安徽省“皖南八校”2022届高三第二次联考(12月)文科数学试题 扫描版含答案
安徽省皖南八校2024届高三数学上学期第二次大联考试题含解析

考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:高考范围.一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}*2450M x x x =∈--≤N ,{}04N x x =≤≤,则M N ⋂=()A.{0,1,2,3,4}B.{1,2,3,4}C.{}04x x ≤≤ D.{}14x x ≤≤【答案】B 【解析】【分析】解不等式求出集合M ,根据集合的交集运算,即可得答案.【详解】解2450x x --≤,得:15x -≤≤,所以{}{}*151,2,3,4,5M x x =∈-≤≤=N ,{}04N x x =≤≤,所以{1,2,3,4}M N ⋂=.故选:B.2.形如a b c d我们称为“二阶行列式”,规定运算a b ad bc c d=-,若在复平面上的一个点A 对应复数为z ,其中复数z 满足1ii 12i 1z -=+,则点A 在复平面内对应坐标为()A.(3,2)B.(2,3)C.(2,3)- D.(3,2)-【答案】A 【解析】【分析】根据题意结合复数的运算可得32i z =+,结合复数的几何意义分析求解.【详解】由题意可得:()(12i)(1i)3i i -+-=-+=z z ,则()i 3i 32i =++=+z ,所以点A 在复平面内对应坐标为(3,2).故选:A.3.已知动点M 10y --=,则动点M 的轨迹是()A.椭圆B.双曲线C.抛物线D.圆【答案】C 【解析】【分析】根据方程表示的几何意义结合抛物线定义,即可判断出答案.10y --=1y =+,表示动点(,)M x y 到点(0,1)F 和直线1y =-的距离相等,所以动点M 的轨迹是以(0,1)F 为焦点的抛物线,故选:C.4.已知向量(2,)a m = ,(1,1)b m =+- ,且a b ⊥ ,若(2,1)c = ,则a 在c方向上的投影向量的坐标是()A.42,55⎛⎫ ⎪⎝⎭B.11,22⎛⎫- ⎪⎝⎭C.11,22⎛⎫- ⎪⎝⎭D.42,55⎛⎫-- ⎪⎝⎭【答案】A 【解析】【分析】根据垂直向量的坐标运算建立方程求得参数,结合投影的定义,可得答案.【详解】a b ⊥ ,故2(1)0m m +-=,解得2m =-,所以(2,2)a =-,则a 在c方向上的投影向量为a ccc c =⋅⋅42,55⎛⎫= ⎪⎝⎭.故选:A.5.中国国家馆,以城市发展中的中华智慧为主题,表现出了“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化精神与气质.如图,现有一个与中国国家馆结构类似的正四棱台1111ABCD A B C D -,上下底面的中心分别为1O 和O ,若1124AB A B ==,160A AB ∠=︒,则正四棱台1111ABCD A B C D -的体积为()A.2023B.2823C.3D.2863【答案】B 【解析】【分析】根据正四棱台性质求出侧棱长,继而求得高,根据棱台的体积公式,即可求得答案.【详解】因为1111ABCD A B C D -是正四棱台,1124AB A B ==,160A AB ∠=︒,侧面以及对角面为等腰梯形,故()1111122cos AB A B AA A AB -==∠,12AO AC ==22AB =111122AO A B ==,所以1OO ==,所以该四棱台的体积为(1111112282(1648)333ABCD D A B C V OO S S =++=⋅=++,故选:B.6.已知数列{}n a 是递增数列,且*n a ∈N ,数列{}n a 的前n 项和为n S ,若1067S =,则5a 的最大值为()A.5 B.6 C.7 D.8【答案】C 【解析】【分析】根据给定条件,确定数列前4项的值,后5项与5a 的差,即可列式计算得解.【详解】数列{}n a 是递增数列,且*n a ∈N ,而数列{}n a 的前10项和为定值,为使5a 取最大,当且仅当前4项值最小,后5项分别与5a 的差最小,则12341,2,3,4a a a a ====,657585951051,2,3,4,5a a a a a a a a a a -=-=-=-=-=,因此10121051061567S a a a a =++⋅⋅⋅+=++=,解得57a =,所以5a 的最大值为7.故选:C7.已知()f x 是定义在R 上的偶函数,函数()g x 满足()()0g x g x +-=,且()f x ,()g x 在(],0-∞单调递减,则()A.()()f g x 在[)0,∞+单调递减B.()()g g x 在(],0-∞单调递减C.()()g f x 在[)0,∞+单调递减D.()()ff x 在(],0-∞单调递减【答案】C 【解析】【分析】利用函数的奇偶性与单调性一一判定选项即可.【详解】由题意知()f x 在[)0,∞+单调递增,()g x 为奇函数,在R 上单调递减.设120x x ≤<,则()()21g x g x <0≤,()()()()21f g x f g x >,所以()()f g x 在[)0,∞+单调递增,故A 错误,设120x x <≤,则()1g x >()2g x ,()()()()12g g x g g x <,()()g g x 在(],0-∞单调递增,故B 错误;设120x x ≤<,则()1f x ()2f x <,()()()()12g f x g f x >,所以()()g f x 在[)0,∞+单调递减,故C 正确;取()21f x x =-,则()()()2211ff x x=--,()()00f f =,()()11f f -=-,此时()()f f x 在(],0-∞不单调递减,故D 错误.故选:C.8.已知点P 在直线60x y +-=上,过点P 作圆22:4O x y +=的两条切线,切点分别为A ,B ,点M 在圆2214:133C x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭上,则点M 到直线AB 距离的最大值为()A.B.1+ C. D.1+【答案】B 【解析】【分析】结合点P 在直线60x y +-=上,求出切点弦AB 的方程,确定其所经过的定点,确定当CQ AB ⊥时,C 到直线AB 的距离最大,M 到直线AB 的距离也最大,即可求得答案.【详解】根据题意,设点(,)P m n ,则6m n +=,过点P 作圆22:4O x y +=的切线,切点分别为A ,B ,则有OA ⊥PA ,OB PB ⊥,则点A ,B 在以OP 为直径的圆上,以OP 为直径的圆的圆心为,22m n D ⎛⎫⎪⎝⎭,半径12r OP =2=,则其方程为2222224m n m n x y +⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,变形可得220x y mx ny +--=,联立22224x y x y mx ny ⎧+=⎨+--=⎩,可得圆D 和圆O 公共弦AB 为:40mx ny +-=,又由6m n +=,则有mx +()640m y --=,变形可得()640m x y y -+-=,则有0640x y y -=⎧⎨-=⎩,可解得23x y ==,故直线AB 恒过定点22,33Q ⎛⎫ ⎪⎝⎭,点M 在圆2214:133C x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭上,14,33C ⎛⎫-- ⎪⎝⎭,当CQ AB ⊥时,C 到直线AB 的距离最大,M 到直线AB 的距离也最大,则点M 到直线AB 距离的最大值为111CQ +==.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.一组数据2、3、3、4、5、7、7、8、9、11的第80百分位数为8.5B.在回归分析中,可用决定系数2R 判断模型拟合效果,2R 越小,模型的拟合效果越好C.若变量ξ服从()217,N σ,(1718)0.4P ξ<≤=,则(18)0.1P ξ>=D.将总体划分为2层,通过分层抽样,得到两层的样本平均数和样本方差分别为1x ,2x 和21s ,22s ,若12x x =,则总体方差()2221212s s s =+【答案】AC 【解析】【分析】对于A ,根据百分位数的计算方程,可得答案;对于B ,结合拟合的定义,可得答案;对于C ,根据正态分布的对称性,可得答案;对于D ,利用方差的计算,可得答案.【详解】对于A ,数据2、3、3、4、5、7、7,8、9、11共10个数,因为1080%8⨯=,因此,这组数据的第80百分位数为898.52+=,故A 正确,对于B ,在回归分析中,可用决定系数2R 的值判断模型拟合效果,2R 越大,模型的拟合效果越好,故B 错误;对于C ,因为变量ξ服从()217,N σ,(1718)0.4P ξ<≤=,则(18)0.5(1718)0.50.40.1P P ξξ>=-<≤=-=,故C 正确;对于D ,不妨设两层的样本容量分别为m ,n ,总样本平均数为x ,则()()222221212m n s s x x s x x m n m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦++,易知只有当m n =,12x x =时,有()2221212s s s =+,故D 错误.故选:AC.10.已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,且(0)1f =,若()g x =()f x a +为奇函数,则a 可能取值为()A.π3B.5π12C.π6D.π12-【答案】BD 【解析】【分析】根据图像有2A =,根据(0)2sin 1f ϕ==及π2ϕ<,确定ϕ值,再根据图像确定2π11π12T ω=>,结合11π012f ⎛⎫= ⎪⎝⎭求出ω,确定()f x 解析式,又要使()()g x f x a =+为奇函数,则(0)()0g f a ==,求a 值.【详解】由图象可得2A =,再根据(0)2sin 1f ϕ==,π2ϕ<,故π6ϕ=,又2π11π12T ω=>,则24011ω<<,又11π012f ⎛⎫= ⎪⎝⎭,所以11ππ2π126k ω⨯+=,Z k ∈,得2ω=,故π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭;要使()()g x f x a =+为奇函数,则(0)()0g f a ==,所以π2π6a k +=,Z k ∈,得ππ212k a =-,当0k =时12πa =-,当1k =时5π12a =,所以B 、D 符合,其它选项不符合.