高一数学必修四期末测试题及答案(完整资料)
完整版)高一数学必修四期末考试题

完整版)高一数学必修四期末考试题高一数学第一学期期末考试试题(必修4)一、选择题:共12题,合计60分1.下列命题中正确的是()A.第一象限角必是锐角B.终边相同的角相等C.相等的角终边必相同D.不相等的角其终边必不相同2.sin330°等于()A.-3/2B.-1C.1D.33.若A(-1,-1)B(1,3)C(x,5)共线,且AB=λBC则λ等于()A、1.B、2.C、3.D、44.若α是Δ___的一个内角,且sinα=1/2则α等于()A、30°B、30°或150°C、60°D、60°或150°5.设<α<β<π/2,sinα=3/5,cos(α-β)=12/13,则sinβ的值为A.56/65B.16/65___D.63/656.若点P在4π/3的终边上,且|OP|=2,则点P的坐标()A.(1,3)B.(3,-1)C.(-1,-3)D.(-1,3)7.设四边形ABCD中,有DC=1/2AB,且|AD|=|BC|,则这个四边形是A.平行四边形B.矩形C.等腰梯形D.菱形8.把函数y=cosx的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移π/4个单位,则所得图形对应的函数解析式为()A.y=cos(1/2x+π/8)B.y=cos(2x+π/4)C.y=cos(1/x+π)D.y=cos(2x+π/2)9.函数y=sin(x+π/2),x∈R是在()A.[-π/2,π/2]上是增函数B.[0,π]上是减函数C.[-π,0]上是减函数D.[-π,π]上是减函数10.已知角α的终边过点P(-4m,3m),(m≠0),则2sinα+cosα的值是()A.1或-1B.2或-2C.1或-2D.-1或211.下列命题正确的是()A 若→a·→b=→a·→c,则→b=→cB 若|a+b|=|a-b|,则→a·→b=0C 若→a//→b,→b//→c,则→a//→cD 若→a与→b是单位向量,则→a·→b=cosα,其中α为它们的夹角高一数学第一学期期末考试试题(必修4)一、选择题:共12题,合计60分1.下列命题中正确的是()A。
高一数学必修4期末试卷及答案

高一数学必修4期末试卷及答案高一年级数学《必修4》试题一、选择题(每小题4分,共40分)1.与463-︒终边相同的角可以表示为(k Z)∈( )A .k 360463⋅︒+︒B .k 360103⋅︒+︒C .k 360257⋅︒+︒D .k 360257⋅︒-︒ 2 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是 ( )A .AB OC = B .AB ∥DE C .AD BE =D . AD FC =3.α是第四象限角,12cos 13α=,sin α=( ) A513B513-C 512D 512-4. 2255log sinlog cos 1212π+π的值是( )A 4B1 C4-D1-5. 设()sin()cos()f x a x b x =π+α+π+β+4,其中a b 、、、αβ均为非零的常数,若(1988)3f =,则(2008)f 的值为( )A .1B .3C .5D .不确定6. 若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B .2C .3D .27. 为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位8. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( ) A .)48sin(4π-π-=x y B .)48sin(4π-π=x yC .)48sin(4π+π=x yD .)48sin(4π+π-=x y9. 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x =( )A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题(每小题4分,共16分)11.23sin 702cos 10-=- EDBAO12.已知函数()2sin 5f x x π⎛⎫=ω- ⎪⎝⎭的图象与直线1y =-的交点中最近的两个交点的距离为3π,则函数()f x 的最小正周期为 。
高一数学必修四期末测试题及答案

高一数学必修4综合试题之马矢奏春创作一 、选择题1.0sin 390=( )A .21B .21-C .23D .23-2.下列区间中,使函数sin y x =为增函数的是( )A .[0,]πB .3[,]22ππC .[,]22ππ-D .[,2]ππ3.下列函数中,最小正周期为2π的是( )A .sin y x =B .sin cos y x x =C .tan 2x y = D .cos 4y x = 4.已知(,3)a x =,(3,1)b =, 且a b ⊥, 则x 即是 ( )A .-1 B .-9 C .9 D .15.已知1sin cos 3αα+=,则sin 2α=( ) A .21B .21-C .89D .89-6.要获得2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( )A .向左平移23π个单元B .向右平移23π个单元C .向左平移3π个单元 D .向右平移3π个单元7.已知a ,b 满足:||3a =,||2b =,||4a b +=,则||a b -=( ) A .B .3 D .10 8.已知1(2,1)P -, 2(0,5)P 且点P 在12PP 的延长线上, 12||2||PP PP =, 则点P 的坐标为 ( ) A .(2,7)- B .4(,3)3 C .2(,3)3D .(2,11)-9.