七上数学有理数单元综合测试题(带答案苏教版)

合集下载

苏科版七年级数学上册 有理数单元测试卷(含答案解析)

苏科版七年级数学上册 有理数单元测试卷(含答案解析)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.4.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

苏教版数学七年级上册第二章有理数单元试卷及答案

苏教版数学七年级上册第二章有理数单元试卷及答案

苏教版七上数学第二章有理数测试题一、判断题1.一个数不是正数,就是负数。

( )2.两数之和为a ,差为b ,则a b >。

( )3.若0a <,0b <,则()0a b --<。

( )4.两个有理数比较大小,绝对值大的反而小。

( )5.若+100元表示盈利100元,则—100元表示支出100元。

( )6.在数轴上表示—3的点比表示+2的点离原点远。

( )7.两数之和为负数,则两数中至少有一个为负数。

( )8.绝对值小于10的所有整数之积为零。

( ) 二、填空题。

1. 3.14π-=___________。

2.当x ________时,22x x -=-。

3.若0a <,比较大小:b a +________b a -。

4.已知a b =,则a 和b 的关系为_________________。

5.已知243220x x y -+++=,则x y -=___________。

6.某地上午气温为10℃,下午上升2℃,到半夜又下降15℃,那么半夜的气温为_______。

7.在数轴上点A 表示数—4,点B 和点A 的距离为5,则点B 在数轴上表示的数为______________。

8.已知5x >,化简:34x x -+-=______________。

9.若0a <,0b <,且a b <,则a b -_________0。

10.计算:1111111019910099100101-----=_______________。

三、选择题1.若a a =-,则有理数a 为( )A 、正数B 、负数C 、非负数D 、负数和零 2.已知a 和b 一正一负,则a ba b+的值为( ) A 、0 B 、2 C 、—2 D 、根据a 、b 的值确定3.有一种记分方法:以80分为准,88分记为+8分,某同学得分为74分,则应记为( ) A 、+74分 B 、—74分 C 、+6分 D 、—6分4.已知23a b c m ++=,34a b c m ++=,则b 和c 的关系为( ) A 、相等 B 、互为相反数 C 、互为倒数 D 、无法确定5.下列运算正确的是( )A 、a -一定是负数B 、a 一定为正数C 、a 一定不是负数D 、—a 一定是负数 6.下列运算正确的是( )A 、()()()()42644--++---=-B 、()()()()426412--++---=-C 、()()()()42648--++---=-D 、()()()()426410--++---=- 7.已知0a >,0b <,且0a b +>,下列说法错误的是( ) A 、0a b -> B 、a b < C 、a b a b +<- D 、a b >-8.已知a 、b 在数轴上的位置如图,把a 、b 、a -、b -从小到大排列正确的是:( )a O bA 、a b a b -<-<<B 、a b b a <-<<-C 、b a a b -<<-<D 、a b b a <<-<- 9.已知a a >,b b >,且a b >,则a 、b 的大小关系为( )A 、a b >B 、a b =C 、a b <D 、无法确定10.在数轴上把表示一个数的点向右移动6个单位后表示这个数的相反数,这个数为( ) A 、3 B 、—3 C 、6 D 、—6 四、填表。

