数字图像处理实验报告材料(图像边缘检测)
数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。
在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。
2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。
3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。
以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。
4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。
数字图像处理实验报告(图像边缘检测)

实验报告实验名称实验三图像边缘检测课程名称数字图像处理某成绩班级学号日期地点备注:1、实验目的(1)了解并掌握使用微分算子进行图像边缘检测的基本原理;(2)编写程序使用Laplacian 算子(二阶导数算子)实现图像锐化,进一步理解图像锐化的实质;(3)掌握使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法,根据实验结果分析各种算子的工作效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。
2、实验环境(1)Windows XP/7(2)Matlab 7.1/7.143、实验方法本次实验要求对256×256大小,256级灰度的数字图像lena.img进行处理。
(1)对该图像进行锐化处理,要求采用Laplacian算子进行锐化,分α=1和α=2两种情况,按如下不同情况进行处理:①g1(m,n)=f(m,n)-α∇f②g2(m,n)=4αf(m,n)-α[f(m-1,n)+f(m+1,n)+f(m,n-1)+f(m,n+1)]I、要对图像进行处理,要先读取该图像,实验代码如下:close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);II、读取图像后,对该图像的每一像素(不考虑图像的边界部分)进行遍历,根据公式①(公式①相当于做差分)对每一灰度进行计算,将所得的结果存入一矩阵g1中(矩阵g1初始化为该图像的矩阵),代码如下(仅以ɑ=1为例):g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1) g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendIII、根据公式②对图像的每一个像素(不考虑图像的边界部分)进行计算,将所得之存入矩阵g2中(g2初始化值为该图像的矩阵值),具体方法与上一步类似,代码如下(仅以ɑ=1为例):g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endend(2)分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。
数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理实验报告3

实验三图像分割实验一.实验目的1. 掌握基本的图像分割方法2.观察图像分割的效果3.加深对边缘提取的理解二.实验原理1.边缘检测:图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。
图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位。
2.灰度阈值分割即是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中各个像素的灰度值与这个阈值相比较:划分成像素灰度大于阈值的一类和小于阈值的一类。
3. 双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在三.实验内容1.实验步骤1.打开matlab编程环境;2.利用“imread”函数导入图像数据;3.利用“imshow”显示所读入的图像数据;4.进行图像分割处理;5.记录和整理实验报告;2. 按下面要求编写程序并运行结果1. 用sobel方法对一幅灰度图像进行边缘提I=imread('cameraman.bmp');R=double(I(:,:,1));G=double(I(:,:,2));B=double(I(:,:,3));[rows,cols]=size(R);I=0.299*R+0.587*G+0.114*B;[H,W]=size(I);M=double(I);J=M;for i=2:H-1for j=2:W-1J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+2*M(i,j+1)-2*M(i,j-1)+M(i+1,j+1)-M(i+1,j-1))+abs(M(i-1,j-1)-M(i+1,j-1)+2*M(i-1,j)-2*M(i+1,j)+M(i-1,j+1)-M(i+1,j+1));end;end;for i=2:H-1for j=2:W-1if J(i,j)>254J(i,j)=255;elseJ(i,j)=0;endendendsubplot(1,2,1);imshow(uint8(I));title('原图');subplot(1,2,2);imshow(uint8(J));title('Sobel 处理后');2.用 Laplacian-Gaussian方法对一幅灰度图像进行边缘提取I = imread('cameraman.bmp');R=double(I(:,:,1));G=double(I(:,:,2));B=double(I(:,:,3));[rows,cols]=size(R);I=0.299*R+0.587*G+0.114*B;s=fftshift(fft2(I));[M,N]=size(s);n=2;d0=400;n1=floor(M/2);n2=floor(N/2);for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);h=1*exp(-1/2*(d^2/d0^2));s(i,j)=h*s(i,j);endends=ifftshift(s);s=uint8(real(ifft2(s))); subplot(1,2,1),imshow(s);title('GLPF滤波');s=double(s);[r,c]= size(s);R=zeros(r,c);core1=[-1 -1 -1;-1 8 -1;-1 -1 -1];core2=[0 -1 0;-1 4 -1;0 -1 0];for x=2:r-1for y=2:c-1Z=[s(x-1,y-1) s(x-1,y) s(x-1,y+1);s(x,y-1) s(x,y) s(x,y+1);s(x+1,y-1) s(x+1,y) s(x+1,y+1)];A=core1*Z;B=core2*Z;R(x,y)=max(abs(sum(sum(A))),abs(sum(sum(B))));endendfor x=2:r-1for y=2:c-1if R(x,y)>250R(x,y)=255;elseR(x,y)=0;endendendsubplot(1,2,2),imshow(uint8(R));title('拉普拉斯处理后 ');3. 