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为( )A .16B .2213C .322D .131810.函数)sin(ϕω+=x y 的部份图象如右图,则ϕ、ω可以取的一组值是( )A. ,24ππωϕ== B. ,36ππωϕ==C. ,44ππωϕ== D.5,44ππωϕ==第II 卷(非选择题, 共60分)二、填空题(本年夜题共4小题,把谜底填在题中横线上) 11.已知扇形的圆心角为0120,半径为3,则扇形的面积是12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为13.函数y =. 14.给出下列五个命题:①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x =的图象关于点(2π,0)对称;③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k Z∈以上四个命题中正确的有(填写正确命题前面的序号)三、解答题(本年夜题共6小题,解承诺写出文字说明,证明过程或演算步伐)15.(1)已知4cos5,且为第三象限角,求sin 的值 (2)已知3tan =α,计算 ααααsin 3cos 5cos 2sin 4+- 的值16)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()f α2)若31cos()25πα-=,求()f α的值 a , b 的夹角为60, 且||2a =, ||1b =, (1) 求a b ;(2) 求||a b +.18已知(1,2)a =,)2,3(-=b ,当k 为何值时,(1) ka b +与3a b -垂直?(2) ka b +与3a b -平行?平行时它们是同向还是反向?19某港口的水深y (米)是时间t (024t ≤≤,单元:小时)的函数,下面是每天时间与水深的关系表:经过长期观测,()y f t =可近似的看成是函数sin y A t b ω=+(1)根据以上数据,求出()y f t =的解析式(2)若船舶航行时,水深至少要11.5米才是平安的,那么船舶在一天中的哪几段时间可以平安的进出该港?20已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b =(1) 求函数()f x 的解析式;(2) 那时,63x ππ⎡⎤∈-⎢⎥⎣⎦, ()f x 的最小值是-4 , 求此时函数()f x 的最年夜值, 并求出相应的x 的值.数学必修4综合试题参考谜底一、ACDAD DDDCC二、11.3π 12.(0,9) 13. [2,2]k k πππ+k Z ∈ 14.①④三、15.解:(1)∵22cos sin 1αα+=,α为第三象限角 ∴3sin 5α==- (2)显然cos 0α≠∴4sin 2cos 4sin 2cos 4tan 24325cos 5cos 3sin 5cos 3sin 53tan 5337cos αααααααααααα---⨯-====++++⨯16.解:(1)()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=---- (2)∵31cos()25πα-=∴1sin 5α-= 从而1sin 5α=- 又α为第三象限角∴cos α==,即()f α的值为17.解: (1) 1||||cos 602112a b a b ==⨯⨯=(2) 22||()a b a b +=+ 所以||3a b +=18.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥(3)a b -,得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-==(2)()//ka b +(3)a b -,得14(3)10(22),3k k k --=+=- 此时1041(,)(10,4)333ka b +=-=--,所以方向相反. 19.解:(1)由表中数据可以看到:水深最年夜值为13,最小值为7,137102h +==,13732A -== 且相隔9小时到达一次最年夜值说明周期为9,因此29T πω==,29πω=,故2()3sin109f t t π=+(024)t ≤≤ (2)要想船舶平安,必需深度()11.5f t ≥,即23sin1011.59t π+≥ ∴21sin 92t π≥2522696k t k πππππ+≤≤+ 解得:3159944k t k +≤≤+k Z∈又 024t ≤≤那时0k =,33344t ≤≤;那时1k =,3391244t ≤≤;那时2k =,33182144t ≤≤ 故船舶平安进港的时间段为(0:453:45)-,(9:4512:45)-,(18:4521:45)-20.解: (1) ()(3sin ,cos )(cos ,cos )f x a b x m x x m x ==+-+,即22()cos cos f x x x x m =+-(2) 221cos 2()22x xf x m +=+-21sin(2)62x m π=++-由,63x ππ⎡⎤∈-⎢⎥⎣⎦,52,666x πππ⎡⎤∴+∈-⎢⎥⎣⎦,1sin(2),162x π⎡⎤∴+∈-⎢⎥⎣⎦,211422m ∴-+-=-, 2m ∴=±max 11()12f x ∴=+-=-, 此时2x ππ+=, x π=.。
(完整)高一数学必修四期末测试题及答案(3),推荐文档

y O1 2 3 x
11.已知扇形的圆心角为1200 ,半径为 3 ,则扇形的面积是
12.已知 ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为
13.函数 y sin x 的定义域是
.
