精选2013中考题5128
2013年全国中考试卷

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. (2013北京,1,4分)在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划.将3 960用科学计数法表示应为 A. 39.6³102 B. 3.96³103 C. 3.96³104 D. 3.96³104 2. (2013北京,2,4分)43-的倒数是 A.34 B. 43 C. 43- D. 34- 3. (2013北京,3,4分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 4. (2013北京,4,4分) 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°5. (2013北京,5,4分)如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,EC =10 m ,CD =20m ,则河的宽度AB 等于A. 60 mB. 40 mC. 30 mD. 20 m6. (2013北京,6,4分)下列图形中,是中心对称图形但不是轴对称图形的是7. (2013北京,7,4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时 8. (2013北京,8,4分)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9. (2013北京,9,4分)分解因式:a ab ab 442+-=_________________10. (2013北京,10,4分)请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式y =__________.11. (2013北京,11,4分)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD的中点,若AB =5,AD =12,则四边形ABOM 的周长为__________直线l :12. (2013北京,12,4分)如图,在平面直角坐标系x O y 中,已知1--=x t ,双曲线xy 1=.在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,….记点A n 的横坐标为n a ,若21=a ,则2a =__________,2013a =__________;若要将上述操作无限次地进行下去,则1a 不能取...的值是__________三、解答题(本题共30分,每小题5分)13. (2013北京,13,5分)如图,已知D 是AC 上一点,AB =DA ,DE ∥AB ,∠B =∠DAE . 求证:BC =AE .14. (2013北京,14,5分)计算:10)41(45cos 22)31(-+︒--+-.15.15. (2013北京,15,5分)解不等式组:⎪⎩⎪⎨⎧>+->x x x x 2312316. (2013北京,16,5分)已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值.17. 列方程或方程组解应用题:(2013北京,17,5分)某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.18.(2013北京,18,5分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.四、解答题(本题共20分,每小题5分)19.(2013北京,19,5分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =21BC ,连结DE ,CF . (1)求证:四边形CEDF 是平行四边形;(2)若AB =4,AD =6,∠B =60°,求DE 的长. .20.(2013北京,20,5分)如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E . (1)求证:∠EPD =∠EDO ; (2)若PC =6,tan ∠PDA =43,求OE 的长.21.(2013北京,21,5分)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分:(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为__________平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表22.(2013北京,22,5分)阅读下面材料:小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE =BF =CG =DH =1,当∠AFQ =∠BGM =∠CHN =∠DEP =45°时,求正方形MNPQ 的面积.小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________; (2)求正方形MNPQ 的面积. 参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD =BE =CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若33=∆RPQ S ,则AD 的长为__________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(2013北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.24.(2013北京,24,7分)在△ABC 中,AB =AC ,∠BAC =α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC =45°,求α的值.25.(2013北京,25,8分)对于平面直角坐标系x O y 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点. 