利用双峰法对一幅灰度图像进行灰度分割处理I = imread('lena.bmp');I=double(I);sum_obj=0;obj_counter=0;sum_backgnd=0;backgnd_counter=0;[rows,cols]=size(I);cols_c=floor(cols/20);rows_c=floor(rows/20);corners=[I(1:rows_c,1:cols_c);I(1:rows_c,(end-cols_c+1):end);I((en d-rows_c+1):end,1:cols_c);I((end-rows_c+1):end,(end-cols_c+1):end) ];threshold=mean(mean(corners));while 1for i=1:rowsfor j=1:colsif(I(i,j)>threshold)sum_obj=sum_obj+I(i,j);obj_counter=obj_counter+1;elsesum_backgnd=sum_backgnd+I(i,j);backgnd_counter=backgnd_counter+1;endendendnew_threshold=((sum_backgnd/backgnd_counter)+(sum_obj/obj_counter))/2 ;if(abs(threshold-new_threshold)<=0.01)break;endthreshold=new_threshold;endfor i=1:rowsfor j=1:colsIf(I(i,j)<=threshold)I(i,j)=0;elseI(i,j)=255;endendendimshow(I);四.实验结果及分析1. sobel边缘提取placian-Gaussian方法边缘提取3.双峰法对一幅灰度图像进行灰度分割处理五.实验小结与体会1.本次实验以图像分割为主线,涉及边缘提取2. 通过实验结果的比较,对课堂上的理论有了直观的认识,也为更好的理解理论奠定了基础,培养了兴趣。
图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。
在
本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。
首先,我们使用了Sobel算子进行边缘检测。
Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。
实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。
接着,我们尝试了Canny边缘检测算法。
Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。
实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。
最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。
实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。
总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。
希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。
图像的边缘检测实验处理报告

数字视频图像处理与通信实验实验项目:图像的边缘检测指导老师:***班级:姓名:学号:图像的边缘检测实验报告一;实验目的:1.掌握图像边缘检测的基本概念以及边缘检测的基本方法;2.通过matlab 实验的具体操作来具体掌握空间图像边缘检测的方法;3.通过matlab 实验来验证所学知识,达到学以致用;4.通过matlab 实验来理解roberts 、sobel 、canny 、log 几种算子的原理以及各个算法的优缺点,并加以比较。
二;实验原理:图像的边缘是图像最基本的特征之一。
所谓边缘(或边沿)是指周围像素灰度有阶跃性变化或“屋顶”变化的那些像素的集合。
边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间,因此它是图像分割依赖的重要特征。
图像边缘对图像识别和计算机分析十分有用,边缘能勾划出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息(如方向、阶跃性质、形状等)。
从本质上说,图像边缘是图像局部特性不连续性(灰度突变、颜色突变、纹理结构突变等)的反应,它标志着一个区域的终结和另一个区域的开始。
边缘检测技术是所有基于边界分割的图像分析方法的第一步,首先检测出图像局部特性的不连续性,再将它们连成边界,这些边界把图像分成不同的区域,检测出边缘的图像就可以进行特征提取和形状分析,但各算子有自己的优缺点和适用领域。
Roberts 算子Roberts 算子是一种利用局部差分算子寻找边缘的算子,由下式给出: g(x,y)={[y x f ,(-)1,1(++y x f ]2+[y x f ,(- )1,1(++y x f ]2}21 ,其中f(x,y)是具有整数像素坐标的输入图像,平方根运算使该处理类似于在人类视觉系统中发生的过程。
Roberts 算子边缘定位准,但是对噪声敏感。
适用于边缘明显而且噪声较少的图像分割,在应用中经常用Roberts 算子来提取道路。
Prewitt 边缘算子Prewitt 边缘算子的卷积和如图所示,图像中的每个像素都用这两个核做卷积,取最大值作为输出,也产生一幅边缘幅度图像。
数字图像实验报告三图像的边缘检测

实验三图像的边缘检测一、实验目的1.理解图像边缘检测的概念;2.掌握图像边缘检测的目的及意义;3.学会利用matlab编程实现图像的边缘检测。
二、实验内容1. 利用matlab语言直接编程实现sobel算子检测图像边缘;2. 利用matlab语言直接编程实现prewitt算子检测图像边缘3. 利用matlab语言直接编程实现laplace算子检测图像边缘。
