大学数学线性代数知识点
线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
大一线性代数必考知识点

大一线性代数必考知识点线性代数是大一学生学习的一门重要的数学课程。
掌握线性代数的基础知识对于后续学习高等数学、概率论、统计学等学科都非常重要。
接下来,本文将介绍大一线性代数必考的知识点,以帮助大一学生有效备考。
一、向量和矩阵1. 向量的概念和运算:向量的定义、数量积、向量的代数运算等。
2. 矩阵的概念和运算:矩阵的定义、矩阵的乘法、矩阵的转置和逆等。
3. 向量和矩阵的性质:向量和矩阵的加法和乘法满足的性质,线性相关和线性无关的概念等。
二、线性方程组1. 线性方程组的概念和解法:齐次线性方程组和非齐次线性方程组的定义、高斯消元法、矩阵的秩等。
2. 向量空间和子空间:向量空间的定义、子空间的定义、线性无关组和基、维数的概念等。
三、特征值和特征向量1. 特征值和特征向量的定义:特征值和特征向量的概念和基本性质等。
2. 对角化和相似矩阵:对角化的概念、相似矩阵的性质等。
四、内积空间和正交性1. 内积的定义和性质:内积的定义、内积的基本性质等。
2. 正交向量和正交投影:正交向量的定义、正交投影的概念等。
五、线性变换1. 线性变换的定义和基本性质:线性变换的定义、线性变换的基本性质等。
2. 线性变换的矩阵表示:线性变换与矩阵的关系、矩阵的相似和对角化等。
六、向量空间的维数和秩1. 向量空间的维数和秩的定义和性质:向量空间的维数的定义、秩的定义与性质等。
2. 雅可比矩阵和秩-零度定理:雅可比矩阵的定义和性质、秩-零度定理等。
这些是大一线性代数课程中必考的知识点,通过学习这些知识点,掌握了线性代数的基础知识,将能够更好地理解和应用其他数学知识,为今后的学习打下坚实的基础。
在备考过程中,建议多做习题和练习,加深对这些知识点的理解,并且理论联系实际,将其与实际问题进行结合,提高解决实际问题的能力。
祝大家在线性代数的学习中取得优异的成绩!。
大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。
作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。
在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。
1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。
线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。
希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。
大学数学易考知识点线性代数与概率论

大学数学易考知识点线性代数与概率论大学数学易考知识点:线性代数与概率论线性代数是大学数学中非常重要且基础的一门学科,它涉及到向量空间、矩阵、行列式、线性方程组等内容。
概率论则是研究随机事件发生的概率及其规律性的数学学科。
在大学数学考试中,线性代数与概率论是比较易于考察且知识点较为独立的部分。
本文将介绍大学数学考试中线性代数与概率论的一些常见易考知识点。
一、线性代数1. 向量空间与线性变换向量空间是线性代数的核心概念之一,在考试中常涉及到向量空间的基本性质、子空间、线性组合、线性相关性、线性无关性等内容。
此外,线性变换也是考察的重点,包括线性变换的定义、性质、矩阵表示及其相关定理等。
2. 矩阵与行列式矩阵是线性代数的重要工具,考试中经常涉及到矩阵的基本运算、特殊矩阵、矩阵的秩与逆等知识点。
行列式也是考试的常见题型,包括行列式的定义、性质、展开及其应用等内容。
3. 线性方程组与解空间线性方程组是线性代数的基本问题之一,考试中常涉及到线性方程组的求解、解的结构、解的个数等知识点。
此外,解空间也是考查的重点,包括零空间、列空间、行空间等相关概念及其性质。
4. 特征值与特征向量特征值与特征向量是线性代数中重要的概念,考试中常涉及到特征值与特征向量的定义、性质、求解、对角化等知识点。
矩阵的对角化定理也是考查的重点,需掌握其条件与应用。
二、概率论1. 随机变量与概率分布随机变量是概率论的基础,考试中常涉及到随机变量的定义、分类、概率分布、期望、方差等知识点。
常见的离散型随机变量包括二项分布、泊松分布等;常见的连续型随机变量包括均匀分布、正态分布等。
2. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要定理,考试中常涉及到大数定律的弱/强收敛形式、伯努利大数定律、切比雪夫大数定律等;中心极限定理的常见形式包括林德伯格-列维中心极限定理、中心极限定理的矩形式等。
3. 随机过程与马尔可夫链随机过程是概率论的重要内容,考试中常涉及到随机过程的定义、分类、马尔可夫性质等知识点。
大学数学知识点(微积分,线性代数)