苏科版七年级上《第二章有理数》单元测试含答案.docx

苏科版七年级上《第二章有理数》单元测试含答案.docx

第二章有理数单元测试一. 单选题(共10题;共30分)1•下列各组数中:①・扌和(-5) 2;②(-3)彳和.宁;③.(-0.3) 5和0.35;④和0"°; ⑤(-1)彳和一 (-1) 2 .相等的共有( )4组 D 、5组2•计算-4x2的结果是(3.2015的倒数是() 6.下列说法屮,正确的是( )7. - 5的相反数是()A.5B.15C. - 15 8•已知 a>b 且 a+b=0,贝ij ()9•下列各数中,比・2小的数是(A. - 3B. - 1C.OD.210.如果向北走3m,记作+3m,那么・10m 表示()A 、向东走10mB 、向南走10mC 、向西走10mD 、向北走10m二、填空题(共8题;共39分)|a|=1, |b|=2, |c|=3,月.a>b>c,那么 a+b - c= _____________12. 在数・5, 1,・3, 5,・2中任选两个数相乘,其中最大的积是A.aVOB.b>0C.b<0D.a>0 A 、-6 B 、-2C 、D 、-8 A. -20152015 c 2015 D. 20154.计•算(1 - -孑-^)• ・§) • B 、5•计算( -25)三手的结果等于( B 、-5 C 、-15D 、A •所冇的冇理数都能用数轴上的点表示B •冇理数分为正数和负数C •符号不同的两个数互为相反数 D.两数相加和一定大于任何一个加数13. 若 a<0, b<0, |a|<|b|,则 a ・b ____________ 0.14. ・2倒数是 ______ ,・2绝对值是 _________15. 计算:1 ■ ( ■ 3) = _______16. 如果水库的水位高于正常水位Im 时,记作+lm,那么低于正常水位2m 时,应记作 ____________ . 17. 若 |a - 1|=4,则 a= ________ .18. 计算:-(+ j , - ( - 5.6) = ___________ ,・ | ・ 2|= ______ , 0+ (・ 7) = _________ ・ (・ 1)- I -3|= __________ •三、解答题(共6题;共31分)29.把下列各数分别填入相应的大括号里:・ 227 , 0,・(+0.18) , 34 }:};};}.20. 若|a|=5, |b|=3,① 求a+b 的值;② 若a+b<0,求a-b 的值.21. 若|a| =4, |b|=2,且 aVb,求 a - b 的值.-5.13, 5,・ | ・ 2|, +41, 正数集合{ 负数集合{ 整数集合{ 分数集合{22.小明在初三复习归纳吋发现初中阶段学习了三个非负数,分别是:①X;②a;③|a| (a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2) 2+|x+y・1|二0,求/的值•请你利用三个非负数的知识解答这个问题23•为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15, -4, +13, - 10, - 12, +3,- 13, - 17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格屮的数.-3795答案解析一、单选题I、【答案】C【考点】有理数的乘方【解析】f分莎丿首先计算出各组数的值,然后作出判断.【解答】@-52=-25, (-5)2=25;②(-3)3=-27 ^-33=-27;③.(-0.3)乙0.00729 , 0.35=0.00729;④O ioo=o2oo=o;⑤(-1)3=-1,・(-1)2=-1.故②③④⑤组相等.故选C.(点讦口本题主要考查有理数乘方的运算.正数的任何次幕都是正数;负数的奇次帚是负数,负数的偶次幕是正数.2、【答案】D【考点】有理数的乘法【解析】【解答】解:原式二・(4x2)=-8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案.3、【答案】C【考点】倒数【解析】【解答】解:2015的倒数是诰故选:C.【分析】根据倒数的定义可得2015的倒数是祐 .4、【答案】C【解析】【解答】解:设44+4=a,原式二(.1 - a) (a+£ ) - (1 _ a - ) a=a+-^ - a2 - a _ a+a2+-^ a=-^ ,■ ■■故选c【分析】设4+j+^=a,原式变形后计算即可得到结果.5、【答案】C【考点】有理数的除法【解析】【解答】解:V (- 25) 号 (-25) x|=- 15, ・•・(・25)十扌的结果等于・15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(-25) 的结果等于多少即可.6、【答案】A【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;・3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解.7、【答案】A【考点】相反数【解析】【解答】解:-5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果.8、【答案】D【考点】有理数的加法【解析】【解答】解:Va>b a+b=O, Aa>0, b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.9、【答案】A【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知- 3<-2. 