简单线性规划问题公开
第39讲 简单的线性规划问题

30
学海导航
理数
【拓展演练 3】 某工厂生产甲、乙两种产品,生产 1 吨甲产品需要电力 5 千瓦· 时,煤 3 吨,劳动力 5 人,获利 700 元;生产 1 吨乙产 品需要电力 6 千瓦· 时,煤 6 吨,劳动力 3 人,获利 900 元.该 厂现有工人 150 人,电力负荷 180 千瓦· 时,煤 150 吨,问这 两种产品各生产多少吨时,才能获得最大的经济效益?
学海导航
理数
第39讲 简单的线性规划问题
1
学海导航
理数
2
学海导航
理数
1.不等式 x-2y+6>0 表示的平面区域在直线 x-2y+6=0 的( B ) A.右上方 C.左上方 B.右下方 D.左下方
3
学海导航
理数
2.下列各点中,与点(1,3)位于直线 x+y-1=0 的同 一侧的是( C ) A.(0,0) C.(-2,4) B.(-1,2) D.(2,-3)
37
学海导航
理数
2.(2013· 新课标全国卷Ⅱ)已知 a>0, x, y 满足约束条件
x≥1 x+y≤3 y≥ax-3
,若 z=2x+y 的最小值为 1,则 a=( B ) 1 B. 2 D.2
1 A. 4 C.1
38
学海导航
理数
解析:由 a>0,y=a(x-3)恒过点(3,0),画出约束条件所表 示的可行域,如图阴影部分所示,由图可知当直线 z=2x+y 过点 A 时取得最小值.
31
学海导航
理数
解析:设生产甲产品 x 吨,乙产品 y 吨,获利 z 元,依题 意可得:
5x+6y≤180 3x+6y≤150 5x+3y≤150 x≥0 y≥0
简单线性规划问题(公开课)

归纳小结
1.在线性约束条件下求目标函数的最大值或最小值,是一种数形结合的数学思想,它将目 标函数的最值问题转化为动直线在y轴上的截距的最值问题来解决.
2.对于直线l:z=Ax+By,若B>0,则当直线l在y轴上的截距最大(小)时,z取最大(小) 值;若B<0,则当直线l在y轴上的截距最大(小)时,z取最小(大)值.
最小截距为过A(5,2) 3
A
x-4y+3=0
的直线 l 2
l1
2
•
注意:此题y的系数为 负,当直线取最大截
1 B•
3x+5y-25=0
距时,代入点C,则z
-1 O 1 2 3 4 5 6 7
x
有最小值
z m in
1
2
22 5
39 5
l0
-1
l2
同理,当直线取最小截距时,代入点A,则z有最大值 zmax 5 2 2 1
原
每配制1杯饮料消耗的原料
料
甲种饮料 x 乙种饮料 y
原 料限 额
奶粉(g)
9
4
咖啡(g)
4
5
糖(g)
3
10
利 润(元)
0.7
1.2
3600 2000 3000
解:设每天应配制甲种饮料x杯,乙种饮料y杯,则
9x 4 y 3600
34xx
5y 2000 10y 3000
X≥1
代入点B得最大为8,
y x=1
5 4A
2x-y=0
代入点A得
最小值为
-
12 .5
3
x-4y+3=0
2
B
简单的线性规划问题课件

z 的最大值为点 M(1,1)与点 B(2,0)的距离的平方: 即 zmax=(1-2)2+(1-0)2=2. ∴z 的取值范围为[12,2].
x+y≤6 若变量 x、y 满足约束条件x-3y≤-2
x≥1
,则 z=2x+3y
的最小值为( )
A.17
B.14
C.5
D.3
[答案] C
[解析] 作出可行域(如图阴影部分所示). 作出直线 l:2x+3y=0. 平移直线 l 到 l′的位置,使直线 l 通过可行域中的 A 点(如 图) 这时直线在 y 轴上的截距最小,z 取得最小值.
把 z=2x+y 变形为 y=-2x+z,得到斜率为-2,在 y 轴 上的截距为 z,随 z 变化的一族平行直线.
由图可看出,当直线 z=2x+y 经过可行域上的点 A 时,截 距 z 最大,经过点 B 时,截距 z 最小.