线性代数知识点第一章 行列式1. 二阶、三阶行列式的计算*2. 行列式的性质(转置,换行,数乘,求和,数乘求和)3. 行列式展开(=D ,=0)4. 利用性质计算四、五阶行列式5. 克拉默法则解线性方程组及对方程组解的判定(分非齐次的和齐次的) 主要是行列式的计算第二章 矩阵1. 矩阵的定义、矩阵的行列式的定义及矩阵与行列式的区别2. 矩阵的运算(加减、数乘、乘法不满足交换律、转置、方阵的幂)3. 特殊的矩阵(对角、数量、单位矩阵、三角形矩阵、对称矩阵、分块矩阵)4. 矩阵的初等变换(三种)、行阶梯形、行最简形、标准形5. 逆矩阵的定义、运算性质6. 利用初等变换求逆矩阵及矩阵方程7. 矩阵的秩的概念及利用初等变换求矩阵的秩主要是矩阵的运算及逆矩阵和秩的求解第三章 线性方程组1. 线性方程组的求解(分非齐次的和齐次的)2. 线性方程组解的判定(分非齐次的和齐次的)3. N 维向量空间4. 向量间的线性关系a) 线性组合b) 线性相关与线性无关c) 极大无关组5. 线性方程组解的结构(分非齐次的和齐次的)主要是线性相关无关的判定及极大无关组、线性方程组的求解经济数学知识点第七章 无穷级数6. 无穷级数的概念:1231n n n uu u u u ∞==+++++∑7. 无穷级数的敛散性:部分和有极限——级数收敛8. 无穷级数的性质(和差、数乘、加减项、加括号、必要条件——通项不收敛于零)9. 正项级数收敛的基本定理——正项级数收敛的充分必要条件是:它的部分和数列n S 有界10. 常用判别法a) 比较判别法• 参考级数(p-级数、几何级数)• 推论(极限) b)比值判别法 c)根值判别法 • 不需要参考级数 • 与1比较(有时要结合比较判别法)——P285例9 11.交错级数:莱布尼茨定理 12.任意项级数 13.幂级数 a)幂级数的性质(和差、连续性、可积性、可导性——求和函数) b)收敛半径及收敛域 c)非特殊幂级数要结合换元法 14.泰勒公式和麦克劳林公式 15.泰勒级数和麦克劳林级数(条件) 16.函数的幂级数展开 a)直接法(泰勒级数法) b) 三种常用函数的泰勒展开式2111(,)2!!x n e x x x x n =+++++∈-∞+∞ 213511sin (1) (,)3!5!(21)!n n x x x x x x n +=-+-+-+∈-∞+∞+ 2311(1) (1,1)1n n x x x x x x=-+-++-+∈-+17. 函数的幂级数展开(间接法) – 利用已有的函数泰勒展开式 – 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分 – 注意等式成立的范围 18.幂级数的应用举例 – 近似计算 19. 常用的泰勒公式01(1);1n n x x ∞==-∑01(2)(1);1n n n x x ∞==-+∑2201(3);1n n x x ∞==-∑0(4);!nx n x e n ∞==∑ 210(5)sin (1);(21)!n nn x x n +∞==-+∑10(6)ln(1)(1).1n n n x x n +∞=+=-+∑第八章 多元函数1. 空间解析几何简介2. 多(二)元函数的概念a) 定义域b) 二元函数的图象是一个曲面3. 二元函数的极限(方向任意)4. 二元函数的连续性及闭区间上连续函数的性质5. 二元函数的偏导数a) 偏导数的定义及计算b) 高阶偏导数c) 可微的必要条件、充分条件d) 二元函数的全微分e) 全微分在近似计算中的应用f) 复合函数的微分法(链式法则)g) 隐函数的微分法h) 二元函数的极值的必要条件、充分条件),(y x f 在点),(00y x 处是否取得极值的条件如下:(1)20B AC -<时具有极值, 当0<A 时有极大值, 当0>A 时有极小值; (2)20B AC ->时没有极值;(3)20B AC -=时可能有极值,也可能没有极值i) 条件极值及拉格朗日乘数法6. 二重积分a) 二重积分的定义及几何意义b) 二重积分的性质(数乘、和差、可加性、比较、长度、范围、中值) c) 二重积分的计算i. 积分顺序的交换ii. 化为累次积分第九章 微分方程与差分方程简介1. 微分方程的的概念2. 一阶微分方程——注意常数C 的选择a) 可分离变量的微分方程()()g y dy f x dx =、()()dy f x g y dx = b) 齐次微分方程()dy y f dx x= c) 一阶线性微分方程()()dy P x y Q x dx+= i. 一阶线性齐次方程()0dy P x y dx+= ii. 一阶线性非齐次方程()()dy P x y Q x dx+= 3. 几种二阶微分方程a) 22() d y f x dx=型的微分方程——两端连续两次积分即可 4. 差分方程。
线性代数知识点全面总结