已知点D (21,21),E (0,-2),F (32,0) (1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是__________;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.二〇一三年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福建福州,1,4分) 2的倒数是( ).A .12B .2C .-12D .-22.(2013福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( ).A .20°B .40°C .50°D .60°3.(2013福建福州,3,4分)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空.7 000 000用科学记数法表示为( ). A .7×105B .7×106C .70×106D .7×1074.(2013福建福州,4,4分)下列立体图形中,俯视图是正方形的是( ).ABCD5.(2013福建福州,5,4分)下列一元二次方程有两个相等实数根的是( ).A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=06.(2013福建福州,6,4分)不等式1+x <0的解集在数轴上表示正确的是( ).ABCD7.(2013福建福州,7,4分)下列运算正确的是( ).A .a ·a 2=a 3B .(a 2)3=a 5C .22()a a b bD .a 3÷a 3=a8.(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量一量线段AD 的长,约为( ).A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm9.(2013福建福州,9,4分)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机ABC12 O B AC地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ).A .3个B .不足3个C .4个D .5个或5个以上10.(2013福建福州,10,4分)A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( ).A .a >0B .a <0C .b =0D .ab <0二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.(2013福建福州,11,4分)计算:21a a-=_________. 12.(2013福建福州,12,4分)矩形的外角和等于_______度.13.(2013福建福州,13,4分)某校女子排球队队员的年龄分布如下表:14.(2013福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________.15.(2013福建福州,15,4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)(2013福建福州,16(1),7分)计算:0(1)4-+-(2)(2013福建福州,16(2),7分)化简:2(3)(4)a a a ++-.17.(每小题8分,共16分)(1)(2013福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .(2)列方程解应用题(2013福建福州,17(2),8分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本.这个班有多少学生?18.(10分)(2013福建福州,18,10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm ) 男生身高情况直方图 女生身高情况扇形统计图(1)样本中,男生身高的众数在_______组,中位数在_______组; (2)样本中,女生身高在E 组的人数有_______人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x <170之间的学生约有多少人?19.(2013福建福州,19,12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD . (1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度; △AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.CDBA20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE(1)求证:BC 是⊙O 的切线;(2)求 BN的长. 第20题图C21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上一点,△P AD 的面积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值; (3)若∠APD =90°,求y 的最小值.备用图第21题图BCB22.(14分)我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a = ;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是 ;(2)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =kx (k ≠0)上,请用含k 的代数式表示b ;(3)现有一组过原点的抛物线,顶点A 1,A 2,…,A n 在直线y =x ,横坐标依次为1,2,…,n(n 为正整数,且n 为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n C n D n .若这组抛物线中有一条经过点D n ,求所有满足条件的正方形边长.2013年安徽省初中毕业学业考试数学试卷一、选择题:1.(2013安徽 第1题 4分)-2的倒数是( ) A.-21 B.21C.2D.-2 2.(2013安徽 第2题 4分)用科学记数法表示537万正确的是( )A.537³104B.5.37³105C.5.37³106D.0.537³107安徽第3题 4分)图中所示的几何体为圆台,其主(正)视图正确的是( )4.(2013安徽 第4题 4分)下列运算正确的是( )A.2x+3y=5xyB.5m 2²m 3=5m 5C.(a-b)2=a 2-b 2D.m 2²m 3=m 65.(2013安徽 第5题 4分)已知不等式组⎨⎧≥+〉-0103x x 其解集在数轴上表示正确的是( )6.(2013安徽 第6题 4分)如图,AB ∥CD,∠A+∠E=750,则∠C 为( )A.600B.650C.750D.8007.(2013安徽 第7题 4分)目前我国已建立了比较完善的经济困难学生资助体系。