故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比・2小的数是・3・10、【答案】B【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么-10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出-10m的意义.二、填空题11>【答案】2或0【考点】有理数的混合运算【解析】【解答】解:V|a|=l, |b|=2, |c|=3,・:a=±l, b=±2, c=±3,Va>b>c,a= - 1, b= - 2, c= - 3 xiK a=l, b= - 2, c= - 3,则a+b - c=2 或0.故答案为:2或0【分析】先利用绝对值的代数意义求出a, b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.12、【答案】15【考点】有理数的乘法【解析】【解答】解:根据题意得:(・5) x (・3) "5,故答案为:15【分析】根据题意确定出积最大的即可.13、【答案】>【解析】【解答】解:Va<0, b<0, |a|<|b|A a ・ b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.14、【答案】2【考点】绝对值,倒数【解析】【解答】解:- 2的倒数为-*, - 2的绝对值为2. 故答案为■ * ; 2.【分析】分别根据倒数的定义以及绝刈值的意义即可得到答案.15、【答案】4【考点】有理数的减法【解析】【解答】解:(・3)=1+3=4.故答案为:4.【分析】根据有理数的减法法则,求出(・3)的值是多少即可.16、【答案】-2m【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:-2m. 故答案为:-2m【分析】弄清楚规定,根据规定记数低于正常水位2m.17、【答案】5或・3【考点】绝对值【解析】【解答】解:・・・|a-l|=4, .\a - 1=4或解得:a=5或3.故答案为:5或・3.【分析】依据绝对值的定义得到a・1=±4,故此可求得a的值.18、【答案】-5.6; -2; - 7; -4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=・扌;原式=5.6:原式=-2;原式二・7;原式=-1 - 3= - 4, 故答案为:・亍;5.6; - 2; - 7; - 4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题19、【答案】【解答】解:正数集合{5, +41, 34}; 负数集合{-5.13, -|-2|,・ 227,・(+0.18) }; 整数集合{5, -|-2|, +41, 0};分数集合{- 5.13, - 227, - (+0.18) , 34}【考点】有理数【解析】【分析】按照有理数的分类填写:'正整数整数0负整数 V ■20、 【答案】解:(1) V|a|=5, |b|=3,a=±5, b=±3,.\a+b=8或2或・2或-8;(2) Va=±5, b 二±3,且 a+b<0,a= - 5, b=±3,A a - b= - 8 nJc - 2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5, |b|=3,那么a=±5, b=±3,再分4种情况分别计算即可;(2)由于a=±5, b=±3,且a+b<0,易求a= - 5, b=±3,进而分2种情况计算即可.21、 【答案】解:V|a|=4, |b|=2,a=±4, b=±2,Va<b,•Ia= - 4, b=±2,a - b= - 4 - 2= - 6,或 a-b=-4- ( - 2 ) = - 4+2= - 2,所以,a - b 的值为-2或-6.【解析】【分析】根据绝对值的性质求出a 、b,再判断出a 、b 的对应情况,然后根据有理数的减法运算 法则有理数' 分数{ 正分数负分数进行计算即可得解.22、【答案】解:I (x+2) »x+y - 1冋,/• x+2=0x+y-l=0,解得x=-2y=3,x y= ( - 2)3= - 8,即x,的值是■&【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y-l|=O,然后根据偶次方的非负性,以及绝对值的非负性, 可得x+2=0, x+y・20,据此求出x、y的值各是多少,再把它们代入/ ,求出的值是多少即可.23、【答案】解:(1) 0+15 - 4+13 - 10 ・ 12+3 - 13 - 17= - 25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2) |+151 + | - 4| + |+131 + | - 10| + | - 121 + |+31 + | - 13| + | - 171 =87 (千米),87x0.1=8.7 (升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,岀车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值, 如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量.24、【答案】解:J・3+7+5=・3+12=9,・・・三个数的和为9,第三行中间的数是9 -(9+5) =-5,最中间的数是9 -(- 3+9) =3,第二列最上边的数是9- ( - 5+3) =9+2=11,第一行的第一个数是9・(・3+21) =9・8二1,第一列的第二个数是9・(1+9)=・3111■379-5【考点】冇理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。