矩阵
矩阵是线性代数的核心,矩阵的概念、运算及理论贯 穿线性代数的始终,对矩阵的理解与掌握要扎实深入。 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩 阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式。正确理解逆矩阵的概 念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。掌握矩阵 的初等变换,了解初等矩阵的性质和矩阵等价的概念,正 确理解矩阵的秩的概念,熟练掌握用初等变换求矩阵的秩 和逆矩阵的方法。了解分块矩阵及其运算。必须会解矩阵 方程。
三、重要公式
1、矩阵的秩 (1) R(A) = R(AT) ; (2) R(A+B) ≤ R(A) + R(B) (3) R(AB) ≤ min{ R(A) R(B)} (4) 若P、 Q可逆,则R(PA) = R(AQ) = R(PAQ)= R(A) R(A), k ≠ 0 , (5) R(kA) = 0 , k = 0; A 0 (6) R = R(A) + R(B)。 0 B
D=
D=
0 0 an1
0 a2 n 1 ann 1
n ( n 1) 2
a1n a2 n ann
a11 a21 an1
a12 a22 0
a1n 0 0
= (1)
a1n a2 n 1
an1.
3、设A是m 阶方阵,B是n 阶方阵,则 D= A 0 0 B A B;
0 D= B
1 x1 x
求 解
有非零解 R(A)<n. 1.化系数矩阵为最简形. 2.找等价的方程组.
3.写通解.
大学数学线性代数

大学数学线性代数线性代数是一门研究向量空间、线性变换以及其代数方程组解的数学学科,它在大学数学课程中占有重要地位。
本文将探讨线性代数的基本概念、矩阵运算、向量空间以及线性变换等内容。
一、向量与矩阵1.1 向量的定义与性质向量是线性代数的基本概念之一,它表示一个有大小和方向的量。
一般用箭头或粗体字母表示,如$\vec{v}$。
向量有很多重要性质,包括加法、数乘和点乘等运算。
1.2 矩阵的定义与性质矩阵是由若干个数排列成的矩形阵列,一般用大写字母表示。
矩阵可用于表示线性变换、解线性方程组等。
矩阵也有一些重要的性质,如加法、数乘和乘法等。
二、矩阵运算2.1 矩阵加法与数乘矩阵加法是指将两个具有相同维度的矩阵的对应元素相加,得到一个新的矩阵。
数乘是指将一个矩阵的每个元素乘以一个标量,得到一个新的矩阵。
2.2 矩阵乘法矩阵乘法是线性代数中的重要概念之一。
当两个矩阵相乘时,矩阵的列数等于另一个矩阵的行数。
乘积矩阵的元素由原矩阵的对应行与对应列的元素按一定规则计算得出。
三、向量空间3.1 向量空间的定义向量空间是指具有加法和数乘运算的集合,满足一定的公理。
向量空间包括零向量、闭性、加法逆元等性质。
3.2 子空间与基空间子空间是指向量空间的一个非空子集,且在相同的加法和数乘运算下仍然构成向量空间。
基空间是子空间中最基本的向量组合成的集合,可以表示整个子空间。
四、线性变换4.1 线性变换的定义与性质线性变换是指将一个向量空间映射到另一个向量空间的变换,同时保持向量空间的运算性质。
线性变换有一些重要的性质,如保持向量加法和数乘、保持零向量等。
4.2 线性变换与矩阵的关系线性变换可以用矩阵表示,对应于矩阵乘法。
通过矩阵乘法,可以将线性变换转化为矩阵的乘法运算,便于进行计算。
五、线性代数的应用线性代数在科学、工程以及计算机科学等领域中有广泛的应用。
例如,在图像处理中,可以利用矩阵运算进行图像的变换与处理;在机器学习中,可以利用线性代数理论对数据进行降维和分类等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学数学线性代数知识点
大学数学线性代数知识点集锦
线性代数的考试知识点占比是比较重的,考生们备考线性代数可以通过下文进行专项备考。
小编整理了相关的内容,欢迎欣赏与借鉴。
矩阵
本章的概念和运算较多,主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。
本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。
其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。
14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。
16年只有数二了矩阵等价的判断确定参数。
向量
本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。
重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。
出题方式主要以选择与大题为主。
这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的.线性表出就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题,13年考查的则是向量组的等价,14年的选择题则考查了向量组的线性无关性。
15年数一第20题结合向量空间的基问题考查了向量组等价的问题。
16年数数一、数三第21题与数二23题考的同样的题,第二问考向量组的线性表示的问题。
线性方程组
主要考点有两个:
一是解的判定与解的结构
二是求解方程
考察的方式还是比较固定,直接给方程讨论解的情况、解方程或者通过其他的关系转化为线性方程组、矩阵方程的形式来考。
06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,13年考查的第一道大题考查的形式不是很明显,但也是线性方程组求解的问题。
14年的第一道大题就是线性方程组的问题,15年选择题考查了解的判定,数二、数三同一个大题里面考查了矩阵方程的问题。
16年数一第20题矩阵方程解的判断和求解,数三第20题与数二第22题直接考线性方程解的判断和求解,数一第21题第二问解矩阵方程。
16年数一、数三第21题与数二第23题第二问直接考矩阵方程解求解,基本都不需要大家做转换。
今年数一、数三第20题、数二第22题第二问题都考了抽象的线性方程的求解问题。