解方程组3x-x+45y+y-32=5=0 0 ,得 A 点坐标为(5,2), 解方程组xx-=41y+3=0 ,得 B 点坐标为(1,1), 所以 zmax=2×5+2=12,zmin=2×1+1=3.
(2)求线性目标函数在线性约束条件下的最大值或最小值问 题,称为线性规划问题;满足线性约束条件的解(x,y)叫做 可行解 ; 由所有可行解组成的集合叫做 可行域 ;使目标函数取得最大值 或最小值的可行解叫做 最优解.
(2013·福建文,6)若变量 x、y 满足约束条件xx+ ≥y1≤2 y≥0
,则 z
温故知新
某工厂生产甲、乙两种产品,已知生产甲种产品 1 t 需耗 A 种 矿石 10 t、B 种矿石 5 t、煤 4 t;生产乙种产品 1 t 需耗 A 种矿石 4 t、B 种矿石 4 t、煤 9 t.工厂在生产这两种产品的计划中要求消耗 A 种矿石不超过 300 t、B 种矿石不超过 200 t、煤不超过 360 t.列 出满足生产条件的关系式,并画出平面区域.
简单的线性规划问题(第1课时)课件2

x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
简单的线性规划问题(公开课)

x y20 例 2、已知 x y 4 0 , 2 x y 5 0 (1) 求 z x 2 y 的最大和最小值; (2) 求 z 2 x y 的最大和最小值; y (3) 求 z 的取值范围; x 2 2 (4) 求 z x y 的最大和最小值。
5 x 4 y 20 设z=x+y,当x,y满足 x 2 y 4 2 x y 0
时,求z的最大值和最小值.
线性目 标函数
线性约 束条件
5 x 4 y 20 设z=x+y,当x,y满足 x 2 y 4 2 x y 0 最优解
5 x 4 y 20 已知x,y满足不等式组 x 2 y 4 2 x y 0
问题1、作出不等式组所表示的平面区域 问题2、求x的最大(小)值 问题3、求y的最大(小)值 问题4、求x+y的最大(小)值
提出问题
把刚才的问题4和已知条件连起来就得到了下 面的Fra bibliotek题:变式:
时,求z的最大值和最小值. 线性规 划问题
所有的
任何一对满足 不等式组的解 (x,y)
可行解
可行域
有关概念
由x,y 的不等式(或方程)组成的不等式组称为x,y 的 约束条件。关于x,y 的一次不等式或方程组成的不等式 组称为x,y 的线性约束条件。 欲达到最大值或最小值所涉及的变量x,y 的解析式称 为目标函数。关于x,y 的一次目标函数称为线性目标函 数。 求线性目标函数在线性约束条件下的最大值或最小值 问题称为线性规划问题。 满足线性约束条件的解(x,y)称为可行解。所有可 行解组成的集合称为可行域。
使目标函数取得最大值或最小值的可行解称为 最优解。
简单的线性规划问题

简单的线性规划问题例1:求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:例2:若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1x +y ≥0x -y -2≤0,求目标函数z =x -2y 的最大值[解析] 先作出可行域如图.作直线x-2y=0在可行域内平移,当x-2y-z=0在y轴上的截距最小时z值最大.当移至A(1,-1)时,z max=1-2×(-1)=3,1.在平面直角坐标系中,若点(3t-2,t)在直线x-2y+4=0的下方,则t的取值范围是( C)A.(-∞,2) B.(2,+∞) C.(-2,+∞) D.(0,2) [解析]∵点O(0,0)使x-2y+4>0成立,且点O在直线下方,故点(3t -2,t )在直线x -2y +4=0的下方⇔3t -2-2t +4>0,∴t >-2.[点评] 可用B 值判断法来求解,若B>0,令d =B (Ax 0+By 0+C ),则d >0⇔点P (x 0,y 0)在直线Ax +By +C =0的上方;d <0⇔点P (x 0,y 0)在直线Ax +By +C =0的下方.2.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y +1≥0,x +y -3≤0,则z =2x +y的最大值为( C )A .-2B .4C .6D .8 [解析]3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -y +1≥0,y ≥1,则z =2x -y 的最大值为( C )A.-1 B.0 C.3 D.4[解析]作出可行域如图,作直线l0:2x-y=0,平移l0当平移到经过点A(2,1)时,z max=3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x -y 的最大值为( D )A .-4 B .0 C.43D .4[解析]该线性约束条件所代表的平面区域如图,易解得A (1,3),B (1,53),C (2,2),由z =3x -y 得y =3x -z ,由图可知当x =2,y =2时,z 取得最大值,即z 最大=3×2-2=4.故选D.5.已知x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2,y -x ≥0,x ≥0.目标函数z =ax +y只在点(1,1)处取最小值,则有( D ) A .a >1 B .a >-1 C .a <1D .a <-1[解析] 作出可行域如图阴影部分所示.