2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。
2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
陕西省2013年中考数学试题(解析版)

2013陕西省中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100)分数(分) 89 92 95 96 97 评委(位)1221 1A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( ) A .75° B .65° C .55° D .50° 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( ) A .3 B .4C .32D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( ) A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:()2cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B .用科学计算器计算:7sin 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料. 15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b--⎛⎫÷⎪+-+⎝⎭-. 18.(本题满分6分)如图,在ABCD Y 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C处位于北偏东65 方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos250.9063tan 250.4663sin650.9063︒≈︒≈︒≈︒≈,,,, cos650.4226tan65 2.1445︒≈︒≈,)21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)23.(本题满分8分)如图,PA PB 、分别与O e 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN ;(2)若O e 的半径=3R ,=9PA ,求OM 的长.24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.25.(本题满分12分)如图,正三角形ABC 的边长为(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A .7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与 x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2 个单位,恰好使得抛物线经过原点,且移动距离最小.选B .11、【答案】【解析】原式=22⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACO Rt BCE ∆∆:.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得AC=BC=+AB AC BC方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD,由勾股定理,得AB=AB AB17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a ab a b a b ---=2aa b-. 18、【答案】解:(1)如图,在ABCD Y 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠Q ,, ∴△AEF ∽△CEB ,∴35AE AF EC BC ==, ∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, cos65BD CD x ==︒.∴100cos65sin65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米).∴该山山顶处的空气含氧量约为260.6克/立方米. 22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种. ∴P (点数和为2)=136. (2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM . 24、【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称, 则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E . ∴=AE 3OE .∴()2''=3'>042b b b ⋅. 骰子2 骰子11 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 91056 7 8 910 116 78910 11 12∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,.