14. 给出下列五个命题:
①函数
y
2sin(2x
高一数学必修 4 模块期末试题
第 I 卷(选择题, 共 50 分)
一 、选择题(本大题共 10 小题,每小题5分,共 50 分)
1. sin 3900 ( )
1
A.
2
2.下列区间中,使函数 y sin x 为增函数的是( )
A.[0, ]
3 B.[ , ]
22
C.[ , ] 22
3.下列函数中,最小正周期为 的是( )
) 的一条对称轴是 x
5
;②函数
y
tan
x
的图象关于点(
,0)对称;
3
12
2
③正弦函数在第一象限为增函数;④若 sin(2x1
4
)
sin(2x2
4
)
,则
x1
x2
k
,其中
k
Z
以上四个命题中正确的有
(填写正确命题前面的序号)
三、解答题(本大题共 6 小题,共 80 分,解答应写出文字说明,证明过程或演算步骤)
1
15(本小题满分 12 分)
(1)已知 cos a = - 4 ,且 a 为第三象限角,求 sin a 的值 5
(2)已知 tan 3 ,计算
4sin 2 cos 5cos 3sin
的值
sin( ) cos(3 ) tan( )
(完整版)高一数学必修4期末试卷及答案,推荐文档

18.(本小题满分 12 分) 已知函数 f (x) cos2 x 1π2 , g(x) 121 sin 2x .
1 设 x x0 是函数 y f (x) 图象的一条对称轴,求 g(x0 ) 的值; 2 求函数h(x) f (x) g(x) 的单调递增区间.
参考答案一、选择题(每小题 4 分,共 40 分)
C.反向平行
D.既不平行也不垂直
11.
3 1
sin
70
12 cos210
.
12.
已知函数
f
(x)
2sin x
5
的图象与直线
y
1
的交点中最近的两个交点的距离为 3 ,则函数
f (x) 的最小正周期为
。
13. 已知函数 f (x) sin(x ) cos(x ) 是偶函数,且 [0, ] ,则 的值 为
高一年级数学《必修 4》试题
一、选择题(每小题 4 分,共 40 分)
E
D
1. 与 463 终边相同的角可以表示为(k Z) ( )
A. k 360 463
B. k 360 103 C. k 360 257
D.k 360 257
2 如图,在正六边形 ABCDEF 中,点 O 为其中心,则下列判断错误的是 ( )
A、B 的横坐标分别为 2 5 , 3 10 .
5 10
(1)求 tan( )的值;
(2)求 的
值.
17.(本小题满分 12 分) 已知函数
f (x) 1 cos2 x 3 sin x cos x 1 , x R .
2
2
(1) 求函数 f (x) 的最小正周期;
(2) 求函数 f (x) 在[ , ]上的最大值和最小值,并求函数取得最大值和最小值时的自变量 x 的值. 12 4
(完整版)高一数学必修4期末试卷及答案,推荐文档

.
2
14.下面有五个命题:
①函数 y=sin4x-cos4x 的最小正周期是 .