故选:BD11.若函数()e e x x f x a b cx -=++,既有极大值点又有极小值点,则()A.0ac < B.0bc < C.()0a b c +< D.240c ab +>【答案】ACD【解析】【分析】根据极值定义,求导整理方程,结合一元方程方程的性质,可得答案.【详解】由题知方程2e e ()e e 0ex x xxxa c bf x a b c -+-'=-+==,2e e 0x x a c b +-=有两不等实根1x ,2x ,令e x t =,0t >,则方程20at ct b +-=有两个不等正实根1t ,2t ,其中11e x t =,22e xt =,212120Δ4000a c abc t t a bt t a ≠⎧⎪=+>⎪⎪⎨+=->⎪⎪=->⎪⎩,24000c ab ac ab ⎧+>⎪<⎨⎪<⎩,()00bc a b c ab ac >⎧⎨+=+<⎩,故ACD 正确,B 错误.故选:ACD.12.已知一圆锥,其母线长为l 且与底面所成的角为60︒,下列空间几何体可以被整体放入该圆锥的是()1.73≈, 1.41≈)A.一个半径为0.28l 的球B.一个半径为0.28l 与一个半径为0.09l 的球C.一个边长为0.45l 且可以自由旋转的正四面体D.一个底面在圆锥底面上,体积为30.04l π的圆柱【答案】ABC 【解析】【分析】作出相应的空间图形及轴截面,再对各个选项逐一分析判断即可得出结果.【详解】如图1,球1O 与圆锥侧面、底面均相切,球2O 与球1O 、圆锥侧面相切,作圆锥的轴截面如图2,设小球1Q 半径为1r ,球1Q 与BC 边相切于点E ,60CBA ∠=︒,30DCB ∠=︒,1O E BC ⊥,所以112CO r =,132CD r ==,130.286r l ∴=>,故A 正确;设小球2O 半径为2r ,同理可知21130.09318r r l l ==>,故B 正确;将棱长为a 的正四面体放置到正方体中,如图则正四面体的外接球即正方体的外接球,易知正方体的外接球球心在体对角线的中点O 处,半径为1B D 的一半长,易知,2BC a =,所以12B D a =,故棱长为a 的正四面体外接球半径为4a ,则46a ≤则边长3a l ≤,20.453l l >,故C 正确;如图3,一圆柱内接圆锥,作圆锥的轴截面如图4,设圆柱底面半径为3r ,高为h ,因为3r CD h DB CD -=,又易知,13,22BD l CD ==,代入3r CD h DB CD -=,整理得到332h l =-,所以圆柱的体积()()2223333333332π2ππ2V r h l r l r r r ⎛⎫==⋅=- ⎪ ⎪⎝⎭,令()()23333π2602V r lr r '=-=,得30r =或313r l =,则体积在10,3l ⎛⎫ ⎪⎝⎭上单调递增,在11,32l l ⎛⎫⎪⎝⎭上单调递减,()333max π30.044π5V l l r =∴<,故D 错误.图1图2图3图4故选:ABC.【点睛】关键点晴,本题的关键在于将空间问题转化成平面问题来处理.三、填空题:共4小题,每小题5分,共20分.13.二项式(2)(1)n x x -+的展开式中,所有项系数和为256-,则2x 的系数为______(用数字作答).【答案】48-【解析】【分析】利用赋值法求得n ,再根据二项式展开式的通项公式求得正确答案.【详解】令1x =可得二项式(2)(1)nx x -+的所有项系数和为2256n -=-,所以8n =.二项式8(1)x +的展开式的通项公式为18C rrr x T +=⋅,0r =,1, (8)所以(2)(1)nx x -+的展开式中,2x 的系数为1288C 2C -=48-.故答案为:48-14.随机变量ξ有3个不同的取值,且其分布列如下:ξ4sin α4cos α2sin 2αP1414a则()E ξ的最小值为______.【答案】54-【解析】【分析】根据分布列性质求得a 的值,即可求得()E ξ的表达式,结合三角换元以及二次函数性质,即可求得答案.【详解】依题意知11144a ++=,则12a =,则()sin cos sin 2E ξααα=++,设πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,则t ⎡∈⎣,故22sin 2(sin cos )11t ααα=+-=-,所以2215()124E t t t ξ⎛⎫=+-=+- ⎪⎝⎭,当12t ⎡=-∈⎣时,()E ξ取最小值54-,故答案为:54-15.已知双曲线2222:1(0,0)x y E a b a b-=>>的左,右焦点分别为1F ,2F ,过左焦点1F 作直线l 与双曲线交于A ,B 两点(B 在第一象限),若线段AB 的中垂线经过点2F ,且点2F 到直线l 的距离为,则双曲线的离心率为______.【答案】2【解析】【分析】根据题意,由双曲线的定义可得4AB a =,再由勾股定理列出方程即可得到,a c 关系,代入离心率计算公式,即可得到结果.【详解】设双曲线E 的半焦距为c ,0c >,22=BF AF ,根据题意得122BF BF a -=,又21AF AF -212BF AF a =-=,114AB BF AF a ∴=-=,设AB 的中点为C ,在2ACF △中,2CF =,2AC a =,23AF a ∴=,则1AF a =,13CF a =,根据2221212CF CF F F +=,可知2(3)a +)22(2)c =,142c a e =∴=.故答案为:142.16.已知函数22ln e ()21e xa f x a x x x=+-+,(0)a >有唯一零点,则a 的值为______.【答案】2【解析】【分析】设2e (0)e x a t t x=>,转化为方程ln e t t =有唯一解e t =,即2ln 2a x x =-有唯一解,设ln ()22g x a x x =-+,利用导数判断单调性并求出最小值可得答案.【详解】由题意知224e 21e ln x a x x x+=-有唯一解,0x >,故2222e e 21ln e ln e ln e e l ln n x x x a a a x a x x x x=--=--=,设2e (0)e x a t t x=>,即ln e t t =,设(e n )l t F t t =-,则11()e F t t '=-,当(0,e)t ∈时,()0F t '<,函数()F t 单调递减,当(e,)t ∈+∞时,()0F t '>,函数()F t 单调递增;min ()(e)0F t F ==,故方程ln e t t =有唯一解e t =,即2e e e x a x=有唯一解,即2ln 2a x x =-有唯一解,设ln ()22g x a x x =-+,()2a g x x '=-,0a >,当0,2a x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减;当x 趋近于0和x 趋近于+∞时,()g x 趋近于-∞,故只需满足ln 2022a a g a a ⎛⎫=-+=⎪⎝⎭,设()ln 22a h a a a =-+,()ln 2a h a '=,当(0,2)a ∈时,()0h a '<,函数()h a 单调递减,当(2,)a ∈+∞时,()0'>h a ,函数()h a 单调递增,故min ()(2)0h a h ==,故2a =成立.【点睛】关键点点睛:本题的解题关键点是构造函数,利用导数判断单调性四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 的前n 项和为n S,且满足1n a =+,*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n n b a a a +⋅=+,求数列{}n b 的前n 和n T .【答案】(1)21n a n =-,*N n ∈(2)2221n n n T n+=+【解析】【分析】(1)根据数列递推式求出首项,得出当2n ≥时,()211114n n S a --=+,和()2114n n S a =+相减并化简可得12n n a a --=,即可求得答案;(2)利用(1)的结果可得12n n n n b a a a +⋅=+的表达式,利用等差数列的前n 项和公式以及裂项法求和,即可求得答案.【小问1详解】由1n a =+得()2114n n S a =+,则()211114a a =+,解得11a =,当2n ≥时,()211114n n S a --=+,所以()()2211111144n n n n n a S S a a --=-=+-+,整理得()()()1112n n n n n n a a a a a a ----+=+,因为{}n a 是正项数列,所以10n n a a ->+,所以12n n a a --=,所以{}n a 是首项为1,公差为2的等差数列,所以12(1)21n a n n =+-=-,*N n ∈.【小问2详解】由(1)可得,21n a n =-,所以122112121(21)(21)2121n n n n b a n n a a n n n n +=+=-+=-+--+-+⋅,所以(121)111111213352121n n n T n n +-⎛⎫=+-+-+⋅⋅⋅+- ⎪-+⎝⎭21121n n =+-+2221n n n =++.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22b a ac -=.(1)求证:2B A =;(2)如图:点D 在线段AC 上,且12AD BD CD ==,求cos C 的值.【答案】(1)证明见解析(2)368【解析】【分析】(1)在ABC 中根据余弦定理、正弦定理及三角公式化简可得;(2)由第一问在BCD △中结合正弦定理可得2a c =,在ABC 中根据余弦定理可求得结果.【小问1详解】证明:由余弦定理得2222cos a c b ac B +-=,又22b a ac -=,可得22cos c ac ac B -=,即2cos c a a B -=,由正弦定理得sin sin 2sin cos C A A B -=,而sin sin()sin cos cos sin C A B A B A B =+=+,代入上式,可得sin sin si )cos co i s n s n(A A B A B B A =-=-,所以πA B A +-=(舍)或A B A =-,即2B A =.