设过点O C D 、、三点的抛物线2=+y mx nx ,则12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=+23y x x .25、【答案】解:(1)如图①,正方形''''EFPN 即为所求. (2)设正方形''''EFPN 的边长为x . ∵△ABC 为正三角形, ∴3'='=AE BF x . ∴23+=3+3x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对,2.20x ≈也正确)(3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥, 它们的面积和为S ,则=2NE m ,=2PE n . ∴()2222222=+=2+2=2+PN NE PE m n m n .∴2221=2S m n PN =+.延长PH 交ND 于点G ,则PG ND ⊥.在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+3m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大. 即当m 最大且n 最小时,S 最大.∵+=3m n ,由(2)知,m 最大.∴()=3-=3-n m 最小最大∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小(21=9+2⎡⎤⎢⎥⎣⎦.。
2013中考真题-三角形

2013中考真题—三角形一:填空题 1、(2013•郴州)如图,点D 、E 分别在线段AB ,AC 上, AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD , 需添加的一个条件是 (只写一个条件即可).2、(2013,娄底)如图,AB AC ,要使ABE ACD △≌△, 应添加的条件是_______________.(添加一个条件即可).3、(2013•乐山)如图7,在四边形ABCD 中,∠A=45º。
直线l 与边AB 、AD 分别相交于点M 、N ,则 ∠1+∠2= 。
4、(2013凉山州)已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是 .5、(2013•沈阳)已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________6、、(2013鞍山)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .7、(2013•漳州)如图,在Rt△ABC 中,∠ACB=90°,点D 是斜边AB 的中点,DE⊥AC,垂足为E ,若DE=2,CD=52,则BE 的长为 _。
8、(2013•玉林)如图,在直角坐标系中,O 是原点,已知A (4,3),P 是坐标轴上的一点,若以O ,A ,P 三点组成的三角形为等腰三角形,则满足条件的点P 共有 个,写出其中一个点P 的坐标是 . 9、(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .CAFB ED 10、(2013•玉林)如图,在直角坐标系中,O 是原点,已知A (4,3), P 是坐标轴上的一点,若以O ,A ,P 三点组成的三角形为等腰三角形, 则满足条件的点P 共有 个,写出其中一个点P 的坐标是 .三:选择题1、(2013•宿迁)在等腰ABC ∆中,90ACB ∠=,且1AC =.过点C作直线l ∥AB ,P 为直线l 上一点,且AP AB =.则点P 到BC 所在直线的距离是 A .1 B .1.12、2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,3、(2013•内江)把一块直尺与一块三角板如图放置, 若∠1=40°,则∠2的度数为( )4、(2013•泸州)如图,在等腰直角ABC ∆中,90ACB O∠=, O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且90DOE O ∠=,DE 交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)ABC ∆的面积等于四边形CDOE 面积的2倍; (3)CD CE +=;(4)222AD BE OP OC +=⋅.其中正确的结论有A.1个B.2个C.3个D.4个5、(2013•眉山)如图,∠BAC=∠DAF=90°,AB =AC ,AD =AF ,点D 、E 为BC 边上的两点,且∠DAE =45°,连接EF 、BF , 则下列结论:①△AED ≌△AEF ②△ABE ∽△ACD ③BE +DC >DE④BE 2+DC 2=DE 2,其中正确的有( )个 A .1 B .2 C .3 D .4 6、(2013• 淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为( )A BDEPQ (第12题)第12题图(A )32 (B )52 (C )3 (D )4 7、(2013•绥化)已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )直线BD 翻折后,点A 落在点E 处,如果AD ⊥ED ,那么△ABE 的面积是( ) B .三:解答证明题: 1、(2013•铜仁)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC=90°,∠DAE=90°,B ,C ,D 在同一条直线上. 求证:BD=CE.2、(2013,永州)如图,M 是△ABC 的边BC 的中点,AN平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN (2)求△ABC 的周长.3、(2013凉山州)如图,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .4、(2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .2013内江 2013沈阳5、(2013•沈阳)如图,ABC ∆中,AB=BC ,BE⊥AC 于点E ,AD⊥BC 于点D ,45BAD ∠=︒,AD 与BE 交于点F ,连接CE , (1)求证:BF=2AE(2)若CD =AD 的长。