②终边在 y 轴上的角的集合是{a|a= k , k Z }. 2
③在同一坐标系中,函数 y=sinx 的图象和函数 y=x 的图象有三个公共点.
④把函数 y 3sin(2x ) 的图像向右平移 得到 y 3sin 2x 的图像.
13
B 头头 头头头头头头 /wxc/
头头头头 头头头 wxckt@
头头 头头头头头头
/wxc/
头头头头 头头头 wxckt@
5 13
C
头头 头头头头头头
/wxc/
A.互相垂直
B.同向平行
C.反向平行
D.既不平行也不垂直
二、填空题(每小题 4 分,共 16 分)
11.
3 sin 70 2 cos2 10
12.已知函数
f
(x)
2 sin
x
5
的图象与直线
y
1的交点中最近的两个交点的距离为
3
,则函数
f(x)Biblioteka 的最小正周期为。13.已知函数 f (x) sin(x ) cos(x ) 是偶函数,且 [0, ] ,则 的值 为
84
84
9.
设函数
f (x)
sin
x
3
(x
R)
,则
f (x) =(
)
A.在区间
2 3
,7 6
上是增函数
B.在区间
,
2
上是减函数
C.在区间
8
, 4
上是增函数
D.在区间
3
,5 6
上是减函数
10.设 D、E、F 分别是△ABC 的三边 BC、CA、AB 上的点,且 DC 2BD, CE 2EA, AF 2FB, 则 AD BE CF 与 BC ( )
(完整版)高一数学必修4期末试卷及答案(2),推荐文档
高一年级数学必修4期末复习测试题一、选择题(每小题4分,共40分)1.与终边相同的角可以表示为 ( )463-︒(k Z)∈A .B .C .D .k 360463⋅︒+︒k 360103⋅︒+︒k 360257⋅︒+︒k 360257⋅︒-︒2 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是 ( )A .B .∥ C .D . AB OC= AB DE AD BE = AD FC = 3.是第四象限角,,( )α12cos 13α=sin α=AB C D 13513-512512-4. 的值是( )55sin cos 1212π+πA 4 B 1CD 4-1-5. 设+4,其中均为非零的常数,若,则的值为( )()sin()cos()f x a x b x =π+α+π+βa b、、、αβ(1988)3f =(2008)f A .1B .3C .5D .不确定6. 若动直线与函数和的图像分别交于两点,则的最大值为( )x a =()sin f x x =()cos g x x =M N ,MN A .1B C D .27. 为得到函数的图像,只需将函数的图像( )πcos 23y x ⎛⎫=+⎪⎝⎭sin 2y x =A .向左平移个长度单位B .向右平移个长度单位 C .向左平移个长度单位D .向右平移个长度单位5π125π125π65π68. 函数的部分图象如图所示,则函数表达式为( )),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=A . B . C . D .)48sin(4π-π-=x y 48sin(4π-π=x y )48sin(4π+π=x y 48sin(4π+π-=x y 9. 设函数,则=( )()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ()f x A .在区间上是增函数B .在区间上是减函数 C .在区间上是增函数D .在区间上是减函数2736ππ⎡⎤⎢⎥⎣⎦,2π⎡⎤-π-⎢⎥⎣⎦,84ππ⎡⎤⎢⎥⎣⎦,536ππ⎡⎤⎢⎥⎣⎦,10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且则与()2,DC BD = 2,CE EA = 2,AF FB = AD BE CF ++ BC A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题(每小题4分,共16分)11. 23sin 702cos 10-=-12.已知函数的图象与直线的交点中最近的两个交点的距离为,则函数的最小正周期为 。
高一数学必修四期末测试题及答案
高一数学必修4模块期末试题第I 卷(选择题, 共50分)一 、选择题(本大题共10小题,每小题5分,共50分)1.0sin 390=( ) A .21 B .21- C .23 D .23- 2.下列区间中,使函数sin y x =为增函数的是( )A .[0,]πB .3[,]22ππC .[,]22ππ-D .[,2]ππ 3.下列函数中,最小正周期为2π的是( ) A .sin y x = B .sin cos y x x = C .tan2x y = D .cos 4y x = 4.已知(,3)ax =, (3,1)b =, 且a b ⊥, 则x 等于 ( ) A .-1 B .-9 C .9 D .1 5.已知1sin cos 3αα+=,则sin 2α=( ) A .21 B .21- C .89 D .89- 6.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位 C .向左平移3π个单位 D .向右平移π个单位 7.