由z =ax +y ,得y =-ax +z .只在点(1,1)处z 取得最小值,则斜率-a >1,故a <-1,故选D.6.已知约束条件⎩⎪⎨⎪⎧x -3y +4≥0,x +2y -1≥0,3x +y -8≤0,若目标函数z =x +ay (a ≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为( C )A .0<a <13B .a ≥13C .a >13D .0<a <12[解析] 作出可行域如图,∵目标函数z =x +ay 恰好在点A (2,2)处取得最大值,故-1a>-3,∴a >13.★7.若2x +4y <4,则点(x ,y )必在( D )A .直线x +y -2=0的左下方B .直线x +y -2=0的右上方C .直线x +2y -2=0的右上方D .直线x +2y -2=0的左下方 [解析] ∵2x +4y ≥22x +2y ,由条件2x +4y <4知, 22x +2y <4,∴x +2y <2,即x +2y -2<0,故选D. ★8.设O 为坐标原点,点M 的坐标为(2,1),若点N (x ,y )满足不等式组⎩⎪⎨⎪⎧x -4y +3≤0,2x +y -12≤0,x ≥1,则使OM →·ON →取得最大值的点N 的个数是( D )A .1 B .2 C .3D .无数个[分析] 点N (x ,y )在不等式表示的平面区域之内,U =OM →·ON →为x ,y 的一次表达式,则问题即是当点N 在平面区域内变化时,求U 取到最大值时,点N 的个数.[解析] 如图所示,可行域为图中阴影部分,而OM →·ON →=2x +y ,所以目标函数为z =2x +y ,作出直线l :2x +y =0,显然它与直线2x +y -12=0平行,平移直线l 到直线2x +y-12=0的位置时目标函数取得最大值,故2x +y -12=0上每一点都能使目标函数取得最大值,故选D.9.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤3,x +2y -2≥0,所表示的平面区域为S ,若A 、B为区域S 内的两个动点,则|AB |的最大值为(B)A .25 B.13 C .3 D. 5[解析] 在直角坐标平面内画出题中的不等式组表示的平面区域,结合图形观察不难得知,位于该平面区域内的两个动点中,其间的距离最远的两个点是(0,3)与(2,0),因此|AB |的最大值是13,选B.10.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( B )A .-1 B .1 C.32D .2[解析] 本题考查了不等式组所表示的平面区域及数形结合思想解决问题的能力.由约束条件作出其可行域,如图由图可知当直线x =m 过点P 时,m 取得最大值,由⎩⎪⎨⎪⎧y =2x ,x +y -3=0,得,⎩⎪⎨⎪⎧x =1,y =2,∴P (1,2),此时x =m =1.[点评] 对于可行域中含有参数的情形,不妨先取特殊值来帮助分析思路.★11.设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0,x -2y +8≥0,x ≥0,y ≥0,若目标函数z=ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为(A) A.256 B.83 C.113D .4[解析] 由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b2=1,∴2a +3b =(2a +3b )·(a 3+b 2)=136+b a +a b ≥136+2=256,故选A.12.设不等式组⎩⎪⎨⎪⎧x -y +2≤0,x ≥0,y ≤4.表示的平面区域为D ,若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( D )A .(0,1) B .(1,2) C .[2,4] D .[2,+∞)[解析] 作出可行区域,如图,由题可知点(2,a 2)应在点(2,4)的上方或与其重合,故a 2≥4,∴a ≥2或a ≤-2,又a >0且a ≠1,∴a ≥2.★13.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1,所表示的平面区域的面积为( B ) A. 2 B.32 C.322D .2[解析] 不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1,的图形如图.解得:A (0,1) D (0,-1) B (-1,-2) C (12,-12)S △ABC =12×|AD |×|x C -x B |=12×2×(12+1)=32,故选B.★14.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 值为(A) A. 3 B.32C. 2 D .4[解析]由题可知,当x=0时,z=kx+y=y,因此要使目标函数z=kx+y(k>0)取得最大值,则相应直线经过题中的平面区域内的点时,相应直线在y轴上的截距最大.由目标函数z=kx+y(k>0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx+y=0的倾斜角为120°,于是有-k=tan120°=-3,k=3,选A.