江苏七年级数学上册第一章《有理数》测试(含答案)

江苏七年级数学上册第一章《有理数》测试(含答案)

1.若b<0,刚a ,a+b ,a-b 的大小关系是( ) A .a<a <+b -b a B .<a<a-b a+b C .a<<a-b a+b D .<a<a+b a-b D解析:D 【分析】根据有理数减法法则,两两做差即可求解. 【详解】 ∵b<0∴()0a a b b -+=->,()0a b a b --=-> ∴()a a b >+,()a b a -> ∴()()a b a a b ->>+ 故选D . 【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数. 2.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.0C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12=272. 故选:C . 【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.6.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2 D .4,3A解析:A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42, 故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系. 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12C .56D .56A 解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数. 8.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 9.绝对值大于1且小于4的所有整数的和是( ) A .6 B .–6C .0D .4C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C . 10.若a ,b 互为相反数,则下面四个等式中一定成立的是( ) A .a+b=0 B .a+b=1C .|a|+|b|=0D .|a|+b=0A解析:A 【解析】a ,b 互为相反数0a b ⇔+= ,易选B.11.下列关系一定成立的是( )A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.12.计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.13.下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故②正确; ③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确; ④∵111523623⎛⎫--== ⎪⎝⎭,217533346+==,333466<, ∴125523⎛⎫-->+ ⎪⎝⎭,故④错误. 综上,正确的有:②③. 故选:D . 【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.14.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数 D .a -可以表示任何有理数D解析:D 【分析】直接根据有理数的概念逐项判断即可. 【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误; B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误; C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误; D. a -可以表示任何有理数,故该选项正确. 故选:D . 【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键. 15.下列各式计算正确的是( ) A .826(82)6--⨯=--⨯ B .434322()3434÷⨯=÷⨯ C .20012002(1)(1)11-+-=-+ D .-(-22)=-4C解析:C 【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断. 【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意; D 、-(-22)=4,错误,不符合题意; 故选:C . 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76. 【分析】根据要求进行四舍五入即可. 【详解】解:把67.758精确到0.01位得到的近似数是67.76. 故答案是:67.76. 【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:19-【分析】根据倒数,相反数,平方的概念可知. 【详解】−3的平方是9,9的相反数是-9,-9的倒数是19- 故答案为19-. 【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.3.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4 解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.4.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.5.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可. 【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 故答案为:0. 【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.6.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可. 【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯ 168.58=- 7.42=(℃);答:此时泰山顶部的气温大约为7.42℃. 故答案为:7.42. 【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 7.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a -b 与-a-b=-(a+b )不是互为相反数②a+b 与-a-b 是互为相反数③a+1与1-a 不是相反数④-a+b 与a-b 是互为相反数故答案解析:②④ 【分析】直接利用互为相反数的定义分析得出答案. 【详解】解:①a -b 与-a-b=-(a+b ),不是互为相反数,②a+b 与-a-b ,是互为相反数, ③a+1与1-a ,不是相反数, ④-a+b 与a-b ,是互为相反数. 故答案为:②④. 【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.8.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90 【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得. 【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米, 则20(70)207090--=+=(米), 即最高点比最低点高90米, 故答案为:90. 【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.9.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6 【分析】分在-2的左边和右边两种情况讨论求解即可. 【详解】 解:如图,在-2的左边时,-2-4=-6, 在-2右边时,-2+4=2, 所以,点对应的数是-6或2. 故答案为-6或2. 【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.10.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题. 1.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】 (1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 3.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克?解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.4.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。