已知a ,b 满足:||3a =,||2b =,||4a b +=,则||a b -=( ) A .3B C .3 D .10 8.已知1(2,1)P -,2(0,5)P 且点P 在12P P 的延长线上, 12||2||PP PP =, 则点P 的坐标为 ( )A .(2,7)-B .4(,3)3C .2(,3)3D .(2,11)- 9.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为 ( ) A .16 B .2213 C .322 D .1318 10.函数)sin(ϕω+=x y 的部分图象如右图,则ϕ、ω可以取的一组值是( )A. ,24ππωϕ==B. ,36ππωϕ==C. ,44ππωϕ==D. 5,44ππωϕ== 第II 卷(非选择题, 共60分) 二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)11.已知扇形的圆心角为0120,半径为3,则扇形的面积是12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为13.函数y =的定义域是 .14. 给出下列五个命题:①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x =的图象关于点(2π,0)对称;③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k Z ∈ 以上四个命题中正确的有 (填写正确命题前面的序号)三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15(本小题满分16分)(1)已知4cos 5a =-,且a 为第三象限角,求sin a 的值(2)已知3tan =α,计算 ααααs i n 3c o s 5c o s 2s i n 4+- 的值16(本题满分16分)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()f α (2)若31cos()25πα-=,求()f α的值 17(本小题满分16分)已知向量a , b 的夹角为60, 且||2a =, ||1b =, (1) 求 a b ; (2) 求 ||a b +. 18(本小题满分16分)已知(1,2)a =,)2,3(-=b ,当k 为何值时, (1) ka b +与3a b -垂直? (2) ka b +与3a b -平行?平行时它们是同向还是反向? 20(本小题满分14分) 已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b =(1) 求函数()f x 的解析式;(2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值. 参考答案: 一、ACDAD DDDCC二、11.3π 12.(0,9) 13.[2,2]k k πππ+k Z ∈ 14. ①④ 三、15.解:(1)∵22cos sin 1αα+=,α为第三象限角∴ 3sin 5α===- (2)显然cos 0α≠∴ 4sin 2cos 4sin 2cos 4tan 24325cos 5cos 3sin 5cos 3sin 53tan 5337cos αααααααααααα---⨯-====++++⨯16.解:(1)()3sin()cos()tan() 22tan()sin()fππααπαααπαπ-+-=----(2)∵31 cos()25πα-=∴1sin5α-=从而1sin5α=-又α为第三象限角∴cos5α==-即()fα的值为17.解:(1)1||||cos602112a b a b==⨯⨯=(2) 22||()a b a b+=+所以||3a b+=18.解:(1,2)(3,2)(3,22)ka b k k k+=+-=-+(1)()ka b+⊥(3)a b-,得()ka b+(3)10(3)4(22)2380,19a b k k k k-=--+=-==(2)()//ka b+(3)a b-,得14(3)10(22),3k k k--=+=-此时1041(,)(10,4)333ka b+=-=--,所以方向相反。
高中数学必修四(期末试卷 含答案)
数学必修四测试卷一、选择题(本大题共12道小题,每题5分,共60分)1.函数y =sin α+cos α⎪⎭⎫⎝⎛2π < < 0α的值域为( ).A .(0,1)B .(-1,1)C .(1,2]D .(-1,2)2.锐角三角形的内角A ,B 满足tan A -A2sin 1=tan B ,则有( ). A .sin 2A -cos B =0 B .sin 2A +cos B =0 C .sin 2A -sin B =0D .sin 2A +sin B =03.函数f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -sin 2⎪⎭⎫ ⎝⎛4π-x 是( ).A .周期为 π 的偶函数B .周期为π 的奇函数C .周期为2 π的偶函数D .周期为2π的奇函数4.下列命题正确的是( )A .单位向量都相等B .