【小问2详解】因为2B A =,AD BD =,所以=A ABD CBD ∠∠=∠,在BCD △中,由正弦定理得sin sin sin sin CD CBD A a BD C C c∠∠===∠∠,而12BD CD =,可得2a c =,代入22b a ac -=,可得=b ,由余弦定理得222222(2)co 2s 8c c a b c C ab +-+-===.19.如图,在四棱锥P ABCD -中,棱PA ⊥平面ABCD ,底面四边形ABCD 是矩形,6PA AD ==,点N 为棱PD 的中点,点E 在棱AD 上,3AD AE =.(1)求证:PC AN ⊥;(2)已知平面PAB 与平面PCD 的交线l 与直线BE 所成角的正切值为12,求二面角N BE D --的余弦值.【答案】(1)证明见解析(2)27【解析】【分析】(1)利用线线垂直证线面垂直,再由线面垂直的性质证线线垂直即可;(2)建立合适的空间直角坐标系,利用空间向量求二面角即可.【小问1详解】因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,又因为四边形ABCD 是矩形,所以AD CD ⊥,因为,PA AD A PA CD ⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,因为AN ⊂平面PAD ,所以CD AN ⊥.因为N 为PD 中点,PA AD =,所以PD AN ⊥,因为PD CD D ⋂=,所以AN ⊥平面PCD ,因为PC ⊂平面PCD ,所以AN PC ⊥.【小问2详解】在矩形ABCD 中,//AB CD ,CD ⊂平面PCD ,AB ⊂/平面PCD ,所以//AB 平面PCD .又AB ⊂平面PAB ,平面PAB ⋂平面PCD l =,所以//AB l .所以l 与直线BE 所成角即为ABE ∠.在Rt ABE △中,123AE AD ==,AB AE ⊥,所以4tan A AE A E B B ∠==.以{},,AB AD AP 为正交基底建立如图所示的空间直角坐标系,则(4,0,0)B ,(0,2,0)E ,(0,3,3)N 所以(4,2,0)BE =- ,(4,3,3)BN =-.设平面BNE 的法向量为(,,)m x y z = ,则4204330m BE x y m BN x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ ,取23,6z x y =⇒=-=-,可得(3,6,2)m =-- .又(0,0,6)AP = 为平面BDE 的一个法向量,所以122cos ,67m 7m AP AP m AP ⋅===⨯ .由图可知,二面角N BE D --为锐角,所以二面角N BE D --的余弦值为27.20.人工智能(AI )是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某公司研究了一款答题机器人,参与一场答题挑战.若开始基础分值为m (*m ∈N )分,每轮答2题,都答对得1分,仅答对1题得0分,都答错得1-分.若该答题机器人答对每道题的概率均为12,每轮答题相互独立,每轮结束后机器人累计得分为X ,当2X m =时,答题结束,机器人挑战成功,当X 0=时,答题也结束,机器人挑战失败.(1)当3m =时,求机器人第一轮答题后累计得分X 的分布列与数学期望;(2)当4m =时,求机器人在第6轮答题结束且挑战成功的概率.【答案】(1)分布列见解析,()3E X =(2)111024【解析】【分析】(1)利用离散型随机变量的分布列与期望公式计算即可;(2)根据超几何分布分类讨论计算即可.【小问1详解】当3m =时,第一轮答题后累计得分X 所有取值为4,3,2,根据题意可知:()1114224P X ==⨯=,()11132222P X ==⨯⨯=,()1112224P X ==⨯=,所以第一轮答题后累计得分X 的分布列为:X 432()P X 141214所以()1114323424E X =⨯+⨯+⨯=.【小问2详解】当4m =时,设“第六轮答题后,答题结束且挑战成功”为事件A ,此时情况有2种,分别为:情况①:前5轮答题中,得1分的有3轮,得0分的有2轮,第6轮得1分;情况②:前4轮答题中,得1分的有3轮,得1-分的有1轮,第5.6轮都得1分;所以()3232335411111111C C 4244441024P A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.21.如图,已知椭圆2222:1(0)x y M a b a b+=>>的左右顶点分别为A 、B ,P 是椭圆M 上异于A 、B 的动点,满足14PA PB k k ⋅=-,当P 为上顶点时,ABP 的面积为2.(1)求椭圆M 的方程;(2)若直线AP 交直线:4l x =于C 点,直线CB 交椭圆于Q 点,求证:直线PQ 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)设椭圆上顶点0(0,)P b ,根据题意求出,a b 即可得解;(2)分直线PQ 斜率是否存在,设()11,P x y ,()22,Q x y ,(4,)C t ,先根据斜率不存在求出定点M ,方法1,联立直线AC 与椭圆方程,求出,P Q 两点的坐标,然后证明,,P M Q 三点共线即可.方法2,当直线PQ 斜率存在时,设直线PQ 为y kx m =+,联立方程,利用韦达定理求出12x x +,12x x ,再结合已知,求出,k m 的关系,即可得出结论.方法3,易得3BQ PA k k =,根据椭圆的对称性可得3PB QA k k =,再利用斜率公式构造对偶式,进而可求出PQ 的方程,从而可得出结论.【小问1详解】设椭圆上顶点0(0,)P b ,则002214P A P B b b b k k a a a =⋅==--⋅-,又01222ABP S ab =⨯=△,两式联立可解得2a =,1b =,所以椭圆M 的方程为2214x y +=;【小问2详解】设()11,P x y ,()22,Q x y ,(4,)C t ,当直线PQ 斜率不存在时,12x x =,12y y =-则直线:(2)6t AC y x =+,:(2)2t BC y x =-所以()()11112,622t y x t y x ⎧=+⎪⎪⎨⎪-=-⎪⎩,可解得11x =,此时直线PQ 方程为1x =,过定点(1,0);下面证明斜率存在时,直线PQ 也经过(1,0),法1(设而求点):联立直线AC 与椭圆方程:22(2),61,4t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩整理得()2222944360t x t x t +++-=,()()42216494360t t t ∆=-+->,由韦达定理有212429t x t --=+,即2121829t x t -=+,所以()1126269t t y x t =+=+,所以P 点坐标为2221826,99t t t t ⎛⎫- ⎪++⎝⎭,同理可得Q 点坐标为222222,11t t t t ⎛⎫-- ⎪++⎝⎭,设点(1,0)M ,则222936,99t t MP t t ⎛⎫-= ⎪++⎝⎭ ,22232,11t t MQ t t ⎛⎫--= ⎪++⎝⎭因为2222229326309191t t t t t t t t ---⋅-=++++,所以//MP MQ ,所以直线PQ 过定点(1,0)M ,证毕.法2(直曲联立):当直线PQ 斜率存在时,设直线PQ 为y kx m =+,由6PA t k =,2BQ t k =,可知3BQ PA k k =,而14PA PB k k ⋅=-,可得34BQ PB k k =-⋅,即()()21122112322224y y y y x x x x ⋅==-----,整理得()121212346120x x y y x x +-++=①,联立直线PQ 与椭圆方程:2214y kx m x y =+⎧⎪⎨+=⎪⎩,整理得()222418440k x kmx m +++-=,所以()()()222222644414416410k m k m k m∆=-+-=+->,则2241k m +>,由韦达定理有122841km x x k +=-+,21224441m x x k -=+②,所以()()()2222121212122441m k y y kx m kx m k x x km x x m k -=++=+++=+⋅③,将②③代入①得2222224448346120414141m m k km k k k --⨯+⨯+⨯+=+++,可得(2)()0k m k m ++=,所以2m k =-或m k =-,当2m k =-时,直线PQ 为2y kx k =-,经过(2,0)B ,舍去,所以m k =-,此时直线PQ 为y kx k =-,经过定点(1,0),直线PQ 过定点得证.法3(构造对偶式):由6PA t k =,2BQ t k =,可知3BQ PA k k =,又14PA PB k k ⋅=-,由椭圆对称性易知14QA QB k k =-⋅,所以3PB QA k k =,可得21211221121221121212322362326322y y x x x y x y y y y y x y x y y y x x ⎧=⨯⎪-+-=--⎧⎪⇒⎨⎨-=--⎩⎪=⨯⎪-+⎩①②,由①②可得122121x y x y y y =--,直线PQ 为()121112y y y y x x x x --=--,令0y =得,1221211x y x y x y y -==-,所以直线PQ 过定点(1,0),证毕.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.22.已知函数()e e x x f x a -=-,(R a ∈).(1)若()f x 为偶函数,求此时()f x 在点()()0,0f 处的切线方程;(2)设函数()()(1)g x f x a x =-+,且存在12,x x 分别为()g x 的极大值点和极小值点.(ⅰ)求实数a 的取值范围;(ⅱ)若(0,1)a ∈,且()()120g x kg x +>,求实数k 的取值范围.【答案】(1)20y +=(2)(i )(0,1)(1,)⋃+∞;(ii )(,1]-∞-【解析】【分析】(1)根据偶函数的定义,求出a 的值,然后利用导数求切线方程.