2013年河南中考数学真题卷含答案解析

2013年河南省初中学业水平暨高级中等学校招生考试数学试题(含答案全解全析)(满分120分,考试时间100分钟)参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(-b2a ,4ac-b24a).第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.-2的相反数是()A.2B.-|-2|C.12D.-122.下列图形中,既是轴对称图形又是中心对称图形的是()3.方程(x-2)(x+3)=0的解是()A.x=2B.x=-3C.x1=-2,x2=3D.x1=2,x2=-34.在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是()A.47B.48C.48.5D.495.如图是正方体的一种展开图,其每个面上都标有一个数字.那么在原正方体中,与数字“2”相对的面上的数字是()A.1B.4C.5D.66.不等式组{x≤2,x+2>1的最小整数解为()A.-1B.0C.1D.27.如图,CD 是☉O 的直径,弦AB ⊥CD 于点G,直线EF 与☉O 相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AB ∥EFC.AD ∥BCD.∠ABC=∠ADC8.在二次函数y=-x 2+2x+1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A.x<1 B.x>1 C.x<-1 D.x>-1第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分) 9.计算:|-3|-√4= .10.将一副直角三角板ABC 和EDF 如图放置(其中∠A=60°,∠F=45°),使点E 落在AC 边上,且ED ∥BC,则∠CEF 的度数为 .11.化简:1x +1x(x -1)= . 12.已知扇形的半径为4 cm,圆心角为120°,则此扇形的弧长是 cm.13.现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是 .14.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P'(2,-2),点A 的对应点为A',则抛物线上PA 段扫过的区域(阴影部分)的面积为 .15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连结AE,把∠B沿AE折叠,使点B 落在点B'处.当△CEB'为直角三角形时,BE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=-√2.17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低mC汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连结EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,四边形ACFE是菱形;②当t为s时,以A、F、C、E为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,√3≈1.73).20.(9分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx (x>0)的图象经过BC的中点D,且与AB交于点E,连结DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式; (3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.图1图2(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.图3(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射相应的BF的长.线BA上存在点F,使S△DCF=S△BDE,请直接写出....图4x+2交于C、D两点,其中点C在y轴上,点D 23.(11分)如图,抛物线y=-x2+bx+c与直线y=12的坐标为(3,7).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.2(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由;相应的点P的坐标.(3)若存在点P,使∠PCF=45°,请直接写出....答案全解全析:1.A 只有符号不同的两个数是互为相反数,所以-2的相反数为2,故选A.2.D 选项A既不是中心对称图形,也不是轴对称图形;选项B只是轴对称图形;选项C只是中心对称图形;选项D既是中心对称图形又是轴对称图形.故选D.3.D 由(x-2)(x+3)=0得x-2=0或x+3=0,所以x=2或x=-3.故选D.4.C 8人的成绩从小到大排列,中间的两个数分别是48和49,所以这8人体育成绩的中位数是48+49=48.5,故选C.25.B 根据正方体的平面展开图特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“2”相对的面上的数字是“4”.6.B 解此不等式组得-1<x≤2,所以最小整数解为0,故选B.7.C CD是☉O的直径,弦AB⊥CD于点G,由垂径定理得AG=BG,直线EF与☉O相切于点D,所以EF⊥CD,则AB∥EF,因为同弧所对的圆周角相等,所以∠ABC=∠ADC,因为∠C与∠ADC不一定相等,所以选项C不一定正确.故选C.评析本题考查垂径定理、平行线的判定定理、圆周角定理,属基础题.8.A 根据解析式可求抛物线的对称轴为直线x=1,又a=-1,所以抛物线开口向下,在对称轴左侧y 随x 的增大而增大,故选A. 9.答案 1 解析 原式=3-2=1. 