2019—2020年最新苏科版七年级数学上册《有理数》单元综合练习及答案.docx

2019—2020年最新苏科版七年级数学上册《有理数》单元综合练习及答案.docx

第2章《有理数》单元练习(含答案)(时间:45分钟总分:100分)一、选择题(每小题3分,共30分)1.9的相反数是( )A.-9 B.9 C.±9 D.1 92.如果水位升高5 m时水位变化记作+5 m,那么水位下降3 m时水位变化记作( ) A.-3 m B.3 m C.6 m D.-6 m 3.-||-3的值是( )A.-3 B.-13C.13D.34.2016年1月1日零点,北京、上海、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏5.据统计,2013年我国用义务教育经费支持了13 940 000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为( )A.1.394×107B.13.94×107C.1.394×106D.13.94×1056.(-5)6表示的意义是( )A.-5乘以6的积;B.6个-5相乘的积;C.5个-6相乘的积;D.6个-5相加的和7.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=18.下面说法:①-a 一定是负数;②若|a|=|b|,则a =b ;③一个有理数中不是整数就是分数;④一个有理数不是正数就是负数.其中正确的个数有( )A .1个B .2个C .3个D .4个9.如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a>bB .|a|>|b|C .-a<bD .a +b<010.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )A .-54B .54C .-558D .558二、填空题(每小题3分,共18分)11.-32的倒数的绝对值为 . 12.若a <0,b <0,c >0,则a +b c0. 13.|a -11|+(b +12)2=0,则(a +b)2 015= .14.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过 毫米,最小不低于 毫米.15.某市2014年元旦这天的最高气温是8 ℃,最低气温是-4 ℃,则这天的最高气温比最低气温高 ℃.16.在227,-(-1),-|8-22|,-3,-32,-(-13)3,0中有理数有m 个,自然数有n 个,分数有k 个,负数有t 个,则m -n -k +t = .三、解答题(共52分)17.(6分)把下列各数填入相应集合的括号内:+8.5,-312,0.3,0,-3.4,12,-9,413,-1.2,-2. (1)正数集合:{ };(2)整数集合:{ };(3)非正整数集合:{ };(4)负分数集合:{ }.18.(6分)把下列各数先在数轴上表示出来,再按从大到小的顺序用“>”号连接起来:-4,0,3,-1.5,-⎝ ⎛⎭⎪⎫-32,-|-2|.19.(16分)计算:(1)-12-(-9)-(+7)+|-3.62|; (2)-116-223+445-513+116-3.8;(3)(712-23+54-78)×(-24); (4)-24÷(223)2+512×(-16)-(-0.5)2.20.(6分)若|a|=2,b =-3,c 是最大的负整数,求a +b -c 的值.21.(8分)阅读材料:对于任何实数,我们规定符号⎪⎪⎪⎪⎪⎪⎪⎪a c b d 的意义是⎪⎪⎪⎪⎪⎪⎪⎪a c b d =ad -bc. 例如:⎪⎪⎪⎪⎪⎪⎪⎪1 23 4=1×4-2×3=-2,⎪⎪⎪⎪⎪⎪⎪⎪-2 43 5=(-2)×5-4×3=-22. (1)按照这个规定请你计算⎪⎪⎪⎪⎪⎪⎪⎪5 -4-3 -2的值; (2)按照这个规定请你计算:当|x -2|=0时,⎪⎪⎪⎪⎪⎪⎪⎪3 7x 2 2x -6的值.22.(10分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?参考答案一、选择题(每小题3分,共30分)1.A 2.A 3.A 4.D 5.A 6.B 7.A 8.A 9.C 10.C二、填空题(每小题3分,共18分)11. 23. 12. < . 13. -1. 14. 30.05 , 29.95 . 15. 12 . 16. 6. 三、解答题(共52分)17. (1)正数集合:{+8.5,0.3,12,413,…}; (2)整数集合:{0,12,-9,-2,…};(3)非正整数集合:{0,-9,-2,…};(4)负分数集合:{-312,-3.4,-1.2,…}. 18. 数轴表示略.3>-⎝ ⎛⎭⎪⎫-32>0>-1.5>-|-2|>-4. 19.(1)原式=-12+9-7+3.62 =-6.38.(2)原式=(-116+116)+(-223-513)+(445-3.8)=-8+1 =-7. (3)原式=-14+16-30+21 =-7.(4)原式=-16÷649-1112-14=-4112.20.由题意得,a =±2,c =-1.当a =2时,原式=0;当a =-2时,原式=-4.即a +b -c 的值为0或-4.21.(1)⎪⎪⎪⎪⎪⎪⎪⎪5 -4-3 -2=5×(-2)-(-3)×(-4)=-22. (2)因为|x -2|=0,所以x -2=0,即x =2.所以⎪⎪⎪⎪⎪⎪⎪⎪3 7x 2 2x -6=⎪⎪⎪⎪⎪⎪⎪⎪3 142 -2=3×(-2)-2×14=-34. 22.(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0. 答:守门员最后回到了球门线的位置.(2)由观察可知:5-3+10=12.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米). 答:守门员全部练习结束后,他共跑了54米.。