★15.在直角坐标系xOy中,已知△AOB的三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即坐标均为整数的点)的总数为(B )A .95 B .91C .88D .75 [解析]由2x +3y =30知,y =0时,0≤x ≤15,有16个;y =1时,0≤x ≤13;y =2时,0≤x ≤12; y =3时,0≤x ≤10;y =4时,0≤x ≤9; y =5时,0≤x ≤7;y =6时,0≤x ≤6; y =7时,0≤x ≤4;y =8时,0≤x ≤3; y =9时,0≤x ≤1,y =10时,x =0.∴共有16+14+13+11+10+8+7+5+4+2+1=91个.16.已知不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,x ≤a ,表示的平面区域S 的面积为4,点P (x ,y )∈S ,则z =2x +y 的最大值为___6_____.[解析]由题意知⎩⎪⎨⎪⎧12×2a×a =4,a >0,∴a =2,易得z =2x +y 的最大值为6.★17.若由不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0,(n >0)确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m =__-33.[解析] 根据题意,三角形的外接圆圆心在x 轴上, ∴OA 为外接圆的直径,∴直线x =my +n 与x -3y =0垂直, ∴1m ×13=-1,即m =-33.18.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则目标函数z =4x+y 的最大值为_11_____[解析]如图,满足条件的可行域为三角形区域(图中阴影部分),故z=4x+y在P(2,3)处取得最大值,最大值为11.19.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:a b(万吨)c(百万元)A 50%1 322(万吨),则购买铁矿石的最少费用为___15_____(百万元).[解析] 设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取得最小值,最小值为:z min =3×1+6×2=15.1百吨需要资金2百万元,需场地2百平方米,可获利润3百万元;投资生产B 产品时,每生产1百米需要资金3百万元,需场地1百平方米,可获利润2百万元.现该单位有可使用资金14百万元,场地9百平方米,如果利用这些资金和场地用来生产A 、B 两种产品,那么分别生产A 、B 两种产品各多少时,可获得最大利润?最大利润是多少?[解析] 设生产A 产品x 百吨,生产B 产品y 百米,共获得利润S 百万元,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0,目标函数为S =3x +2y .作出可行域如图,由⎩⎪⎨⎪⎧2x +y =9,2x +3y =14,解得直线2x +y =9和2x +3y =14的交点为A ⎝ ⎛⎭⎪⎫134,52,平移直线y =-32x +S2,当它经过点A ⎝ ⎛⎭⎪⎫134,52时,直线y =-32x +S 2在y 轴上截距S 2最大,S 也最大.此时,S =3×134+2×52=14.75.因此,生产A 产品3.25百吨,生产B 产品2.5百米,可获得最大利润,最大利润为1475万元★21.北京某商厦计划同时出售新款空调和洗衣机,由于这两种产品的市场需求量大,供不应求,因此该商厦要根据实际情况(如成本、工资)确定产品的月供应量,以使得总利润达到最大,通过调查,得到这两种产品的有关数据如下表:试问:怎样确定两种产品的月供应量,才能使总利润达到最大,最大利润刘多少?正解:设空调、洗衣机的月供应量分别为x 、y ,总利润是p ,那么满足条件: .9600,942223023960)2(3)23(31:8226386)22()3()2()23(2220:)2()5(30230:)1()4(86)3(0,0)2(110105)1(3002030元的最大值是时即当此时当且仅当解之得得由得由p y x y x y x p y x y x p n m n m n m yx y n m x n m y x n y x m p y x y x yx p y x y x y x ⎩⎨⎧==⎩⎨⎧=+=+≤≤∴+++=∴⎩⎨⎧==⎩⎨⎧=+=+∴+=++++++=≤+≤≤+≤⎪⎪⎩⎪⎪⎨⎧+=≥≥≤+≤+10.某公司准备进行两种组合投资,稳健型组合投资每份由金融投资20万元,房地产投资30万元组成;进取型组合投资每份由金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,那么这两种组合投资各应注入多少份,才能使一年获利总额最多?[解析] 设稳健型投资x 份,进取型投资y 份,利润总额为z (单位:10万元,则目标函数为z =x +1.5y (单位:10万元),线性约束条件为:⎩⎪⎨⎪⎧20x +40y ≤160,30x +30y ≤180,x ≥0,y ≥0x ∈N ,y ∈N,即⎩⎪⎨⎪⎧x +2y ≤8,x +y ≤6,x ≥0,y ≥0x ∈N ,y ∈N,作出可行域如图,解方程组⎩⎪⎨⎪⎧x +2y =8,x +y =6,得交点M (4,2),作直线l 0:x +1.5y =0,平移l 0,当平移后的直线过点M 时,z 取最大值:z max =(4+3)×10万元=70万元.