10.答案 15°解析 ∵∠A=60°,∴∠ACB=30°,∵ED∥BC,∴∠DEC=∠ACB=30°, ∴∠CEF=∠DEF -∠DEC=45°-30°=15°. 11.答案1x -1解析 原式=x -1+1x (x -1)=xx (x -1)=1x -1.12.答案8π3解析 由弧长计算公式得此扇形的弧长=120π×4180=8π3cm.13.答案 23解析 列表或画树状图可得,本次试验结果共有12种,两张卡片数字之积为负数的结果:(-1,3), (-1,4),(-2,3),(-2,4),(3,-1),(3,-2),(4,-1),(4,-2),共有8种,所以两张卡片上的数字之积为负数的概率是23. 14.答案 12解析 连结AP,A'P',AP',由平移的性质可得四边形APP'A'为平行四边形,根据割补的原理可知阴影部分的面积即为平行四边形APP'A'的面积,又S △APP'=12OA·(x P'-x P )=12×3×4=6,所以平行四边形APP'A'的面积为2S △APP'=6×2=12,即抛物线上PA 段扫过的区域的面积为12. 评析 本题是以二次函数图象的平移为背景的求阴影部分面积的题目,依据平移的性质及割补方法确定平行四边形是关键,求平行四边形APP'A'的面积是难点,突破难点的方法是通过求S △APP'再结合平行四边形的性质求面积,本题技巧性强,属中等难度题目.15.答案 32或3解析 在△CEB'中,显然∠B'CE 不可能为直角,所以(1)当∠B'EC=90°时,在矩形ABCD 中,四边形AB'EB 为正方形,所以BE=AB=3.(2)当∠EB'C=90°时,由对称性得∠AB'E=90°,所以点A 、B'、C 三点共线, 在Rt△ADC 中AC=√AD 2+CD 2=5, B'C=AC-AB'=2,设BE=x,则CE=4-x.在Rt△B'EC 中,B'C 2+B'E 2=CE 2,即x 2+4=(4-x)2,解得x=32.所以满足条件的BE 的长为3或32.评析 本题通过矩形的折叠,考查了轴对称的性质、矩形的性质、勾股定理等知识,依据题意画出图形并分类讨论是解题的基本思想方法,本题属易错题. 16.解析 原式=x 2+4x+4+4x 2-1-4x 2-4x(4分) =x 2+3.(6分)∴当x=-√2时,原式=(-√2)2+3=5.(8分) 17.解析 (1)40;100;15.(3分) (2)持D 组“观点”的市民人数约为 100×12080+40+100+120+60=30(万人).(6分) (3)持C 组“观点”的概率为100400=14.(9分)18.解析(1)证明:∵D为AC中点,∴AD=DC.(1分) ∵AG∥BC,∴∠EAC=∠ACF,∠AEF=∠EFC.∴△ADE≌△CDF.(5分)(2)①6;(7分)②32.(9分)19.解析在Rt△BAE中,∠BAE=68°,BE=162米,∴AE=BEtan∠BAE ≈1622.50=64.80(米).(3分)在Rt△DCE中,∠DCE=60°,DE=176.6米,∴CE=DEtan∠DCE =√3≈102.08(米).(6分)∴AC=CE-AE≈102.08-64.80=37.28≈37.3(米),即工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.(9分) 【说明:AC的计算结果在37.0至37.6之间均可】20.解析(1)在矩形OABC中,∵点B坐标为(2,3),∴BC边中点D的坐标为(1,3).又∵双曲线y=kx经过点D(1,3),∴3=k1,∴k=3,∴y=3x.∵点E在AB上,∴点E的横坐标为2.又∵双曲线y=3x经过点E,∴点E纵坐标为32,∴点E坐标为(2,32).(2)由(1)得BD=1,BE=32,CB=2.∵△FBC∽△DEB,∴BDCF =BECB,即1CF=322.∴CF=43,∴OF=53,即点F 的坐标为(0,53). 设直线FB 的解析式为y=k 1x+b,而直线FB 经过B(2,3),F (0,53),∴{3=2k 1+b ,53=b ,∴k 1=23,b=53. ∴直线FB 的解析式为y=23x+53. 21.解析 (1)设A 品牌计算器的单价为x 元,B 品牌计算器的单价为y 元,则有{2x +3y =156,3x +y =122.∴{x =30,y =32. 即A 、B 两种品牌计算器的单价分别为30元和32元.(4分)(2)根据题意得:y 1=0.8×30x,即y 1=24x.(5分)当0≤x≤5时,y 2=32x;(6分)当x>5时,y 2=32×5+32(x -5)×0.7,即y 2=22.4x+48.(7分)【说明:若把“0≤x≤5”写为“x≤5”,不扣分】(3)当购买数量超过5个时,y 2=22.4x+48.①当y 1<y 2时,24x<22.4x+48,∴x<30.即当购买数量超过5个而不足30个时,购买A 品牌的计算器更合算;(8分)②当y 1=y 2时,24x=22.4x+48,∴x=30.即当购买数量为30个时,购买A 品牌与B 品牌的计算器花费相同;(9分)③当y 1>y 2时,24x>22.4x+48,∴x>30.即当购买数量超过30个时,购买B 品牌的计算器更合算.(10分)22.解析 (1)①DE∥AC;②S 1=S 2.(2分)(2)证明:∵∠DCE=∠ACB=90°,∴∠DCM+∠ACE=180°.又∵∠ACN+∠ACE=180°,∴∠ACN=∠DCM.(4分)又∵∠CNA=∠CMD=90°,AC=CD,∴△ANC≌△DMC.(6分)∴AN=DM.又∵CE=CB,∴S 1=S 2.(8分)(3)4√33或8√33.(10分)【提示】如图所示,作DF 1∥BC 交BA 于点F 1;作DF 2⊥BD 交BA 于点F 2.BF 1、BF 2即为所求.评析 本题考查了含30°角的直角三角形的性质、三角形全等的判定、平行线间的距离等知识点,综合分析“猜想论证”中提示的方法,进行类比探究解题,掌握一些常见的数学模型也是提高解答此类题目能力的方法.23.解析 (1)∵直线y=12x+2经过点C,∴C(0,2).∵抛物线y=-x 2+bx+c 经过点C(0,2)和D (3,72),∴{2=c ,72=-32+3b +c .∴{c =2,b =72. ∴抛物线的解析式为y=-x 2+72x+2.(3分)(2)∵P 点横坐标为m,∴P (m ,-m 2+72m +2),F (m ,12m +2).