最新苏科版七年级上册数学 有理数单元综合测试(Word版 含答案)

最新苏科版七年级上册数学 有理数单元综合测试(Word版 含答案)
(1)点 A 表示的数为________,点 B 表示的数为________,线段 AB 的长为________。 (2)若点 A 与点 C 之间的距离表示为 AC,点 B 与点 C 之间的距离表示为 BC,请在数轴上 找一点 C,使 AC=2BC,则点 C 在数轴上表示的数为________。 (3)现有动点 P、Q 都从 B 点出发,点 P 以每秒 1 个单位长度的速度向终点 A 移动;当点 P 移动到 O 点时,点 Q 才从 B 点出发,并以每秒 3 个单位长度的速度向右移动,且当点 P 到达 A 点时,点 Q 就停止移动,设点 P 移动的时间为 t 秒,问:当 t 为多少时,P、Q 两点 相距 4 个单位长度? 【答案】 (1)30;﹣6;36 (2)6 或﹣42 (3)解:①当点 Q 未出发,P、Q 两点相距 4 个单位长度, 此时 t×1=4,所以 t=4; ②点 P 用了 6 秒移动到 O 点时,点 Q 才从 B 点出发。当点 Q 在点 P 后面,P、Q 两点相距 4 个单位长度,此时 3(t﹣6)= t﹣4,所以 t=7; ③点 P 用了 6 秒移动到 O 点时,点 Q 才从 B 点出发。当点 Q 在点 P 前面,P、Q 两点相距 4 个单位长度,此时 3(t﹣6)= t+4,所以 t=11; 所以 t=4 或 t=7 或 t=11。 【解析】【分析】(1)根据非负数的性质求出 a、b 表示的数,然后将点 A 和点 B 表示在 数轴上,容易求出线段 AB 的长; (2)分两种情况讨论:①若点 C 在线段 AB 上,则点 C 为线段 AB 的三等分点,此时


∴ ∵ 对应的数为

①当


②当

,不符合实际情况,


答:点 对应的数为

新苏教版七年级数学上册《有理数》单元测试卷(附答案)

《有理数》单元测试卷班级 姓名一、选择题1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为( )A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3 B.-9 C.-3或-9 D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数8、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定9、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数10、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、411、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0 D 、a -b >0 12、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( ) -a bA 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )+(-c )D 、a +b -c =a +b +(-c )13、若0a b c d <<<<,则以下四个结论中,正确的是( )A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数14、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,且被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能15、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b二、填空题1、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。

苏科版七年级数学上册 有理数单元综合测试(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.2.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.3.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.4.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,…请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+a2+a3+…+a2019的值.【答案】(1);(2);(3)解:a1+a2+a3+…+a2019=+…+=【解析】【解答】第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,∴第4个等式:a4=,第5个等式:a5=,故答案为: (2)第n个等式:a n=故答案为:;【分析】(1)根据规律,得出第5个等式:a5=;(2)根据规律,得出第5个等式:a n=;(3)将提出后,括号里进行加减,即可求出结果.5.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.6.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.7.观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB= .根据以上信息回答下列问题:已知多项式的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为 .(1)A,B两点之间的距离是________.(2)若满足AM = BM,则 ________.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是________.(4)若满足AM + BM =12,则 ________.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数 ________.【答案】(1)8(2)2(3)5或11(4)-4或8(5)-1012【解析】【分析】(1)先根据多项式的次数的定义求出b,进而利用3a与b互为相反数的关系求出a,然后根据数轴上两点间的距离公式列式计算即可;(2)利用两点之间的距离公式分别列出表示线段AM和BM的代数式,然后根据AM=BM 建立方程求解即可;(3)根据两点间的距离公式,分点M在点A的左侧和右侧两种情况分别列出表示线段AM的代数式,然后由已知条件AM=3建立方程,从而求出m的值,进而根据两点间的距离公式求出BM;(4)根据两点间的距离公式,分点M在点A的左侧和B的右侧两种情况分别列出表示线段AM和BM的代数式,然后利用AM + BM =12列方程求解;(5)可知点A连续运动两次实质上是向右移动1个单位长度,当运动了2018次时,实际上向右移动了1009个单位长度,则当运动第2019次时,则点M所对应的数为-2+1009-2019,得解。