(2)(ⅰ)对()g x 进行求导,将()g x 既存在极大值,又存在极小值转化成()0g x =必有两个不等的实数根,利用导数得到()g x 的单调性和极值,进而即可求解;(ⅱ)对()g x 进行求导,利用导数分析()g x 的极值,将()()120g x kg x +>恒成立转化成11ln 11a a k a -⎛⎫<-⋅ ⎪+⎝⎭,构造函数,利用导数分类讨论求解即【小问1详解】()f x 为偶函数,有()e e ()e e x x x x f x a f x a ---=-==-,则1a =-,所以()e e x x f x -=--,()e ex x f x -'=-+所以(0)2f =-,(0)0f '=所以()f x 在点(0,(0))f 处的切线方程为20y +=.【小问2详解】(ⅰ)()()(1)e e (1)x x g x f x a x a a x -=-+=--+,()()2e 1e 1e (1)e 1()e e (1)e e x x x x x x x x a a a g x a a ----++'=+-+==,因为函数()g x 既存在极大值,又存在极小值,则()0g x '=必有两个不等的实根,则0a >,令()0g x '=可得0x =或ln x a =-,所以ln 0a -≠,解得0a >且1a ≠.令{}min 0ln ,m a =-,{}max 0ln ,n a =-,则有:x (,)m -∞m (,)m n n (,)n +∞()g x '+0-0+()g x 极大值 极小值可知()g x 分别在x m =和x n =取得极大值和极小值,符合题意.综上,实数a 的取值范围是(0,1)(1,)⋃+∞.(ⅱ)由(0,1)a ∈,可得ln 0a ->,所以10x =,2ln x a =-,()11g x a =-,()21(1ln )g x a a a =-++且有()()210g x g x <<,由题意可得[]11(1)ln 0a k a a a -+-++>对(0,1)a ∀∈恒成立,由于此时()()210g x g x <<,则0k <,所以()()()1ln 11k a a k a +>--,则11ln 11a a k a -⎛⎫<-⋅ ⎪+⎝⎭,令ln 11()11x h x x k x -⎛⎫=--⋅ ⎪+⎝⎭,其中01x <<,则2222212(1)211112()1(1)(1)(1)x x x x k k h x x k x x x x x ⎛⎫+--++ ⎪⎛⎫⎝⎭'=--⋅== ⎪+++⎝⎭,令2210x x k ++=,则()2224144k k k -∆=-=.①当0∆≤,即1k ≤-时,()0h x '≥,()h x 在(0,1)上是严格增函数,所以()(1)0h x h <=,即11ln 11a a k a -⎛⎫<-⋅ ⎪+⎝⎭,符合题意;(2)当0∆>,即10k -<<时,设方程2210x x k ++=的两根分别为3x ,4x 且34x x <,则3420x x k +=->,341x x =,则3401x x <<<,则当31x x <<时,()0h x '<,则()h x 在()3,1x 上单调递减,所以当31x x <<时,()(1)0h x h >=,即11ln 11a a k a -⎛⎫>-⋅ ⎪+⎝⎭,不合题意.综上所述,k 的取值范围是(,1]-∞-.。
安徽省江淮名校高三第二次联考数学(文)试题(扫描版,含

文科数学参考答案二、填空题(每题5分,共25分)11. 21,20140x x x ∀>-+-≤ 12. 13. 14. 15. ①⑤16.解:(1)由及,有 ……………………1分 有 解得 ………………………4分7(1)(3)310n a n n =+--=-+27(310)317222n n S n n n +-+==-+ …………………………6分(2)由题意有,又由(1)有 ………8分112(12)(32)(32)n n a a a -=++++++1121332()n n a a a -=+++++++ …12分17.(1)()2cos (sin cos cos sin )sin f x x x A x A A =-+ ……………………1分sin 2cos cos 2sin x A x A =- 在处取得最大值。
522,12A k k Z ππ∴⨯-=∈,即 , …………………………4分sin(2)12x A ∴-<-≤,即的值域为⎛⎤ ⎥ ⎝⎦。
…………………………6分 (2)由正弦定理得sin sin sin b cB C A a++=…………………………9分2222cos a b c bc A =+-得 …………………………11分1sin 2ABC S bc A ∆== …………………………12分 18.(1)a b x a x g -++-=1)1()(2,因为,所以在区间上是增函数, 故,解得. …………………………4分 (2)由已知可得,所以可化为,化为k x x ≥⋅-⎪⎭⎫⎝⎛+2122112,令,则,因,故,记,因为,故,所以的取值范围是 …………………………12分19.解:⑴在Rt△BOE中, ,在Rt△AOF中,在Rt△OEF 中, ,当点F 在点D 时,角最小, ……2分 当点E 在点C 时,角最大, ,所以50(sin cos 1),sin cos l αααα++=………4分定义域为 ……………………………6分⑵设]3,6[,cos sin ππααα∈+=t ,所以 ……………………8分250(1)1001)]112t l t t +==∈-- ……………………………10分所以当时, ,总费用最低为元 ……12分20.解:(1)由题意0,()xa f x e a '>=-, ……………………………1分 由()0xf x e a '=-=得l n x a =. 当(,l n)x a ∈-∞时, ()0f x '<;当(l n,)x a ∈+∞时,()0f x '>.∴()f x 在(,l n )a -∞单调递减,在(l n ,)a +∞单调递增 …………………………4分 即()f x 在l n x a =处取得极小值,且为最小值,其最小值为l n (l n )l n 1l n 1.af a e a a a a a =--=-- ……………………………6分 (2)()0f x ≥对任意的x ∈R 恒成立,即在x ∈R 上,m i n ()0f x ≥. 由(1),设()l n 1.g a a aa =--,所以()0g a ≥.由()1l n 1l n 0g a a a '=--=-=得1a =. ……………………………9分 易知()g a 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减, ∴ ()g a 在1a =处取得最大值,而(1)0g =.因此()0g a ≥的解为1a =,∴1a = ……………………………13分 21.(Ⅰ) 当时,;当时, , ,相减得……………………………2分又, 所以是首项为,公比为的等比数列,所以 ……………………4分(Ⅱ) 由(Ⅰ) 知,所以112244+-=⋅==n n n n n n a n b所以23411232222n n n T +=++++ 34121212222n n n n ++-++++两式相减得2341211111222222n n n n T ++=++++-=2221111222122212n n n n n ++⎛⎫- ⎪+⎝⎭-=--,所以 (或写成,均可给至8分) ………8分 (Ⅲ)=()()()11221211211121122k kk k k k k k k S T k k ++++==+⋅++⎛⎫⎛⎫-⋅-++-⋅- ⎪ ⎪⎝⎭⎝⎭()()111211221212121k k k k k +++⎛⎫==- ⎪---⋅-⎝⎭…………11分 所以()1111211122121212121nnk k n k k k k k S T k ++==+⎛⎫⎛⎫=-=-< ⎪ ⎪⋅++---⎝⎭⎝⎭∑∑若不等式()121nk k k k m S T k =+<⋅++∑对任意正整数恒成立,则, 所以存在最小正整数,使不等式()121nk k kk m S T k =+<⋅++∑对任意正整数恒成立 ……14分。
安徽省皖南八校2022-2023学年高三上学期第二次大联考数学试题含解析

2023届“皖南八校”高三第二次大联考数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色黒水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,0,1,2,3,(2)1,A B xx x =-=-∈R ∣,则A B ⋂=( )A.{}1,2B.{}0,1,2,3C.{}1,2,3D.{}2 若复数z 满足i i z z -=(i 为虚数单位),则z =( ) A.12-B.12C.1i 2- D.1i 2 3.已知单位向量,a b 满足3a b +=,则a 在b 上的投影向量为( ) A.a B.12a C.12b D.b 4.已知双曲线2222:1(0,0)x y E a b a b-=>>以正方形ABCD 的两个顶点为焦点,且经过该正方形的另两个顶点,则双曲线E 的离心率为( )1 1- C.2 D.25.在三棱锥P ABC -中,,12,16,45PA AB PA AB PC PBC ∠⊥====,则三棱锥P ABC -外接球的体积为( ) A.40003π B.400π C.169π D.1693π 6.已知圆C 的方程为22680x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的最小值是( ) A.35-B.45-C.65-D.125- 7.为落实疫情防控“动态清零”总方针和“四早”要求,有效应对奥密克戎变异株传播风险,确保正常生活和生产秩序,某企业决定于每周的周二、周五各做一次抽检核酸检测.已知该企业组装车间的某小组有6名工人,每次独立、随机的从中抽取3名工人参加核酸检测.设该小组在一周内的两次抽检中共有ξ名不同的工人被抽中,下列结论不正确的是( )A.该小组中的工人甲一周内被选中两次的概率为14B.()()36P P ξξ=<=C.该小组中的工人甲一周内至少被选中一次的概率为34D.()()45P P ξξ===8.已知()2cos f x x x =--,若7881e ,ln ,98a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 大小关系为( )A.c b a <<B.a c b <<C.b c a <<D.c a b <<二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.