答:稳健型投资4份,进取型投资2份,才能使一年获利总额最多.(理)(2012·辽宁文,9)设变量x ,y 满足⎩⎪⎨⎪⎧ x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55 [答案] D[解析] 本题考查线性规划的知识.作出可行域如图所示:令z =2x +3y ,则y =-23x +13z . 要使z 取得最大值,需直线y =-23x +13z 在y 轴上的截距最大,移动l 0:y =-23x 当l 0过点C (5,15)时,z 取最大值z max =55.解线性规划问题,准确作出可行域是关键,同时还要注意目标函数z =2x +3y 与z =2x -3y 最优解是不同的.13.(文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3t ,B 原料2t ;生产每吨乙产品要用A 原料1t ,B 原料3t ,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13t,B原料不超过18t.那么该企业可获得最大利润是( )A .12万元B .20万元C .25万元D .27万元[答案] D [解析] 设生产甲、乙两种产品分别为x t ,y t ,由题意得⎩⎪⎨⎪⎧ 3x +y ≤13,2x +3y ≤18,x ≥0,y ≥0,获利润ω=5x +3y ,画出可行域如图,由⎩⎪⎨⎪⎧ 3x +y =13,2x +3y =18,解得A (3,4).∵-3<-53<-23, ∴当直线5x +3y =ω经过A 点时,ωmax =27.(理)(2011·四川文,10)某运输公司有12名驾驶员和19名工人,有8辆载重量为10t 的甲型卡车和7辆载重量为6t 的乙型卡车,某天需送往A 地至少72t 的货物,派用的每辆车需载满且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人;运送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=( ) A.4650元B.4700元C .4900元D .5000元[答案] C [解析] 设该公司派甲型卡车x 辆,乙型卡车y 辆,由题意得⎩⎪⎨⎪⎧10x +6y ≥72,2x +y ≤19,x +y ≤12,0≤x ≤8,x ∈N 0≤y ≤7,y ∈N 利润z =450x +350y ,可行域如图所示.解⎩⎪⎨⎪⎧ 2x +y =19,x +y =12,得A (7,5).当直线350y +450x =z 过A (7,5)时z 取最大值,∴z max =450×7+350×5=4900(元).故选C..(理)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分别表示生产甲、乙产品的数量,在(1)的条件下,求x,y为何值时,z=xP甲+yP乙最大,最大值是多少?[解析] (1)依题意得⎩⎪⎨⎪⎧ P 甲-P 乙=0.251-P 甲=P 乙-0.05, 解得⎩⎪⎨⎪⎧ P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4.(2)依题意得x 、y 应满足的约束条件为⎩⎪⎨⎪⎧ 4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y .作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l :0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,且l 1与原点的距离最大,此时z 取最大值.解方程组⎩⎪⎨⎪⎧ x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.16.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5min ,生产一个骑兵需7min ,生产一个伞兵需4min ,已知总生产时间不超过10h.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润W (元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?[解析] (1)依题意每天生产的伞兵个数为100-x -y ,所以利润W =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为:⎩⎪⎨⎪⎧ 5x +7y +4100-x -y ≤600,100-x -y ≥0,x ≥0,y ≥0,x ∈Z ,y ∈Z .整理得⎩⎪⎨⎪⎧ x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ∈Z ,y ∈Z .目标函数为W =2x +3y +300,如图所示,作出可行域.初始直线l 0:2x +3y =0,平移初始直线经过点A 时,W 有最大值,由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以W max =550(元).