三、实验步骤(一)利用matlab语言直接编程实现sobel算子检测图像边缘实验代码如下:u=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告三通信五班韩奇20110803520\fangzi.jpg');u=rgb2gray(u);imwrite(u,'fangzi灰度图.bmp');f=u;F=double(f);U=double(u);[H,W]=size(u);uSobel=u;for i=2:H-1for j=2:W-1Gx=(U(i+1,j-1)+ U(i+1,j)+F(i+1,j+1))-(U(i-1,j-1)+U(i-1,j)+F(i-1,j+1));Gy=(U(i-1,j+1)+U(i,j+1)+F(i+1,j+1))-(U(i-1,j-1)+U(i,j-1)+F(i+1,j-1));uSobel(i,j)=sqrt(Gx^2+Gy^2);endendfigure(1);imshow(f);title('原图');figure(2);imshow(im2uint8(uSobel)); title('Sobel边缘检测');生成图像如下:从图中可以看出,利用sobel算子能够提取出原图的边缘,且效果较好。
sobel算子能检测边缘点,且能进一步抑制噪声的影响,但检测的边缘较宽。
(二)利用matlab语言直接编程实现laplace算子检测图像边缘实验代码如下:[I,map]=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告三通信五班韩奇20110803520\fangzi.jpg');I=rgb2gray(I);[H,W]=size(I);M=double(I);J=M;for i=2:H-1for j=2:W-1J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+M(i,j+1)-M(i,j-1)+M(i+1,j+1)-M(i+1,j-1))+abs(M(i+1,j-1)-M(i-1 ,j-1)+M(i+1,j)-M(i-1,j)+M(i+1,j+1)-M(i-1,j+1));end;end;figure(1);imshow(I);title('原图');figure(2);imshow(uint8(J));title('Prewitt处理后'); 生成图像如下:prewitt算子为在检测边缘的同时减少噪声的影响,从加大边缘检测算子的模板大小出发,由2*2扩大到3*3来计算差分算子,采用prewitt算子能检测到边缘点,还可以抑制噪声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告实验名称实验三图像边缘检测课程名称数字图像处理成绩班级学号日期地点备注:1、实验目的(1)了解并掌握使用微分算子进行图像边缘检测的基本原理;(2)编写程序使用Laplacian 算子(二阶导数算子)实现图像锐化,进一步理解图像锐化的实质;(3)掌握使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法,根据实验结果分析各种算子的工作效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。
2、实验环境(1)Windows XP/7(2)Matlab 7.1/7.143、实验方法本次实验要求对256×256大小,256级灰度的数字图像lena.img进行处理。
(1)对该图像进行锐化处理,要求采用Laplacian算子进行锐化,分α=1和α=2两种情况,按如下不同情况进行处理:①g1(m,n)=f(m,n)-α∇f②g2(m,n)=4αf(m,n)-α[f(m-1,n)+f(m+1,n)+f(m,n-1)+f(m,n+1)]I、要对图像进行处理,要先读取该图像,实验代码如下:close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);II、读取图像后,对该图像的每一像素(不考虑图像的边界部分)进行遍历,根据公式①(公式①相当于做差分)对每一灰度进行计算,将所得的结果存入一矩阵g1中(矩阵g1初始化为该图像的矩阵),代码如下(仅以ɑ=1为例):g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendIII、根据公式②对图像的每一个像素(不考虑图像的边界部分)进行计算,将所得之存入矩阵g2中(g2初始化值为该图像的矩阵值),具体方法与上一步类似,代码如下(仅以ɑ=1为例):g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endend(2)分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。
I、同(1)中I,不再赘述。
II、对图像进行边缘检测,要对图像的每一像素(不考虑图像的边界部分)的灰度进行遍历,分别用公式对图像的水平和垂直方向的边缘进行检测,并分别存储,在进行合成。
采用不同的算子时,变换的公式有所不同。
在合成时可以采用三种算法(街区法、棋盘法、欧式几何法),本次实验中均又采用,所以得到三层图像。
代码如下(仅以街区法的Roberts 算子为例):[x,y]=size(image);g1=image;gh1=image;gv1=image;for i=2:(x-1)for j=2:(y-1)gh1(i,j)=image(i,j)-image(i-1,j-1);gv1(i,j)=image(i,j-1)-image(i-1,j);g1(i,j)=abs(gh1(i,j))+abs(gv1(i,j));endend4、实验结果分析(1)、图像锐化图像锐化结果如图a和图b(注:图a为情况①结果;图b为情况②结果):图a图b由图a和图b对比可知,图像的锐化实质就是原图像与梯度信息进行叠加,相对于原图像而言,图像的边缘信息得到了加强。
由图b中不同ɑ值所得图像对比可知,ɑ越大,边界越清晰,同时对比图a中不同ɑ值所得图像可知,ɑ的大小决定梯度信息与原图像叠加时所占的比例。
(2)、图像边缘检测街区法、棋盘法、欧式距离法的不同检测算子结果分别入图c、图d和图e:图c图d图e由图c、图d和图e对比可知,采用街区法所得的边界清晰度最高,欧式几何法其次,棋盘法最差。
对比同一图中的不同子图可知,Sobel算子的性能更好,Prewitt算子其次,Roberts算子最差。
5、实验结论本次实验是对图像进行锐化和边缘检测,通过这次实验,我对数字图像处理中图像的锐化和边缘检测有了更加深刻的了解。
加深了图像锐化和边缘检测的原理,掌握了图像边缘检测的不同方法。