∵PF∥CO,∴当PF=CO 时,以O 、C 、P 、F 为顶点的四边形为平行四边形.①当0<m<3时,PF=-m 2+72m+2-(12m +2)=-m 2+3m.∴-m 2+3m=2,解得:m 1=1,m 2=2.即当m=1或2时,四边形OCPF 是平行四边形;(7分)②当m≥3时,PF=(12m +2)-(-m 2+72m +2)=m 2-3m.∴m 2-3m=2,解得:m 1=3+√172,m 2=3-√172(舍去). 即当m=3+√172时,四边形OCFP 是平行四边形.(9分)(3)点P 的坐标为P 1(12,72),P 2(236,1318).(11分) 【提示】如图,当点P 在CD 上方且∠PCF=45°时,作PM⊥CD,CN⊥PF,则△PMF∽△CNF,从而PM MF =CN FN =m12m=2.∴PM=CM=2CF.∴PF=√5FM=√5CF=√5×√52CN=52CN=52m. 又∵PF=-m 2+3m,∴-m 2+3m=52m.解得:m 1=12,m 2=0(舍去),∴P (12,72).同理可得,另一点为P (236,1318).评析 本题将二次函数、一次函数与平行四边形、直角三角形等知识相结合,考查了待定系数法求二次函数解析式,二次函数的图象和性质,属难题.。
【2013中考真题】江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试卷

江苏省淮安市2013年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。
满分150分。
考试时闻120分钟。
2.第1卷每小题选出答案后,请用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改 动,请用橡皮擦干净后.再选涂其他答案。
答案答在本试题卷上无效。
3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。
答案答在本试题卷上或规定区域以外无效。
4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。
5.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在-1、0、-2、1四个数中,最小的是A .-1B .0C . -2D .12.计算3)2(a 的结果是A .a 6B .a 8C .32aD .38a3.不等式组⎩⎨⎧≥<01x x 的解集是A .0≥xB .1<xC .10<<xD .10<≤x4.若反比例函数xk y =的图象经过点(5,-1),则实数k 的值是 A .-5 B . 51- C .51 D .5 5若扇形的半径为6,圆心角为1200 ,则此扇形的弧长是A .π3B .π4C .π5D .π66.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间的整数的点共有A .6个B .5个C . 4个D .3个7.若等腰三角形有两条边的长度是3和1,则此三角形的周长是A .5B .7C .5或7D .68.如图,点A 、B 、C 是⊙O 上的三点,若∠OBC=50°,则∠A 的度数是A .40°B .50°C .80°D .100°第Ⅱ卷 (非选择题 共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡相应位置上)9.sin30°的值是 ▲ .10.方程012=+x的解是 ▲ . 11.点A (-3,0)关于y 轴的对称点的坐标是 ▲ . 12.一组数据3,9,4,9,6的众数是 ▲ .13.若n 边形的每一个外角都等于60°,则n = ▲ .14.若三角板的直角顶点在直线l 上,若∠1=40°,则∠2的度数是 ▲ .15.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若DE=3,则BC= ▲ .16.二次函数12+=x y 的图象的顶点坐标是 ▲ .17.若菱形的两条对角线长分别为2和3,则此菱形的面积是 ▲ .18.观察一列单项式:,,11,9,7,5,3,3232 x x x x x x 则第2013个单项式是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分) 计算: (1)34)5(0--+-π (2)12)211(32--∙-++a a a a a20.(本小题满分6分)解不等式:221+≥+x x ,并把解集在数轴上表示出来。
2013数学中考试题汇编答案与解析

2013中考全国100份试卷分类汇编答案与解析——圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为A. 95B. 245C. 185D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =1853、(2013河南省)如图,CD 是☉O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。
由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。
因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。