答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.2.已知a ,b ∈R +,a +b =1,M =2a +2b ,则M 的整数部分是( ) A .1 B .2 C .3 D .4[答案] B[解析] ∵a ,b ∈R +,a +b =1,∴0<a <1,设t =2a ,则t ∈(1,2),M =2a +2b =2a +21-a =t +2t≥22,等号在t =2时成立,又t =1或2时,M =3,∴22≤M <3,故选B.3.(2011·湖北高考)直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20,表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个[答案] B[解析] 直线2x +y -10=0与不等式组表示的平面区域的位置关系如图所示,故直线与此区域的公共点只有1个,选B.4.(2011·黄山期末)设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10] C .[2,9] D .[10,9][答案] C[解析] 作出不等式表示的平面区域如图,由⎩⎪⎨⎪⎧x +2y -19=0,x -y +8=0,得A (1,9),由⎩⎪⎨⎪⎧x +2y -19=0,2x +y -14=0,得B (3,8),当函数y =a x 过点A 时,a =9,过点B 时,a =2,∴要使y =a x 的图象经过区域M ,应有2≤a ≤9.5.(2012·河南洛阳市模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥3x ,x +ay ≤7,其中a >1,若目标函数z =x +y 的最大值为4,则a的值为________.[答案] 2 [解析]作出不等式组表示的平面区域如图中阴影部分所示.∵y =-x +z ,∴欲使z 最大,只需使直线y =-x +z 的纵截距最大,∵a >1,∴直线x +ay =7的斜率大于-1,故当直线y =-x +z 经过直线y =3x 与直线x +ay =7的交点(71+3a ,211+3a )时,目标函数z 取得最大值,最大值为281+3a .由题意得281+3a=4,解得a =2.6.(2012·太原部分重点中学联考)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y -1≥0,2x -y -6≤0,x +y -k -2≥0,且x 2+y 2的最小值为m ,当9≤m ≤25时,实数k 的取值范围是( )A .(17-2,5)B .[17-2,5]C .(17-2,5]D .(0,5][答案] B [解析]不等式组表示的可行域如图中的阴影部分,x 2+y 2的最小值m 即为|OA |2,联立⎩⎪⎨⎪⎧x -y -1=0x +y -k -2=0,得A (k +32,k +12).由题知9≤(k +32)2+(k +12)2≤25,解得17-2≤k ≤5.作出不等式组表示的平面区域如图中阴影部分.作出直线2x +y =0,平移该直线,当平移到经过平面区域内的点(3,0)时,相应的直线在x 轴上的截距最大,此时z =2x +y 取得最大值,最大值是6,故选C.8.某人有楼房一幢,室内面积共计180m 2,拟分隔成两类房间作为旅游客房.大房间每间面积18m 2,可住游客5名,每名游客每天住宿费40元;小房间每间面积15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他隔出大房间和小房间各多少间,能获得最大收益?[解析] 设隔出大房间x 间,小房间y 间时收益为z 元, 则x ,y 满足⎩⎪⎨⎪⎧18x +15y ≤180,1000x +600y ≤8000,x ≥0,y ≥0,x ,y ∈Z ,且z =200x +150y .约束条件可化简为: ⎩⎪⎨⎪⎧6x +5y ≤60,5x +3y ≤40,x ≥0,y ≥0,x ,y ∈Z .可行域为如图所示的阴影部分(含边界)作直线l :200x +150y =0,即直线l :4x +3y =0把直线l 向右上方平移至l 1的位置时,直线经过点B ,且与原点的距离最大,此时z =200x +150y 取得最大值.解方程组⎩⎪⎨⎪⎧6x +5y =60,5x +3y =40,得到B (207,607).由于点B 的坐标不是整数,而最优解(x ,y )中的x ,y 必须都是整数,所以,可行域内的点B (207,607)不是最优解,通过检验,当经过的整点是(0,12)和(3,8)时,z取最大值1800元.于是,隔出小房间12间,或大房间3间、小房间8间,可以获得最大收益.[点评] 当所求解问题的结果是整数,而最优解不是整数时,可取最优解附近的整点检验,找出符合题意的整数最优解.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
简单的线性规划问题 课件

[解析] 画出满足条件的可行域如图所示,
(1)x2+y2=u表示一组同心圆(圆心为原点O),且对同一圆上的点x2+y2的值 都相等,由图可知:当(x,y)在可行域内取值时,当且仅当圆O过C点时, u最大,过(0,0)时,u最小.又C(3,8),所以u最大值=73,u最小值=0.