若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量C .||||a b a b +=-,则0a b ⋅=D .若0a 与0b 是单位向量,则001a b ⋅=5.已知,a b 均为单位向量,它们的夹角为060,那么3a b +=( )A .7B .10C .13D .46.已知向量a ,b 满足1,4,a b ==且2a b ⋅=,则a 与b 的夹角为A .6π B .4π C .3π D .2π 7.在∆ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( )A .3πB .6πC .6π或π65 D .3π或32π8. 若,则对任意实数的取值为( )A. 区间(0,1)B. 1C.D. 不能确定9. 在中,,则的大小为( )A.B.C.D.10. 已知角α的终边上一点的坐标为(32cos ,32sin ππ),则角α的最小值为( )。
A 、65π B 、32π C 、35π D 、611π 11. A ,B ,C 是∆ABC 的三个内角,且B A tan ,tan 是方程01532=+-x x 的两个实数根,则∆ABC 是( )A 、等边三角形B 、锐角三角形C 、等腰三角形D 、钝角三角形12. 已知y x y x sin cos ,21cos sin 则=的取值范围是( )A 、]1,1[-B 、]21,23[-C 、]23,21[-D 、]21,21[-二、填空题(本题共4小题,每小题5分,共20分)13.已知方程01342=+++a ax x (a 为大于1的常数)的两根为αtan ,βtan ,且α、∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+的值是_________________.14. 若向量||1,||2,||2,a b a b ==-=则||a b += 。
高一数学必修四期末测试题及答案
高一数学必修4综合试题一 、选择题1.0sin 390=( ) A .21 B .21- C .23 D .23- 2.下列区间中,使函数sin y x =为增函数的是( ) A .[0,]π B .3[,]22ππC .[,]22ππ- D .[,2]ππ 3.下列函数中,最小正周期为2π的是( ) A .sin y x = B .sin cos y x x = C .tan 2x y = D .cos 4y x = 4.已知(,3)a x =v ,(3,1)b =v , 且a b ⊥v v , 则x 等于 ( ) A .-1 B .-9 C .9 D .1 5.已知1sin cos 3αα+=,则sin 2α=( ) A .21 B .21- C .89 D .89- 6.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位 C .向左平移3π个单位 D .向右平移3π个单位 7.已知a r ,b r 满足:||3a =r ,||2b =r ,||4a b +=r r ,则||a b -=r r( ) ABC .3D .10 8.已知1(2,1)P -,2(0,5)P 且点P 在12P P 的延长线上, 12||2||PP PP =u u u v u u u v , 则点P 的坐标为 ( ) A .(2,7)-B .4(,3)3C .2(,3)3D .(2,11)- 9.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为 ( ) A .16 B .2213 C .322 D .1318 10.函数)sin(ϕω+=x y 的部分图象如右图,则ϕ、ω可以取的一组值是( ) A. ,24ππωϕ== B. ,36ππωϕ== C. ,44ππωϕ== D. 5,44ππωϕ== 第II 卷(非选择题, 共60分) 二、填空题(本大题共4小题,把答案填在题中横线上)11.已知扇形的圆心角为0120,半径为3,则扇形的面积是12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为13.函数y =的定义域是 .14. 给出下列五个命题:①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x =的图象关于点(2π,0)对称; ③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k Z ∈ 以上四个命题中正确的有 (填写正确命题前面的序号)三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤)15.(1)已知4cos 5a =-,且a 为第三象限角,求sin a 的值 (2)已知3tan =α,计算 ααααsin 3cos 5cos 2sin 4+- 的值16)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()f α2)若31cos()25πα-=,求()f α的值17.