随着时代与科技的发展,信号处理以各种方式被广泛应用于医学、声学、密码学、计算机科学、量子力学等各个领域.而信号处理背后的“功臣”就是正弦型函数,41sin[(21)]()21i i x f x i =-=-∑的图象就可以近似的模拟某种信号的波形,则下列说法正确的是( ) A.函数()f x 的图象关于直线2x π=对称B.函数()f x 的图象关于点()0,0对称C.函数()f x 为周期函数,且最小正周期为πD.函数()f x 的导函数()f x '的最大值为410.已知抛物线2:2(0)C x py p =>的焦点F 到准线的距离为4,过F 的直线与抛物线交于,A B 两点,M 为线段AB 的中点,则下列结论正确的是( ) A.抛物线C 的准线方程为2y =-B.当3AF FB =,则直线AB 的倾斜角为30C.若16AB =,则点M 到x 轴的距离为8D.418AF BF+11.在底面边长为2、高为4的正四棱柱1111ABCD A B C D -中,O 为棱1A A 上一点,且111,4AO A A P Q =、分别为线段1111B D A D 、上的动点,M 为底面ABCD 的中心,N 为线段AQ 的中点,则下列命题正确的是( ) 与QM 共面B.三棱锥A DMN -的体积为43C.PQ QO +的最小值为2D.当11113D Q D A =时,过,,A Q M三点的平面截正四棱柱所得截面的周长为8312.已知()(),f x g x 都是定义在R 上的函数,对任意,x y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的有( )A.()01g =B.函数()21f x -的图象关于点1,02⎛⎫⎪⎝⎭对称 C.()()111g g +-=D.若()1f =,则20231()n f n ==∑ 三、填空题:全科免费下载公众号《高中僧课堂》本题共4小题,每小题5分,共20分.13.国庆节前夕,某市举办以“红心颂党恩、喜迎二十大”为主题的青少年学生演讲比赛,其中10人比赛的成绩从低到高依次为:85,86,88,88,89,90,92,93,94,98(单位:分),则这10人成绩的第75百分位数是__________.14.在111x y x ⎛⎫-+ ⎪⎝⎭的展开式中,8xy 的系数为__________.15.已知(),0,,tan ,cos 326ππαβπαβ⎛⎫⎛⎫∈+=+= ⎪ ⎪⎝⎭⎝⎭()cos 2αβ-=__________. 16.已知0a <,不等式1e ln 0a x x a x +⋅+对任意的实数1x >恒成立,则实数a 的最小值是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步棷.17.(10分)已知数列{}n a 的首项112a =,且满足()*123n n n a a n a +=∈+N . (1)求证:数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列;(2)若1231111121na a a a ++++<,求满足条件的最大整数n . 18.(12分)近年来,我国大学生毕业人数呈逐年上升趋势,各省市出台优惠政策鼓励高校毕业生自主创业,以创业带动就业.某市统计了该市其中四所大学2021年的毕业生人数及自主创业人数(单位:千人),得到如下表格:(1)已知y 与x 具有较强的线性相关关系,求y 关于x 的线性回归方程ˆˆˆya bx =+; (2)假设该市政府对选择自主创业的大学生每人发放1万元的创业补贴.(i )若该市E 大学2021年毕业生人数为7千人,根据(1)的结论估计该市政府要给E 大学选择自主创业的毕业生创业补贴的总金额;(ii )若A 大学的毕业生中小明、小红选择自主创业的概率分别为1,2112p p p ⎛⎫-<< ⎪⎝⎭,该市政府对小明、小红两人的自主创业的补贴总金额的期望不超过1.4万元,求p 的取值范围.参考公式:回归方程ˆˆˆya bx =+中斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆˆˆ,n niii ii i nni ii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑. 19.(12分)如图,将长方形11OAA O (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAA O 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值. 20.(12分)如图,在平面四边形ABCD 中,2,AB BC CD AD ====.(1)若DB 平分ADC ∠,证明:A C π+=;(2)记ABD 与BCD 的面积分别为1S 和2S ,求2212S S +的最大值. 21.(12分)已知椭圆2222:1(0)x y C a b a b+=>>经过点12⎫⎪⎭,其右焦点为)F.(1)求椭圆C 的标准方程;(2)椭圆C 的右顶点为A ,若点,P Q 在椭圆C 上,且满足直线AP 与AQ 的斜率之积为120,求APQ 面积的最大值. 22.(12分)已知函数()3e 1xf x x =-+,其中e 2.71828=是自然对数的底数.(1)设曲线()y f x =与x 轴正半轴相交于点()0,0P x ,曲线在点P 处的切线为l ,求证:曲线()y f x =上的点都不在直线l 的上方;(2)若关于x 的方程()f x m =(m 为正实数)有两个不等实根()1212,x x x x <,求证:21324x x m -<-. 2023届“皖南八校”高三第二次大联考・数学参考答案、解析及评分细则1.C 因为{}{}1,0,1,2,3,13,A B xx x =-=∈R ∣,则{}1,2,3A B ⋂=.故选C. 2.D 设i z a b =+,则()()i 1i i i i i.i i z a bz a b b a z z -=+-=⋅=-=+-=⋅,i b a =+,解得0,1,2a b =⎧⎪⎨=⎪⎩即1i 2z =.故选D.3.C 因为,a b 是单位向量,所以1,1a b ==,故2222||1,||1a a b b ====,由3a b +=得,2||3a b +=,即2()3a b +=,解得12a b ⋅=.设a 与b 的夹角为θ,则a 在b 上的投影向量为1cos 2b a b b a b b b b θ⋅=⋅=.故选C. 4.A 如图,正方形的顶点,A B 为双曲线的焦点,顶点,C D 在双曲线上,则(),0A c -,(),0B c ,故2,b C c a ⎛⎫ ⎪⎝⎭.由正方形ABCD 得AB BC =,所以22b c a =,则2222ac b c a ==-即2220c ac a --=,两边同除2a 得2210e e --=,解得1e =或1e =(舍).故选A.5.A 因为,12,16PA AB PA AB ⊥==,所以20PB =,在PBC 中,由正弦定理得sin sin PC PBPBC PCB∠∠=20sin PCB ∠=,所以sin 1PCB ∠=,取PB 的中点O ,可知O 为三棱锥P ABC -外接球的球心,外接球的半径1102R PB ==,所以三棱锥P ABC -外接球的体积为34400033V R ππ==,故选A. 6.D圆C 的方程为22680x y x +-+=,整理得:22(3)1,x y -+=∴圆心为()3,0C ,半径1r =,又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴点C 到直线2y kx =+的距离小于或等于22,2,5120k k +,化简得,解得120,5k k -∴的最小值是125-.故选D. 7.B 依题意每次抽取工人甲被抽到的概率2536C 1C 2P ==,所以工人甲一周内被选中两次的概率为21124⎛⎫=⎪⎝⎭,故A 正确;依题意ξ的可能取值为3456、、、,则()()33366333336666C C C 1113,6C C 20C C 20P P ξξ==⋅===⋅=,所以()()36P P ξξ===,故B 错误;对于C ,工人甲一周内至少被选中一次的概率为2131124⎛⎫--= ⎪⎝⎭,故C 正确;()()32131263363333336666C C C C C C 994,5C C 20C C 20P P ξξ==⋅===⋅=,所以()()45P P ξξ===,故D 正确.故选B.8.B 因为()()()()222cos ,,()cos cos f x x x x f x x x x x f x =--∈-=----=--=R ,所以()f x 为R 上的偶函数.当0x 时,()()2sin ,2cos 0f x x x f x x ''=-+'=-+<,所以()f x '在[)0,∞+上单调递减,所以()()00f x f ''=,所以()f x 在[)0,∞+上单调递减,又因为()f x 为R 上的偶函数.所以()f x 在(),0∞-上单调递增.因为788911e ,ln ln ,9888a f b f f c f f -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由e 1x x +,得7871e188->-+=,所以781e 8f f -⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,由ln 1x x -,得991ln 1888<-=,所以91ln 88f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,从而有a c b <<.故选B. 9.ABD 函数41sin[(21)]sin 3sin 5sin 7()sin 21357i i x x x xf x x i =-==+++-∑,对于A ,可以验证()()f x f x π+=-,故A 正确;对于B ,同样可以验证()()f x f x =--,故B 正确;对于C ,由诱导公式易知()()()f x f x f x π+=-≠,故C 错误;对于D ,易知()cos cos3cos5cos74f x x x x x =+++',故D 正确.故选ABD .10.AD 对于A ,易知4p =,从而准线方程为2y =-,故A 正确;对于B ,如图分别过,A B 两点作准线2y =-的垂线,垂足分别为11,A B ,过A 点作1BB 的垂线,垂足为点H . 