A.-4
B.6
C.10
D.17
[解析] 由线性约束条件画出可行域(如图中阴影部分).
当直线2x+5y-z=0过点A(3,0)时,zmin=2×3+5×0=6,故选B. [答案] B
x -y+1≥0, (2)(高考全国Ⅲ卷)若 x,y 满足约束条件 x-2y≤0,
x +2y-2≤0,
y 的最大值为________.
简单的线性规划问题
线性规划中的基本概念
名称
意义
线性约束条件 由x,y的 二元一次不等式(或方程)组成的不等式组
目标函数 欲求 最大值 或 最小值所涉及的变量x,y的解析式
线性目标函数
目标函数是关于x,y的_二__元__一__次__解__析__式____
可行解
满足 线性约束条件 的解(x,y)
名称
探究三 已知目标函数的最值求参数
[典例3] 若实数x,y满足不等式组 xy--12≤≤00,, x+2y-a≥0,
目标函数t=x
-2y的最大值为2,则实数a的值是________.
[解析] 如图, x=2,
由x+2y-a=0.
x=2, 得y=a-2 2, 代入x-2y=2中,解得a=2.
[答案] 2
则 z=x+
[解析] 由题意画出可行域(如图所示), 其中A(-2,-1),B 1,12 ,C(0,1),由z=x +y知y=-x+z,当直线y=-x+z过点 B1,12时,z取最大值32.
3.3.2简单线性规划(1_2)--上课用

y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编辑课件
16
复习回顾(四)
编辑课件
17
实际问题 注意:
列表
寻找约束条件
建立目标函数
设立变量
转
化
线性规划问题
1.约束条件要写全;
2.作图要准确,计算也要准确;
3.解题格式要规范编辑.课件
18
理论迁移(四)
设每天应配制甲种饮料x杯,乙种饮料y杯,则
已知
3x
5
y
25
,z=2x+y,求z的最大值和最小值。
x 1
y
解:不等式组表示的平
x=1
面区域如图所示:
6
A(5,2), B(1,1),
C (1, 22 )。 5
5• 4 C•
作斜率为-2的直线
l: 2xy0,
3
平移,使之与平面区域有公共点, 2
由图可知,当 l过B(1,1)时,
1 B•
x-4y+3=0
原
每配制1杯饮料消耗的原料
料
甲种饮料 x 乙种饮料 y
原 料限 额
奶粉(g) 咖啡(g)
糖(g)
利 润(元)
9
4
4
5ห้องสมุดไป่ตู้
3
10
0.7 编辑课件 1.2
3600 2000 3000
19
解:设每天应配制甲种饮料x杯,乙种饮料y杯,则
9 x 4 y 3600
4 3
x x
5 y 2000 10 y 3000
编辑课件
7
例3. 如何画出如右不等 式组表示的平面区域?
y
2x+y=15
2x y 15
x + 2 y 1 8
x
+
3
y
27
x 0 , y 0
x+3y=27
O
x+2y=18
x
编辑课件
8
复习回顾(三)
编辑课件
9
目标函数所
表示的几何 线性目
线性约
意义——在 标函数
束条件
y轴上的截
距或其相反
2.不等式组表示的平面区域可能是一个 多边形,也可能是一个无界区域,还可 能由几个子区域合成.若不等式组的解 集为空集,则它不表示任何区域.
编辑课件
6
理论迁移(二)
例2.请画出下
y
列不等式组表
示的平面区域.
