验数据要准确记录,便于后期分析。

五、实验报告要求1. 描述实验目的、原理和步骤。

2. 列出实验数据,包括静态压力和动态压力值。

3. 分析实验结果,验证流体静力学和流体动力学原理。

《流体力学》实验教案(二)六、实验目的1. 掌握流体流动的两种形态:层流和湍流。

2. 探究流体流动形态与雷诺数的关系。

3. 培养观察、分析和解决问题的能力。

七、实验原理1. 层流与湍流的定义及特点。

2. 雷诺数的计算公式及意义。

3. 流体流动形态与雷诺数的关系。

八、实验器材与步骤1. 实验器材:流体容器、尺子、摄影器材、计算器等。

2. 实验步骤:a. 准备工作:将流体容器放在水平位置,连接相关器材。

b. 观察并记录层流和湍流的特征。

c. 测量流体速度,计算雷诺数。

d. 改变流体速度,重复步骤b和c。

e. 数据处理:分析流体流动形态与雷诺数的关系。

九、实验注意事项1. 确保实验器材的准确性和可靠性。

2. 操作过程中要注意安全,避免液体喷溅。

3. 实验数据要准确记录,便于后期分析。

十、实验报告要求1. 描述实验目的、原理和步骤。

中国石油大学华东-流体力学模拟上机实验2

流体力学模拟上机实验学院专业班级姓名学号指导教师年月流体力学模拟上机作业摘要:流体力学数值模拟是在流体力学的学习过程中很重要的一部分,以计算机为技术手段,运用一定的计算技术寻求流体力学复杂问题的离散化数值解。

引言流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。

可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。

描述流体运动特征的基本方程是纳维-斯托克斯方程,简称N-S方程。

纳维-斯托克斯方程基于牛顿第二定律,表示流体运动与作用于流体上的力的相互关系。

纳维-斯托克斯方程是非线性微分方程,其中包含流体的运动速度,压强,密度,粘度,温度等变量,而这些都是空间位置和时间的函数。

一般来说,对于一般的流体运动学问题,需要同时将纳维-斯托克斯方程结合质量守恒、能量守恒,热力学方程以及介质的材料性质,一同求解。

由于其复杂性,通常只有通过给定边界条件下,通过计算机数值计算的方式才可以求解。

二维有障碍通道内的流动计算目的初步掌握软件的操作和边界条件的设置方法通过计算了解障碍通道内的流体运动的特性物理问题假设流体在一个两维通道内的流动,流体从左边流入,从右边流出,通过数值模拟的方法分析判断流体的运动特性。

模型的建立启动Gambit软件创建控制点,设定workingdictory开始建立建立模型。

1.流动空间面建立10m*10m计算空间矩形面。

2.建立车型障碍物车轮半径---0.2车轮原点坐标---X=4,X=8车体位置--- X=4,Y=0.4 宽4米,高3米。

操作步骤:建立车体solid1 ,平移障碍物至x=处。

建立车轮solid2,调整到设置位置,通过copy功能复制solid2建立另一车轮solid3,并平移至适当位置。

点击布尔运算按钮substract real face对于创建的面进行布尔运算(同时减掉solid1,solid2,solid3)得到计算网格填充生成区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试用: 定理求出压强损失p及沿程损失h f 的公式。
解:显然,函数关系式为: f (p, l, d, , ν, ρ,V ) 0
选取d,V , ρ作为独立变量,相应的指数行列式: 01 0 0 1 1 0 1 3 0
符合独立变量条件: n m 7 3 4, 即有4个π数。
①. :
π1 d V a1 b1 ρc1 p
2). 不受运动规模的影响。 3). 可进行超越函数的运算。事实上,对物理量进行指数、
对数等的运算必须事先将其无量纲化之后才能进行。
3. 量纲和谐原理:
一个正确、完整反映客观规律的物理方程式中,各项的 量纲是一致的,这就是量纲和谐原理。
二.量纲分析与π定理
利用量纲和谐原理来探求物理量之间的函数关系,这种 分析方法称为量纲分析法。
π1 L a1 LT 1 b1 ML3 c1 ML1T 2
M : L: a1
b1
c1 3c1
1 1
0 0
T :
b1 2 0
解上式得:a1 0,b1 2, c1 1。
故:π1
p 。 ρV 2
②. 同①. :
π2 d V a2 b2 ρc2 l
π2 L a2 LT 1 b2 ML3 c2 L
(1)定理:
若某一物理过程与n个物理量有关,即:f (q1, q2, ,qn ) 0
其中只有m个变量在量纲上是独立的,其余(n-m)个变量是非独立的。 此物理方程必然可以表示为(n-m)个无量纲数的物理方程式。
即:F (π1, π2 , ,πnm ) 0。 式中π1, π2 , ,πnm为(n m) 个无量纲数。
度量同类物理量大小的标准称为单位。
物理量单位的种类称为量纲(或因次)。
⑵.基本量纲:
具有独立性的量纲称为基本量纲。
比如: 长度L,质量M 和时间T 等。
⑶.导出量纲:
除基本量纲之外的其它物理量的量纲均可由基本量纲组 合表示,称为导出量纲。
比如:速度的量纲V LT 1 ; 力的量纲F MLT 2
M : L: a2
b2
3c2
c2 1
0
0
T :
b2 0
解上式得:a2 1,b2 0, c2 0。
故:π2
l d