由于3AF FB =,不妨设AF t =,则3BF t =,由抛物线的定义易知:1AA t =,13,2BB t BH t ==,在直角ABH 中,30BAH ∠=,此时AB 的倾斜角为30,根据抛物线的对称性可知,AB 的倾斜角为30或150,所以B 错误;对于C , 点1212,22x x y y M ++⎛⎫⎪⎝⎭,由抛物线的定义知,122216AF BF y y +=+++=,有1212y y +=, 所以M 到x 轴距离1262y y +=,C 错误;对于D ,由抛物线定义知11212AF BF p +==,所以()4114242518BF AF AF BF AF BF AF BF AF BF ⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当4BF AF AF BF =,即2BF AF =时取得等号,所以D 正确.故选AD.11.ACD 对于A ,如图1,在ACQ 中,因为,M N 为,AC AQ 的中点,所以MN CQ ∥,所以CN 与QM 共面,所以A 正确;对于B ,由A DMN N ADM V V --=,因为N 到平面ABCD 的距离为定值2,且ADM 的面积为1,所以三棱锥A DMN -的体积为23,所以B 错误;对于C ,如图2,展开平面11A ADD ,使点11A ADD 共面,过O 作11OP B D ⊥,交11B D 与 点P ,交11A D 与点Q ,则此时PQ QO +最小,易求PQ QO +的最小值为2,则C 正确;对于D ,如图3,取11113D H D C =,连接HC ,则11HQ A C ∥,又11AC A C ∥所以HQ AC ∥,所以,,,,A M C H Q 共面,即过,,A Q M 三点的正四棱柱的截面为ACHQ,由3AQ CH ===,则ACHQ是等腰梯形,且1113QH A C ==,所以平面截正四棱柱所得截面的周长为83,所以D 正确.故选AC D.12.ABD 对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,再令0y =,x =1,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()()100,01g g -==,故A 正确;对于B ,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()()00,01f g ==代入上式,得()(),f y f y -=-∴函数()f x 为奇函数,∴函数()21f x -关于点1,02⎛⎫⎪⎝⎭对称,故B 正确.对于C ,再令1,1x y ==-代入已知等式,得()()()()()()()()()()()2111111,2111f f g g f f f f f g g ⎡⎤=----=-∴=-+⎣⎦,又()()()()()()()221,1111f f f f f g g ⎡⎤=--=-∴-=-+⎣⎦,即()()()()()()11110,10,1110f g g f g g ⎡⎤-++=≠∴-++=⎣⎦得()()111g g +-=-,故C 错误;对于D ,再分别令1y =-和1y =代入已知等式,得以下两个等式()()()()()()()()()()111,111f x f x g g x f f x f x g g x f +=----=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,从而有()()()12,f x f x f x -=+∴为周期函数,且周期为()()()()()202313,122300,()n f f f f f f n ==∴-==∴==∴=∑.故D 正确.故选AB D. 13.93 1075%7.5⨯=,所以从小到大选取第8个数作为第75百分位数,即93. 14.495-由二项式展开式的定义易知8xy 的系数为()81113C C 495-=-. 因为()cos 2cos 2sin 236236πππππαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦sin 2cos cos2sin 3636ππππαβαβ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2222sin cos 2tan 333sin 22sin cos 3333sin cos tan 1333πππαααπππαααπππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎢⎥⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎣⎦+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,22222222cos sin 1tan 1333cos 2cos sin ;3333cos sin tan 1333πππαααπππαααπππααα⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=+-+=== ⎪ ⎪ ⎪⎢⎥⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎣⎦+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为()cos 0,6πββπ⎛⎫+=∈ ⎪⎝⎭,所以0,62ππβ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 6πβ⎛⎫+= ⎪⎝⎭()1cos 233αβ-=-= 16.e - 由题意得1e ln 0a x x a x +⋅+化简得1ln 111e ln e ln a a x x a a a a a x x x x x x -==易知函数e x y x =是单调递增的函数,所以1ln a x x 对1x >恒成立,此时maxln x a x ⎛⎫- ⎪⎝⎭,令()ln x f x x =-,则()21ln (ln )x f x x -=',当()0,e x ∈时,()()0,f x f x '>单调递增,当()e,x ∞∈+时,()()0,f x f x '<单调递减,当e x =时,()max ()e e f x f ==-,即a 的最小值为e -.17.(1)证明:由123n n n a a a +=+,可得123132n n n na a a a ++==+, 11311331n n n a a a +⎛⎫+=+=+ ⎪⎝⎭,又11130a +=≠, 故数列11n a ⎧⎫+⎨⎬⎩⎭是以3为首项,3为公比的等比数列.(2)解:由(1)可知111333n n n a -+=⨯=,故131n na =-. ()123123313111133313131311322n n n n n n a a a a +-++++=-+-+-++-=-=---. 令()()1*33,22n f n n n +=--∈N ()()()2113333113102222n n n f n f n n n +++⎛⎫+-=--+---=-> ⎪⎝⎭易知()f n 随n 的增大而增大. (4)116121,(5)358121f f =<=>,故满足()121f n <的最大整数n 为4.18.解:(1)由题意得34560.10.20.40.54.5,0.344x y ++++++====.444214221114 6.14 4.50.3ˆ6.1,86,0.1486814i i i i i ii i i i x y xy x y x b xx ====--⨯⨯=====--∑∑∑∑. 所以ˆˆ0.30.14 4.50.33ay bx =-=-⨯=-故得y 关于x 的线性回归方程为ˆ0.140.33yx =-. (2)(i )将7x =代入ˆ0.140.33yx =-,得ˆ0.1470.330.65y =⨯-=, 所以估计该市政府需要给E 大学毕业生选择自主创业的人员发放补贴金总额为0.6510001650(⨯⨯=万元). (ii )设小明、小红两人中选择自主创业的人数为X ,则X 的所有可能值为0,1,2.()()()20122242P X p p p p ==--=-+,()()()()2112122451P X p p p p p p ==--+-=-+-,()()22212P X p p p p ==-=-.()()()()222024245112231E X p p p p p p p ∴=⨯-++-+-⨯+-⨯=-. 114311.4,1,225p p p -<<∴<,故p 的取值范围为14,25⎛⎤ ⎥⎝⎦. 19.解:(1)存在,当1B C 为圆柱1OO 的母线,1BC AB ⊥.连接1,,BC AC B C ,因为1B C 为圆柱1OO 的母线,所以1B C ⊥平面ABC ,又因为BC ⊂平面ABC ,所以1B C BC ⊥.因为AB 为圆O 的直径,所以BC AC ⊥.11,,BC AC B C BC AC B C C ⊥⊥⋂=,所以BC ⊥平面1AB C ,因为1AB ⊂平面1AB C ,所以1BC AB ⊥.(2)以O 为原点,1,OA OO 分别为,y z 轴,垂直于,y z 轴直线为x 轴建立空间直角坐标系,如图所示. ()()()110,1,2,0,0,2,0,1,0A O B -,因为11A B 的长为6π,所以()111111,2,0,1,262AO B B O B π∠⎛⎫==-- ⎪ ⎪⎝⎭,111,22O B ⎛⎫= ⎪ ⎪⎝⎭设平面11O B B 的法向量(),,m x y z =,20,10,22y z x y --=⎧⎪⎨+=⎪⎩令3x =-,解得y z ==,所以m ⎛=- ⎝⎭. 因为x 轴垂直平面11A O B ,所以设平面11A O B 的法向量()1,0,0n =.所以cos ,m n ==.所以平面11A O B 与平面11B O B 夹角的余弦值为17. 20.(1)证明:DB 平分,ADC ADB CDB ∠∠∠∴=,则cos cos ADB CDB ∠∠=,由余弦定理得22222222AD BD AB CD BD BC AD BD CD BD+-+-=⋅⋅, 22444BD BD +-=, 解得)241BD =;22212441cos 2AD AB BD A AD AB +-+-===⋅, )2224441cos 28CD BC BD C CD BC +-+-===⋅, cos cos A C ∴=-,又()()0,,0,,A C A C πππ∈∈∴+=.