4x y 10
6 x 5 y 2 2
x0
y 0
x O
6x+5y=22 4x+y=10
例69.x咖 啡4 y馆 配36制00 两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、 糖的每使杯334gxx,用能乙 限获15种0y额利y饮为0料2.0370奶0每元000粉杯,3含乙60奶种0g粉饮,4料咖g每,啡杯咖2能0啡0获05gg利,,糖1糖.231元000,g0.g每,已如天知果在每甲原天种料原饮的料料 解使获:用利xy 将限最00已额大知内?数饮据料列能为全目下标部函表售数:出为:,z每=0.天7x应+1配.2y制(x两,y种饮N)料各多少杯能
最大截距为过C (1, 22 ) 5
的直线 l 1
5• 4 C•
最小截距为过A(5,2) 3
A
x-4y+3=0
的直线l 2
l1
2
•
注意:此题y的系数为 负,当直线取最大截
1 B•
3x+5y-25=0
距时,代入点C,则z
-1 O 1 2 3 4 5 6 7
x
有最小值
zmin12252359l 0
-1
l2
X-4y ≤ -3
3X+5y ≤25 ,求z的最大值和最小值.
X≥1
代入点B得最大为8,
y x=1
5 4A
2x-y=0
代入点A得
12 最小值为 .5
3
x-4y+3=0
2
B
A(1,4.4)
1C
3x+5y-25=0 B(5,,2)
0 1 234567 X 编辑课件
C(1,1)
13
x 4 y 3
例5.
数。
x 4y 3
设z=2x+y,求满足
3
x
5
y
25
最优解
x 1
任何一个满足
时,求z的最大值和最小值.
不等式组的 (x,y)
线性规 划问题
所有的
可行域
可行解
编辑课件
10
解线性规划问题的步骤:
1.找: 找出线性约束条件、目标函数;
2.画:画出线性约束条件所表示的可行域;
3.移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
域位置与A、B的符号有关(同为正,异
为负),相关理论不要求掌握.
编辑课件
3
理论迁移(一)
例1: 画出下列不等式表示的平面区域. (1)x+4y<4; (2) 4x-3y≤12.
y
y
1
4x-3y≤12
4x
O
x
O
3
x+4y<4
编辑课件
-4
4
复习回顾(二)
编辑课件
5
1.不等式组表示的平面区域是各个不等 式所表示的平面区域的交集,即各个不 等式所表示的平面区域的公共部分.
A •
3x+5y-25=0
z的值最小,当 l过A(5,2)时-1, O 1 2 3 4 5 6 7
x
z的值最大, 所以,
-1
zmin2113 zmax25212
l l1
l2
l3
编辑课件
14
变题:上例若改为求z=x-2y的最大值、最小值呢?
分析:令目标函数z为0,
y
作直线 x2y0
x=1
6
平移,使之与可行域有交点。
y_
_900
目标函数为:z =0.7x +1.2y
x
0
y 0
作出可行域:
目标函数为:z =0.7x +1.2y(x,yN) _400
作直线l:0.7x+1.2y=0, 把直线l向右上方平移至l1的位置时,
_300
_C ( 200 , 240 )
当直线经过可行域上的点C时,
_7 x + 12 y = 0
同理,当直线取最小截距时,代入点A,则z有最大值 zmax5221
编辑课件
15
归纳小结
1.在线性约束条件下求目标函数的最大 值或最小值,是一种数形结合的数学思 想,它将目标函数的最值问题转化为动 直线在y轴上的截距的最值问题来解决.
2.对于直线l:z=Ax+By,若B>0,则
当直线l在y轴上的截距最大(小)时,z取
(复习课)
授课教师:程琬婷 2011年10月11日
编辑课件
1
复习回顾(一)
编辑课件
2
1.画二元一次不等式表示的平面区域, 常采用“直线定界,特殊点定域”的方 法,当边界不过原点时,常把原点作为 特殊点.
2. 包括边界的区域将边界画成实线,不 包括边界的区域将边界画成虚线.
3. 不等式Ax+By+C>0表示的平面区
4.求:通过解方程组求出最优解;
5.答:作出答案。
编辑课件
11
11
理论迁移(三)
例4.设z=2x-y,变量x、y满足下列条件
X-4y ≤ -3 ,求z的最大值和最小值.
3X+5y≤25 X ≥ 1 y x=1
5
4
3
x-4y+3=0
2
1
3x+5y-25=0
0
1 2 3 4编辑课5件 6 7 X
12
例4. 设z=2x-y,变量x、y满足下列条件