初一数学上册《有理数》综合测试卷(苏教版)

初一数学上册《有理数》综合测试卷(苏教版)七上数学有理数单元综合测试题(带答案苏教版)1.判定题(24%)(1)没有最大的整数,也没有最小的负整数.()(2)任何有理数的平方差不多上正数.()(3)平方等于16的数是4.()(4)假如两个数的绝对值相等,那么这两个数一定相等.()(5)两个负数比较大小,绝对值大的反而小.()(6)任何两个互为相反数的商为-1.()(7)任何小于1的数,它的倒数一定大于1.()(8)由四舍五入得到的近似数0.0560有四个有效数字.()2.填空题(18%)(1)在-11,0,-2,3.14,12中最小的数是____.(2)比-小的数是_____.(3)绝对值小于4.2的正整数有_______.(4)-的倒数与-的相反数的和等于______.(5)比较大小:43____34,-(+)_____,|-|-0.33____-0.32.(6)数5.6784精确到千分位约等于_____.3.选择题(24%)(1)数零是()(A)整数(B)正整数(C)负整数(D)分数(2)大于-2.7而小于3.6的整数有()(A)7个(B)6个(C)5个(D)4个(3)假如一个数的相反数比它本身大,那么那个数为()(A)正数(B)负数(C)整数(D)不等于零的有理数(4)在有理数中,倒数等于本身的数有()(A)1个(B)2个(C)3个(D)许多个(5)下列各对数中,数值相等的是()(A)(-2)3和-2×3(B)54和45(C)(-2)3和-23(D)3×24和(3×2)4(6)一个有理数的偶数次幂是正数,那么那个有理数()(A)是正数(B)是负数(C)为正数或负数(D)任何有理数4.解下列各题(14%)(1)把下列各数填在相应的括号里:-,+1,4.7,-17,0,5,39,,5,-6①正整数集合:{,…}②整数集合:{,…}③分数集合:{,…}④有理数集合:{,…}(2)在数轴上表示下列各数,并按从大到小的顺序用“>”号连接起来.+5,-3,0,1,-45.运算(20%)(1)-23×(-3)2×(-1)11;(2)-1×[5÷(-)2-1]÷(-);(3)9×17;(4)(-+)×30;(5)-1-{+[-(-)]}.参考答案1.(1)√(2)×(3)×(4)×(5)√(6)×(7)×(8)×2.(1)-11(2)-(3)4,3,2,1(4)0(5)<,<,>(6)5. 6784(1)A(2)B(3)B(4)B(5)C(6)C4.(1)正整数集合:{+1,39,5,…}整数集合:{+1,-17,0,39,5,-6,…}分数集合{-,4,7,5,,…}有理数集合:{-,+1,4.7,-17,0,5,39,,5,-6,…}“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.中国是世界上最早认识和应用负数的国家,比西方早一千多年,负数最早记载于下列哪部著作中( )A .B .C .D .2.数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具. A .整体B .方程C .转化D .数形结合3.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯4.如图,关于A 、B 、C 这三部分数集的个数,下列说法正确的是( )A .A 、C 两部分有无数个,B 部分只有一个0 B .A 、B 、C 三部分有无数个 C .A 、B 、C 三部分都只有一个D .A 部分只有一个,B 、C 两部分有无数个5.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b+的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个B .1个C .2个D .3个6.(2019·江西省大吉山中学初一期末)当使用计算器的键,将1156的结果切换成小数格式19.16666667,则对应这个结果19.16666667,以下说法错误的是( )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数7.设n 是自然数,则()()2112nn +-+-的值为( )A .1B .-1C .0D .1或-18.如图,数轴上A ,B 两点所表示的数互为倒数,则关于原点的说法正确的是( )A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合9.)“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4, 则20182017!!的值是( ) A .1 B .2016 C .2017 D .201810.数32019・72020・132021的个位数是 ( ) A .1B .3C .7D .911.有一张厚度为0.1毫米的纸片,对折1次后的厚度是20.1⨯毫米,继续对折,2次,3次,4次……假设这张纸对折了20次,那么此时的厚度相当于每层高3米的楼房层数约是( )(参考数据:1021024=, 2021048576=) A .3层B .20层C .35层D .350层12.若a ,b 为有理数,下列判断正确的个数是( )(1)12a ++总是正数;(2)()224a ab +-总是正数;(3)()255ab +-的最大值为5;(4)()223ab -+的最大值是3.A .1B .2C .3D .4二、填空题13.若()2320m n -++=,则m+2n 的值是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七上数学有理数单元综合测试题(带答案苏教版)
1.判断题(24%)
(1)没有最大的整数,也没有最小的负整数.( )
(2)任何有理数的平方都是正数.( )
(3)平方等于16的数是4.( )
(4)如果两个数的绝对值相等,那么这两个数一定相等.( )
(5)两个负数比较大小,绝对值大的反而小.( )
(6)任何两个互为相反数的商为-1.( )
(7)任何小于1的数,它的倒数一定大于1.( )
(8)由四舍五入得到的近似数0.0560有四个有效数字.( )
2.填空题(18%)
(1)在-11,0,-2,3.14,12中最小的数是____.
(2)比-54小53
的数是_____.
(3)绝对值小于4.2的正整数有_______.
(4)-76的倒数与-67
的相反数的和等于______.
(5)比较大小:43____34,-(+76
)_____,|-76|-0.33____-0.32