(2)解:2222cos BD AB AD AB AD A =+-⋅222cos BC CD BC CD C =+-⋅,1688cos A C ∴-=-,整理可得cos 1C A =-;222222221211sin sin 12sin 4sin 1212cos 44cos 1622S S AD AB A BC CD C A C A C ⎛⎫⎛⎫+=⋅+⋅=+=-+-=- ⎪ ⎪⎝⎭⎝⎭222212cos 1)24cos 1224cos 14A A A A A ⎛--=-++=--+ ⎝⎭, ()0,,A π∈∴当cos A =时,2212S S +取得最大值,最大值为14. 21.解:(1)依题可得22222311,4,c ab a bc ⎧=⎪⎪+=⎨⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=. (2)易知直线AP 与AQ 的斜率同号,所以直线PQ 不垂直于x 轴,故可设()()1122:,,,,PQ y kx m P x y Q x y =+, 由221,4x y y kx m ⎧+=⎪⎨⎪=+⎩可得,()222148440k x mkx m +++-=, 所以()222121222844,,Δ164101414mk m x x x x k m k k --+===+->++,即2241k m +>, 而120AP AQ k k =,即121212220y y x x ⋅=--, 化简可得()()()()12122022kx m kx m x x ++=--,()()221212121220202024k x x km x x m x x x x +++=-++,222222224484482020202414141414m mk m mk k km m k k k k ----⋅+⋅+=-⨯+++++ 化简得2260k mk m +-=,所以2m k =-或3m k =,所以直线():2PQ y k x =-或()3y k x =+,因为直线PQ 不经过点A ,所以直线PQ 经过定点()3,0-.所以直线PQ 的方程为()3y k x =+,易知0k ≠,设定点()1212153,0,22APQ ABP ABQ B SS S AB y y k x x -=-=-=-52=52k= == 因为Δ0>,且3m k =, 所以2150k ->,所以2105k <<,设29411,5t k ⎛⎫=+∈ ⎪⎝⎭, 所以4593APQ S ==, 当且仅当97t =,即2114k =时取等号,即APQ 面积的最大值为53. 22.证明:(1)由题意可得:00003e 10,e 31x x x x -+==+,()()00003e ,3e 33123x x f x f x x x =-=-=--=-'',可得曲线在点P 处的切线为()()00:23l y x x x =--.令()()()()()000233e 1,0x g x x x x x g x =----+=, ()()00000233e 13e ,3e 10x x x g x x x g x x =--+=--+=-+-'=',可得函数()g x 在()0,x ∞-上单调递减,在()0,x ∞+上单调递增,()()00,g x g x ∴=∴曲线()y f x =上的点都不在直线l 的上方.(2)由(1)可得()3e 0xf x =-=', 解得()ln3,ln33ln3313ln32,03ln32x f m ==-+=-∴<<-,曲线在点P 处的切线为()()00:23l y x x x =--,00e 31x x =+,由零点的存在性定理知()01,2x ∈,同理可得曲线()y f x =在点()0,0处的切线为2y x =,y m =与()()002,23y x y x x x ==--的交点的横坐标分别为34,x x 则3400,223m m x x x x ==+-, 214300232m m x x x x x x ∴-<-=+--. 下面证明:00322324m m m x x +-<--. ()()()()00000000321238222423423432x x m m m x x m x x x x -+----=--⋅=-⋅---, ()0001,2,20,321x x x ∈∴->->,且01283430x m m -+>+>,0020423m m x x ∴--->- 0210332,223244m m m x x x m x ∴+-<-∴-<--.。
安徽省皖南八校2021届高三第二次(12月)联考数学(文科)试题

本题主要考查了几何概型,属于中档题.
4.A
【解析】
【分析】
根据指数函数、对数函数的性质,估算三个数的大致范围,即可比较大小.
【详解】
因为 , , ,
所以 .
故选A.
【点睛】
本题主要考查了指数函数、对数函数的增减性,属于中档题.
5.C
【分析】
由三角形面积公式可求b,再根据余弦定理可求c.
【详解】
A. B. C. D.
9.已知曲线 ,则过点 ,且与曲线 相切的直线方程为
A. 或 B. 或
C. 或 D. 或
10.已知函数 的图象与函数 的图象关于 轴对称,将函数 的图象向左平移 个单位长度后,得到函数 的图象,则
A. B. C. D.
11.已知一个三棱锥的六条棱的长分别为 ,且长为 的棱与长为 的棱所在直线是异面直线,则三棱锥的体积的最大值为()
(Ⅰ)在侧棱 上找一点 ,使 平面 ,并证明你的结论;
(Ⅱ)若 , ,求四棱锥 的体积.
19.如图,已知椭圆 的右焦点为 ,点 在椭圆 上,过原点 的直线与椭圆 相交于 、 两点,且 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)设 , ,过点 且斜率不为零的直线与椭圆 相交于 、 两点,证明: .
20.已知函数 .
(Ⅱ)若函数 的最小值为 ,且 ,求 的最小值.
参考答案
1.B
【分析】
化简集合A,根据交集求解.
【详解】
因为 ,
所以 .
故选B.
【点睛】
本题主要考查了集合的交集,属于中档题.
2.C
【解析】
【分析】
计算 ,根据实部,虚部确定复数 对应的点所在的象限.
【详解】
2020年12月安徽省皖南八校联盟2021届高三上学期第二次联考数学(文)试题及答案解析

绝密★启用前安徽省皖南八校联盟2021届高三毕业班上学期第二次联考质量检测数学(文)试题2020年12月考生注意:1.本试卷满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效......... 3.做选考题时,考生须按照题目要求作答,并用2B 铅笔在答题卡上把所选題目的题号涂黑.一、选择题:本题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合21|4A x x ⎧⎫=⎨⎬⎩⎭,集合{|B y y ==,则A B ⋃=( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .1,12⎡⎤-⎢⎥⎣⎦ C .1,2⎡⎫-+∞⎪⎢⎣⎭ D .10,2⎡⎤⎢⎥⎣⎦2.若复数z 满足(13)z i i =+,则复数z 的虚部为( )A .1B .2C .iD .2i3.已知132312,log ,log 23a b c ===,则( ) A .a b c >> B .c a b >> C .c b a >> D .a c b >>4.若等差数列{}n a 各项都是正数,12321a a a ++=,且34545a a a ++=,则1a 的值为( )A .4B .3C .6D .25.执行如下图所示的程序框图,若输出的120S =,则判断框内应填入的条件是( )A .4?k >B .5?k >C .6?k >D .7?k >6.如图所示,在边长为2的正三角形中有一封闭曲线围成的阴影区域.在正三角形中随机撒一粒豆子,它落在阴影区域内的概率为45,则阴影区域的面积为( )A .5B .5C .5D .57.《海岛算经》第3题:今有南望方邑,不知大小.立两表东、西去六丈,齐人目,以索连之.令东表与邑东南隅及东北隅参相直.当东表之北却行五步,遥望邑西北隅,入索东端二丈二尺六寸半.又却北行去表一十三步二尺,遥望邑西北隅,适与西表相参合.问邑方及邑去表各几何?答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步.译文如下:现在要测量南边的一个长方形城市ABCD ,不知道大小.在东西两个方向上树立两个标杆E 和F ,EF 相距6丈,标杆和人眼一样高,用绳索连接.令东边的标杆E 和城市的东南角C 和东北角B 平齐.面向标杆E 退5步到达G 处,从G 处向城市西北角A 看,视线交绳索EF 于距离东端的标杆E 2丈2尺6.5寸的H 处.从G 处再退到距离标杆E 13步2尺的I 处,再向城市西北角A 望。
2022届高三下学期第二次联考文科数学试题含答案

10.已知双曲线 的右焦点为F,以F为圆心,过坐标原点O的圆与双曲线的一条渐近线交于点A,则 ()
A.2B.3C. D.
11.如图,在长方体 中, ,M、N分别是 、 的中点.则直线 与 是()
A.相互垂直的相交直线
B.相互垂直的异面直线
C.相互不垂直 异面直线
D.夹角为60° 异面直线
所以 区间 内有唯一零点.
【小问2】
函数 的定义域是R,依题意, , 成立,
当 时, 成立, ,
当 时, ,令 , , ,即函数 在 上单调递增,
又当 时, 恒成立,于是得 ,
当 时, ,令 , , ,当 时, ,当 时, ,
因此, 在 上单调递减,在 上单调递增,当 时, ,于是得 ,
综上得: ,
(一)必考题:共60分
17.已知数列 的前n项积 .
(1)求数列 的通项公式;
(2)记 ,数列 的前n项为 ,求 的最小值.
18.在如图所示的圆锥中, 、 是该圆锥的两条不同母线,M、N分别它们的中点,圆锥的高为h,底面半径为r, ,且圆锥的体积为 .
(1)求证:直线 平行于圆锥的底面;
(2)求圆锥的表面积.
12.已知 , , 则a,b,c的大小关系是()
A. B.
C. D.
第Ⅱ卷(非选择题共90分)
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卷中相应的横线上)
13.从编号为01到40的40个个体中,应用系统抽样的方法抽取5个个体,抽到的编号之和为100,则抽到的最小编号为__________________.