已知向量a v , b v 的夹角为60o , 且||2a =v , ||1b =v , (1) 求 a b v v g ; (2) 求 ||a b +v v .18已知(1,2)a =r ,)2,3(-=,当k 为何值时,(1) ka b +r r 与3a b -r r垂直 (2) ka b +r r 与3a b -r r 平行平行时它们是同向还是反向19某港口的水深y (米)是时间t (024t ≤≤,单位:小时)的函数,下面是每天时间与水深的关系表:经过长期观测, ()y f t =可近似的看成是函数sin y A t b ω=+(1)根据以上数据,求出()y f t =的解析式(2)若船舶航行时,水深至少要米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港20已知,cos )a x m x =+r ,(cos ,cos )b x m x =-+r , 且()f x a b =v v g(1) 求函数()f x 的解析式;(2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.数学必修4综合试题参考答案 一、ACDAD DDDCC二、11.3π 12.(0,9) 13.[2,2]k k πππ+k Z ∈ 14. ①④ 三、15.解:(1)∵22cos sin 1αα+=,α为第三象限角∴ 3sin 5α===- (2)显然cos 0α≠∴4sin2cos4sin2cos4tan24325cos5cos3sin5cos3sin53tan5337cosαααααααααααα---⨯-====++++⨯16.解:(1)()3sin()cos()tan() 22tan()sin()fππααπαααπαπ-+-=----(cos)(sin)(tan)(tan)sincosαααααα--=-=-(2)∵31cos()25πα-=∴1sin5α-=从而1sin5α=-又α为第三象限角∴cosα==,即()fα的值为17.解:(1)1||||cos602112a b a b==⨯⨯=ov v v vg(2) 22||()a b a b+=+v v v v22242113a ab b=-+=-⨯+=v v v vg所以||a b+=v v18.解:(1,2)(3,2)(3,22)ka b k k k+=+-=-+r r3(1,2)3(3,2)(10,4)a b-=--=-r r(1)()ka b+⊥r r(3)a b-r r,得()ka b+r rg(3)10(3)4(22)2380,19a b k k k k-=--+=-==r r(2)()//ka b+r r(3)a b-r r,得14(3)10(22),3k k k--=+=-此时1041(,)(10,4)333ka b+=-=--r r,所以方向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑
高一数学必修4模块期末试题
第I 卷(选择题, 共50分)
一 、选择题(本大题共10小题,每小题5分,共50分)
1.0sin 390=( ) A .21 B .21- C .23 D .2
3- 2.下列区间中,使函数
sin y x =为增函数的是( )
A .[0,]π
B .3[,]22ππ
C .[,]22
ππ- D .[,2]ππ 3.下列函数中,最小正周期为2
π的是( ) A .sin y x = B .sin cos y x x = C .tan 2x y = D .cos 4y x = 4.已知(,3)a x =v ,
(3,1)b =v , 且a b ⊥v v , 则x 等于 ( ) A .-1 B .-9 C .9 D .1 5.已知1sin cos 3αα+=,则sin 2α=( ) A .21 B .21- C .89 D .89
- 6.要得到2sin(2)3
y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移23π个单位 B .向右平移23π个单位 C .向左平移3π个单位 D .向右平移
π个单位 7.已知a r ,b r 满足:||3a =r ,||2b =r ,||4a b +=r r ,则||a b -=r r
( ) A B C .3 D .10 8.已知1(2,1)P -, 2(0,5)P 且点P 在12P P 的延长线上, 12||2||PP PP =u u u v u u u v , 则点P 的坐标为 ( )
A .(2,7)-
B .4(,3)3
C .2(,3)3
D .(2,11)- 9.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4
πα+的值为 ( ) A .16 B .2213 C .322 D .1318 10.函数
)sin(ϕω+=x y 的部分图象如右图,则ϕ、ω可以取的一组值是( )
A. ,24ππωϕ==
B. ,36ππωϕ==
C. ,44
ππωϕ== D. 5,44ππ
ωϕ== 第II 卷(非选择题, 共60分) 二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)
11.已知扇形的圆心角为0120,半径为3,则扇形的面积是
12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),则D点坐标为
13.函数y =的定义域是 .