(6)数5.6784精确到千分位约等于_____.
3.选择题(24%)
(1)数零是( )
(A )整数 (B )正整数 (C )负整数 (D )分数
(2)大于-2.7而小于3.6的整数有( )
(A )7个 (B )6个 (C )5个 (D )4个
(3)如果一个数的相反数比它本身大,那么这个数为( )
(A )正数 (B )负数
(C )整数 (D )不等于零的有理数
(4)在有理数中,倒数等于本身的数有( )
(A )1个 (B )2个 (C )3个 (D )无数个
(5)下列各对数中,数值相等的是( )
(A )(-2)3和-2×3 (B )54和45
(C )(-2)3和-23 (D )3×24和(3×2)4
(6)一个有理数的偶数次幂是正数,那么这个有理数( )
(A )是正数 (B )是负数 (C )为正数或负数 (D )任何有理数
4.解下列各题(14%)
(1)把下列各数填在相应的括号里:
-6
,+1,4.7,-17,0,53
4,39,722
,5,-6 ①正整数集合:{,…}
②整数集合:{,…}
③分数集合:{,…} ④有理数集合:{,…}
(2)在数轴上表示下列各数,并按从大到小的顺序用“>”号连接起来. +5,-3,0,121,-421
5.计算(20%)
(1)-23×(-3)2×(-1)11;
(2)-132
×[5÷(-52)2-1]÷(-31);
(3)95958
×17;
(4)(109-151+61
)×30;
(5)-1-{21+[31-(41-61
)]}.
参考答案
1.(1)√ (2)× (3)× (4)× (5)√ (6)× (7)×
(8)× 2.(1)-11 (2)-7
5 (3)4,3,2,1 (4)0 (5)<,<,>
(6)5.6784(1)A (2)B (3)B (4)B (5)C (6)C
4.(1)正整数集合:{+1,39,5,…}
整数集合:{+1,-17,0,39,5,-6,…} 分数集合{-5
6,4,7,53
4,22
7,…} 有理数集合:{-5
6,+1,4.7,-17,0,534,39,22
7,5,-6,…}
(2)5>112->0>-3>-41
2
5.(1)72 (2)6054 (3)1694259 (4)30 (5)-7
4。

相关文档
最新文档