【答案】C
【4题答案】
【答案】A
【5题答案】
【答案】D
2022合肥二模数学--文科(答案)

合肥市2022年高三第二次教学质量检测 数学试题(文科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.1-15.1478 16.2三、解答题:17.(本小题满分12分) (1)由题意得,()()10160.10.9988160.3iitty y r --=≈≈∑. 相关系数0.9988r ≈,说明y 与t 的线性相关性很高,所以,可以用线性回归模型拟合y 与t 的关系. ………………………5分 (2)由 5.5t =,()1021=82.5i i t t =-∑,160.1ˆ 1.9482.5b=≈得,ˆˆ15.5 1.94 5.5 4.83ay b t =-⋅=-⨯=, 所以 1.94 4.83y t =+. 当12t =时, 1.9412 4.8328.11y =⨯+=.据此可以预测,2022年我国私人汽车拥有量将达到28.11千万辆. ………………………12分18.(本小题满分12分) 解:(1)若选①:∵sin 6a C π⎛⎫+ ⎪⎝⎭是b c ,2的等差中项,∴2sin 26a C b c π⎛⎫+=+ ⎪⎝⎭,即cos sin 20a C C b c+--=.由正弦定理得sin cos sin sin 2sin 0A C A C BC --=, 即()sin cos sin sin 2sin A C A C A CC -+-sin cos sin sin cos cos sin 2sin 0A C A C A C A C C =---=,sin cos sin 2sin 0A C A C C --=,注意到sin 0C ≠cos 20A A --=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵()0A π∈,,∴5666A πππ-<-<,∴62A ππ-=,即23A π=.………………………5分若选②:由题设及正弦定理得sin cossin sin 2B CB A B +=. ∵0A π<<,sin 0B ≠,∴cos sin 2B CA +=①. ∵ABC π++=,∴cos sin 22B C A+=,∴①可化为sin 2sin cos 222A A A =.∵022A π<<,sin 02A≠,∴1cos 22A =,23A π=,∴23A π=.…………………………5分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D A B B C C ADCDCB(2)∵AE 是ABC ∆的角平分线,∴3BAE CAE π∠=∠=.∵ABC BAE CAE S S S ∆∆∆=+,即111sin sin sin 222bc BAC c AE BAE b AE CAE ∠=⋅⋅∠+⋅⋅∠,即1211sinsin sin 232323bc c AE b AE πππ=⋅⋅+⋅⋅,∴326c c =+,6c =,∴121sin3623222ABC S bc π∆==⨯⨯⨯=. ……………………………………12分 19.(本小题满分12分) (1)证明:∵3PMB π∠=,PM BM =,∴PMB ∆为等边三角形,∴PB PM PC BM BC =====2CM =. 取CM 的中点O ,连结BO PO ,PO CM ⊥.又∵2CBM CPM π∠=∠=,∴112BO PO CM ===,∴222BO PO PB +=,∴PO BO ⊥.∵CM BO ⊂,平面AMCD ,CM BO O = ,∴PO ⊥平面AMCD .又∵PO ⊂平面PMC ,∴平面PMC ⊥平面AMCD .………………………5分 (2)由(1)知,PO ⊥平面AMCD ,且1PO =. 连结DO DM ,,则DM CM ⊥,且2DM =,∴DO ==,PD ==.∵12PM AB =,∴2BPA π∠=.∵PA ==,∴12PAD S ∆==. 设点M 到平面PAD 的距离为d ,则P MAD M PAD V V --=,即11113232d ⋅=⋅⋅,解得d =,∴点M 到平面PAD . ………………………12分 20.(本小题满分12分)解:(1)()2cos f x x a x '=-.设()2cos g x a x x =-,则()2sin g x a x '=+.∵函数()g x 是区间0 2π⎡⎤⎢⎥⎣⎦,上的增函数, ∴()s 02in x a x g '=+≥在区间0 2π⎡⎤⎢⎥⎣⎦,上恒成立. 若0x =,则()20g x '=≥恒成立,此时a R ∈;若0,2x π⎛∈⎤⎥⎝⎦,此时0sin 1x <≤,∴()s 02in x a x g '=+≥恒成立,即2sin a x ≥-恒成立.∴2a ≥-. 综合上述得,a 的取值范围是[)2-+∞,. …………………………5分 (2)当2a =时,()()22sin 10f x x x x π=--∈,,,则()22cos f x x x '=-.∴()f x '在区间()0 π,上单调递增.∵06622f ππ⎛⎛⎫-< ⎪ ⎝⎭⎝⎭'=,20022f ππ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭'=, ∴存在0 62x ππ⎛⎫∈ ⎪⎝⎭,,使得()00f x '=. 当()00x x ∈,时,()0f x '<,()f x 单调递减;当()0x x π∈,时,()0f x '>,()f x 单调递增.注意到()001f =-<,()201f ππ=->, ∴函数()f x 在区间()0 π,上有且仅有一个零点. …………………………12分21.(本小题满分12分)解:(1)设椭圆C 的半焦距为c .由椭圆的几何性质可知,当点M 位于椭圆短轴端点时,FAM ∆的面积取得最大值,此时()12FAM S a c b ∆=+,即()1=2a c b+,∴()a c b +=由离心率12c a =得2a c =.∴b =,解得12c a b ===,,,∴椭圆C 的方程为22143x y +=. ……………………………5分(2)设()11M x y ,,()22N x y ,.由221143y kx x y =+⎧⎪⎨+=⎪⎩,得()2234880.k x kx ++-=∵点(0,1)在此椭圆C 的内部,∴0∆>,121222884343k x x x x k k +=-=-++,, ∴()212122286224343k y y k x x k k +=++=-+=++, ∴点P 的坐标为2243 4343k k k ⎛⎫- ⎪++⎝⎭,.当0k ≠时,直线OP 的斜率为34k -,∴直线OP 的方程为34y x k =-,即43kx y =-.将直线OP 的方程代入椭圆C 的方程得,22943D y k =+,2221643D k x k =+. 设点Q 43k y y ⎛⎫- ⎪⎝⎭,,由2OP OQ OD ⋅= 得22222443169343434343k kk y y k k k k ⎛⎫-⋅-+⋅=+ ⎪++++⎝⎭.化简得()222216916943343k k y k k ++⋅=++,即3y =,∴点Q 在直线3y =上. 当直线l 的斜率0k =时,此时()01P ,,(0D . 由2OP OQ OD ⋅= 得()03Q ,,也满足条件. 综上所述,点Q 在直线3y =上. ………………………12分22.(本小题满分10分)解:(1)由11x y ⎧=⎪⎨=⎪⎩(t 为参数)得2x y +=,∴直线l 的极坐标方程为cos sin 2ρθρθ+=. 由2cos 2a ρθ=得2cos 2a ρθ=,∴()2222222cos sin cos sin a a ρθθρθρθ-=-=,, ∴22x y a -=,∴曲线C 的直角坐标方程为22x y a -=.……………………………5分(2)直线l 的极坐标方程为cos +sin 2ρθρθ=,将=4πθ代入直线l的极坐标方程得ρ=,∴点M 的极坐标为4π⎫⎪⎭,. 将6πθ=代入曲线C 的极坐标方程2cos 2aρθ=得12ρρ==∴12AB ρρ=-=.∵AM BM ⊥,且O 为线段AB 的中点,∴12OM AB ===,∴1a =.………………………………………………10分23.(本小题满分10分)解:(1)依题意得,()34 221221341.x x f x x x x x x x --≤-⎧⎪=+++=--<<-⎨⎪+≥-⎩,,,,, 当且仅当1x =-时,()f x 取得最小值1,即()f x 的最小值1m =.………………………5分(2)由(1)知,abc ==,∴()2224a b c ab c ≥+++(当且仅当a b =时等号成立).∴22422ab c ab ab c +=++6≥===, 当且仅当22ab c =,即1a b c ===,时等号成立,∴()22a b c ++的最小值为6. …………………………10分。
安徽省皖江名校联盟2022届高三上学期12月联考文科数学试题 Word版含解析

10.【答案】C【解析】∵ ,∵ ,∴ ,∵ , , ,∴ 舍去,∴ ,∴ ,故选C.
11.【答案】D【解析】依题意, 在 上恒成立,即 在 上恒成立,令 ,则 ,令 ,则 , 在 上单调递增, 故选D.
18.【解析】(1) ,
函数的单调递增区间 ,
所以单调递增区间为 .--------------------6分
(2) 取 到极大值时 ,所以
,
设 ,则
.----------------------12分
19.【解析】由 ,由正弦定理得:, ,化简即为 ,再由余弦定理可得 ,
由于 ,所以 .------------------------6分
第Ⅱ卷(非选择题共90分)
考生留意事项:
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试卷上作答无效.
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.
(13)已知定义域为[a -2,2(a+l)]的奇函数f(x)=x3+(b-2)x2+x,则f(a)+f(b)=____
令 , ,在区间 上 ,在区间 , ---------------------------------10分
综上所述,实数 的取值范围为 .-------------------------12分
12.【答案】C【解析】 在区间 上单调递减, ,所以
,在 上的 ,所以 ,
.
二、填空题(本大题共4小题,每小题5分,共20分。将答案填在题中的横线上。)
13.【答案】10【解析】定义域为 的奇函数,满足 ,由于 为奇函数,满足 ,所以 ,