【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cm==3cm==4==25、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()==59、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5 C 6 D. 810、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;11、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()OB===12、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键13、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、(2013•内江)在平面直角坐标系中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.15、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.==cmcm16、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48度.17、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.CD=2x=∴所在圆的半径为:故答案为:.18、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.OC=1AB=2AD=2=2=2.19、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,Θ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为P13,则点P的坐标为____________.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键20、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.熟悉:影响能量代谢的主要因素;人体体温正常值及其生理变动;调定点学说。
【教学内容】
1.能量代谢机体能量的来源与利用;能量代谢的测定:热价,氧热价,呼吸商;影响能量代谢的主要因素;基础代谢与基础代谢率。
2.体温及其调节体温的概念、正常值及其生理变动;机体的产热和散热:产热过程(主要产热器官,产热的形式,产热活动的调节),散热过程(主要散热器官-皮肤,散热的方式,散热的调节反应);体温调节:体温调节方式(自主性和行为性体温调节),温度感受器(外周温度感受器,中枢温度感受器),体温调节中枢,体温调定点学说。
【教学方式】
1.溶液的蒸气压下降
2.溶液的沸点升高
3.溶液的凝固点降低
4.溶液的渗透压
第五节胶体溶液
1.溶胶
2.高分子溶液
3.凝胶
第六节表面现象
1.表面张力与表面能
2.表面吸附
3.表面活性物质
第四章化学反应速率和化学平衡
【知识教学目标】
1.掌握活化能的概念和意义;浓度、压强、温度、催化剂对反应速率的影响;质量作用定律;化学平衡的概念和化学平衡的特征;平衡常数的概念(Kc、Kp)及平衡常数表达式的书写、平衡常数的意义;化学平衡移动的概念;浓度、压强、温度对化学平衡的影响2.熟悉化学反应速率的概念和表示方法;化学反应速率理论--碰撞理论;化学反应热的概念及热化学方程式的书写;不可逆反应和可逆反应的概念、表示方法及特征;化学平衡常数的有关计算;催化剂与化学平衡的关系及意义;化学平衡移动原理
3.了解平均速率和瞬时速率的概念;过渡态理论;反应热的测定方法;反应熵的概念和意义;化学平衡的意义
【能力培养目标】
1.具有分析判断各主要因素对化学反应速率和化学平衡影响的能力
2.能成功进行化学反应速率与化学平衡的实验
3.能应用化学反应速率与化学平衡的基本理论知识解释生产生活实际中的某些问题【教学内容】
第一节化学反应速率
1.化学反应速率的概念及其表示方法
2.有效碰撞理论与活化能
3.影响化学反应速率的因素
第二节化学平衡
1.化学反应的可逆性和化学平衡
2.平衡常数
3.化学平衡的移动
实验二药用氯化钠的制备
第五章定量分析化学基础
【知识教学目标】
1.掌握有效数字的计算规则及其应用
2.掌握定量分析结果的处理
3.理解误差产生的原因
种类及其表示法
4.了解分析化学的分类与一般程序
【能力培养目标】
1.熟练掌握有效数字及滴定分析计算的运算法则与方法
2.掌握提高分析准确度的方法
3.能正确描述分析化学的定义、分类与滴定分析及有关概念
4.能够对可疑值进行取舍
【教学内容】
第一节定量分析概述
1.定量分析方法的分类
2.定量分析的一般程序
第二节定量分析中的误差和分析数据处理
1.系统误差与偶然误差
2.准确度与精密度
3.提高分析结果准确度的方法
4.有效数字及其运算规则
5.可疑值的取舍
第三节滴定分析法概述
1.滴定分析法的基本概念和主要方法
2.滴定分析法对化学反应的要求和滴定方式
3.滴定液
4.滴定分析计算
实验三滴定分析基本操作练习
第六章酸碱平衡与酸碱滴定
【知识教学目标】
1.掌握质子理论酸碱的定义、概念、反应实质;弱电解质电离平衡的概念、电离平衡常数的概念及意义;共轭酸碱对的Ka与Kb之间的关系;同离子效应的概念;水的电离及水的离子积;溶液酸碱性与[H+]及pH大小的关系;[H+]与pH的相互换算;弱酸和弱碱溶液pH的近似计算;酸碱指示剂的变色原理、变色范围;不同类型盐溶液的酸碱性;缓冲作用、缓冲溶液的概念及缓冲溶液pH值的计算;常见酸碱指示剂的变色范围及影响因素
酸碱滴定法的原理和条件
2.熟悉酸碱质子理论中酸碱性强弱的含义和影响酸碱性强弱的因素;强电解质和弱电解质的概念;电离度的概念、意义及影响电离度的因素;电离度和电离平衡常数之间的关系及相互换算;盐类水解的实质;缓冲作用原理;一定pH缓冲溶液的配制;滴定突跃及影
响因素及常见酸碱指示剂的变色范围
3.了解酸碱理论的发展过程及酸碱电子理论;盐类水解的应用;人体血液中的几对重要的缓冲对及缓冲溶液;多元酸(碱)的滴定、非水溶剂及非水滴定法的概念、拉平效应、区分效应及其应用
【能力培养目标】
1.能正确判断酸碱
2.能正确计算强酸强碱和弱酸弱碱溶液的pH
3.能正确判断缓冲体系及计算其pH
4.能正确配制缓冲溶液
5.学会根据滴定突跃正确选择和使用指示剂
6.能正确进行酸碱滴定操作
【教学内容】
第一节酸碱质子理论
1.酸碱的定义
2.酸碱反应
3.酸碱强度
4.水的质子自递平衡和水溶液的酸碱性
第二节弱酸弱碱的解离平衡
1.一元弱酸弱碱的解离平衡
2.解离常数与解离度的关系--稀释定律
3.共轭酸碱对ka与kb的关系
4.酸碱解离平衡的移动
5.多元弱酸弱碱的解离平衡
6.关于解离平衡的计算
第三节缓冲溶液
1.缓冲溶液的概念和组成
2.缓冲作用的原理
3.缓冲溶液的pH计算
4.缓冲溶液的缓冲能力
5.缓冲溶液的配制
6.缓冲溶液在医药学上的应用
第三节酸碱滴定法
1.酸碱指示剂
2.酸碱滴定类型及指示剂的选择
3.应用示例
4.非水溶液的酸碱滴定。