③. 同①. :
π3 d V a3 b3 ρc3
同上可得:a3 1,b3 0, c3 0。
故:π3
。 d
④. 同①. :
π4 d V a4 b4 ρc4 ν
同上可得:a4 1,b4 1, c4 0。
2. 无量纲数:
有一些物理量是无量纲的。若几个物理量组合而成的综 合参数无量纲,则称为无量纲综合参数。
⑴.无量纲数的组成:
1)、几个有量纲的量通过乘、除组合而成。如雷诺数:Re VL。 ν
2)、由同类量的比值组成。如水力坡度:J dH 。 dl
⑵.无量纲数的特征:
1). 客观性:凡是真正客观地描述运动规律的方程式都可 以写成由无量纲项所组成的方程。
故:π4
ν Vd
1。 Re
F
(
p ρV 2
,
l d
,
d
,1 Re)0.Fra bibliotek或写成:
p
V 2
F1(Re,
, l) dd
或:
p l
V 2
d
F2 (Re,
) d
即:
p F3(Re,
) l dd
ρV 2 2
λl d
ρV 2 2
对于沿程水头损失h f ,有:
p l V 2
hf
π2
q a2 1
q b2 2
q c2 3
q5
π q q q q nm
anm bnm cnm
1
2
3
n
式中ai , bi , ci (i 1,2, , n m)是各项的待定指数,可根据
量纲和谐的原理确定。
例1:实验观察与理论分析指出:水平、等直径恒定有压管流 的压强损失与管长,直径,管壁的粗糙度,运动粘滞系数,密 度,流速等因素有关。
(2)定理的应用:
1).所取的m个量纲独立的物理量,它们不能组合成一 个无量纲数。
若取q1, q2, q3作为量纲独立的物理量,且:q1 M L T a1 b1 c1 , q2 M L T a2 b2 c2 , q3 M a3 Lb3T c3 。
必须:
a1 b1 c1 a2 b2 c2 0 a3 b3 c3
1.瑞利(Rayleigh)法:
若某一物理过程与n个物理量有关,即:f (q1, q2, ,qn ) 0
其中某一物理量可表示为:qi
Kq1aq2b
qp n1
上式中K为无量纲数,a,b p为待定指数,其量纲表达式为:
qi M α LβT γ M L T α1 β1 γ1 a M L T α2 β2 γ2 b M L T αn1 βn1 γn1 p
任一力学物理量q的量纲都可写为: q M aLbT c
物理量的性质可由量纲指数a、b、c决定:
若:a = b = c = 0,则q为无量纲数。 若:a = c = 0、b≠0,则q为几何量。 若:a = 0、b≠0、c≠0,则q为运动学量。 若:a≠0 ,则q为动力学量。
一般的流体力学问题只涉及四个基本量纲:长 度[L]、质量[M]、时间[T]和温度[Θ]。
2).实用中常分别选一个几何学的量(如管径、水头等),一 个运动学的量(如速度、加速度等)和一个动力学的量(如密 度、动力粘度等)作为独立变量 。
3)π项的组成:
可以从所选用的独立变量之外的其余变量中,每次轮取一 个,与所选用的独立变量一起组合而成。
即:
π1
q a1 1
q b1 2
q c1 3
q4
第2章 实验的基本理论
§ 2-1 量纲分析与流动相似原理 § 2-2 误差分析 § 2-3 测量系统的特性
§2-1 量纲分析与流动相似原理
量纲分析与相似理论是指导分析和实验的 理论基础,是解决复杂的工程问题和发展流体 力学理论的有力工具。
一.单位与量纲:
1.量纲、基本量纲和导出量纲:
⑴.量纲与单位:
由量纲和谐的原理知:
M : L:
α β
aα1 aβ1
bα2 bβ2
pαn1 pβn1
T : γ aγ1 bγ2 pγn1
显然:若只有三个待定指数a、b、c,则由上面三个方程可唯一 确定它们的值;若(n-1)>3,则尚有(n-1)-3个待定指数不能确定。
2.布金汉(Buckingham)法:
相关文档
最新文档