14. 给出下列五个命题:
①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x
=的图象关于点(2
π,0)对称; ③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ
-=-,则12x x k π-=,其中k Z ∈ 以上四个命题中正确的有 (填写正确命题前面的序号)
三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)
15(本小题满分16分)
(1)已知4cos 5a =-,且a 为第三象限角,求sin a 的值
(2)已知3tan =α
,计算 ααααsin 3cos 5cos 2sin 4+- 的值
16(本题满分16分)已知α为第三象限角,()3sin()cos()tan()22tan()sin()
f ππααπαααπαπ-+-=----. (1)化简
()f α (2)若31cos()25πα-
=,求()f α的值
17(本小题满分16分)
已知向量a v , b v 的夹角为60o , 且||2a =v , ||1b =v , (1) 求 a b v v g ; (2) 求 ||a b +v v .
18(本小题满分16分) 已知(1,2)a =r ,)2,3(-=,当k 为何值时, (1) ka b +r r 与3a b -r r
垂直? (2) ka b +r r 与3a b -r r 平行?平行时它们是同向还是反向?
20(本小题满分14分)
已知,cos )a x m x =+r ,(cos ,cos )b x m x =-+r , 且()f x a b =v v g
(1) 求函数()f x 的解析式;
(2) 当,63x ππ⎡⎤∈
-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.
参考答案:
一、ACDAD DDDCC
二、11.3π 12.(0,9) 13.
[2,2]k k πππ+k Z ∈ 14. ①④ 三、15.解:(1)∵22cos sin 1αα+=,α
为第三象限角 ∴
3sin 5
α===- (2)显然cos 0α≠
∴ 4sin 2cos 4sin 2cos 4tan 24325cos 5cos 3sin 5cos 3sin 53tan 5337
cos αα
αααααααααα
---⨯-====++++⨯ 16.解:(1)()3sin()cos()tan()22tan()sin()
f ππααπαααπαπ-+-=---- (cos )(sin )(tan )
(tan )sin cos ααααα
α--=
-=- (2)∵31cos()25
πα-
= ∴ 1sin 5α-= 从而1sin 5
α=- 又α为第三象限角
∴cos 5α==-
即
()f α
的值为5-
17.解: (1) 1||||cos602112a b a b ==⨯⨯=o v v v v g (2) 22||()a b a b +=+v v v v
22242113
a a
b b =-+=-⨯+=v v v v g
所以||a b +=v v 18.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+r r
3(1,2)3(3,2)(10,4)a b -=--=-r r
(1)
()ka b +⊥r r (3)a b -r r , 得()ka b +r r g (3)10(3)4(22)2380,19a b k k k k -=--+=-==r r
(2)()//ka b +r r (3)a b -r r ,得14(3)10(22),3k k k --=+=- 此时1041(,)(10,4)333
ka b +=-=--r r ,所以方向相反。
19.解:(1)由表中数据可以看到:水深最大值为13,最小值为7,137102h +==,13732
A -== 且相隔9小时达到一次最大值说明周期为9,因此29T πω==,29
πω=, 故2()3sin 109
f t t π=+ (024)t ≤≤ (2)要想船舶安全,必须深度()11.5f t ≥,即23sin 1011.59
t π+≥ ∴21sin 92t π≥ 2522696k t k πππππ+≤≤+ 解得:3159944
k t k +≤≤+ k Z ∈ 又 024t ≤≤
当0k =时,33344t ≤≤;当1k =时,3391244t ≤≤;当2k =时,33182144
t ≤≤ 故船舶安全进港的时间段为(0:453:45)-,(9:4512:45)-,(18:4521:45)-
20.解
: (1) (),cos )(cos ,cos )f x a b x m x x m x ==+-+v v g g
即22()cos cos f x x x x m =+-
(2) 21cos 2()2
x f x m +=- 21sin(2)62
x m π=++- 由,63x ππ⎡⎤∈
-⎢⎥⎣⎦, 52,666x πππ⎡⎤∴+∈-⎢⎥⎣⎦, 1sin(2),162x π⎡⎤∴+∈-⎢⎥⎣⎦, 211422
m ∴-+-=-, 2m ∴=±
max 11()1222f x ∴=+-=-, 此时262x ππ+=, 6x π
=.。