学会了使用Laplacian算子(二阶导数算子)实现图像锐化的程序编写;掌握了使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法。
6、源代码(1)图像锐化(g1)close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);subplot(221);imshow(uint8(image),[]);title('原图像');%采用拉普拉斯算子g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendsubplot(222);imshow(uint8(g1),[]);title('a=1时g1的图像');g1=image;a=2;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendsubplot(223);imshow(uint8(g1),[]);title('a=2时g1的图像');(2)图像锐化(g2)close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);subplot(221);imshow(uint8(image),[]);title('原图像');%采用拉普拉斯算子g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendsubplot(222);imshow(uint8(g2),[]);title('a=1时g2的图像');g2=image;a=2;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendsubplot(223);imshow(uint8(g2),[]);title('a=2时g2的图像');(3)边缘检测close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);figure('Name','街区法','NumberTitle','off');subplot(221);imshow(uint8(image),[]);title('原图像');[x,y]=size(image);g1=image;gh1=image;gv1=image;for i=2:(x-1)for j=2:(y-1)gh1(i,j)=image(i,j)-image(i-1,j-1);gv1(i,j)=image(i,j-1)-image(i-1,j);g1(i,j)=abs(gh1(i,j))+abs(gv1(i,j));endendsubplot(222);imshow(uint8(g1),[]);title('Roberts算子');g2=image;gh2=image;gv2=image;for i=2:(x-1)for j=2:(y-1)gh2(i,j)=((image(i+1,j-1)+image(i+1,j)+image(i+1,j+1))/3)-((image(i-1,j-1)+image(i-1,j)+im age(i-1,j+1))/3);gv2(i,j)=((image(i-1,j+1)+image(i,j+1)+image(i+1,j+1))/3)-((image(i-1,j-1)+image(i,j-1)+im age(i+1,j-1))/3);g2(i,j)=abs(gh2(i,j))+abs(gv2(i,j));endendsubplot(223);imshow(uint8(g2),[]);title('Prewitt算子');g3=image;gh3=image;gv3=image;for i=2:(x-1)for j=2:(y-1)gh3(i,j)=(image(i+1,j-1)+2*image(i+1,j)+image(i+1,j+1)-image(i-1,j-1)-2*image(i-1,j)-imag e(i-1,j+1))/4;gv3(i,j)=(image(i-1,j+1)+2*image(i,j+1)+image(i+1,j+1)-image(i-1,j-1)-2*image(i,j-1)-imag e(i+1,j-1))/4;g3(i,j)=abs(gh3(i,j))+abs(gv3(i,j));% g3(i,j)=max(gh3(i,j),gv3(i,j));% g3(i,j)=sqrt(gh3(i,j)*gh3(i,j)+gv3(i,j)*gv3(i,j));endendsubplot(224);imshow(uint8(g3),[]);title('Sobel算子');% subplot(235)% imshow(uint8(gh3),[]);% title('检测水平边界');% subplot(236);% imshow(uint8(gv3),[]);% title('检测竖直边界');figure('Name','棋盘法','NumberTitle','off');subplot(221);imshow(uint8(image),[]);title('原图像');[x,y]=size(image);g1=image;gh1=image;gv1=image;for i=2:(x-1)for j=2:(y-1)gh1(i,j)=image(i,j)-image(i-1,j-1);gv1(i,j)=image(i,j-1)-image(i-1,j);% g1(i,j)=abs(gh1(i,j))+abs(gv1(i,j));g1(i,j)=max(gh1(i,j),gv1(i,j));endendsubplot(222);imshow(uint8(g1),[]);title('Roberts算子');g2=image;gh2=image;gv2=image;for i=2:(x-1)for j=2:(y-1)gh2(i,j)=((image(i+1,j-1)+image(i+1,j)+image(i+1,j+1))/3)-((image(i-1,j-1)+image(i-1,j)+im age(i-1,j+1))/3);gv2(i,j)=((image(i-1,j+1)+image(i,j+1)+image(i+1,j+1))/3)-((image(i-1,j-1)+image(i,j-1)+im age(i+1,j-1))/3);% g2(i,j)=abs(gh2(i,j))+abs(gv2(i,j));g2(i,j)=max(gh2(i,j),gv2(i,j));endendsubplot(223);imshow(uint8(g2),[]);title('Prewitt算子');g3=image;gh3=image;gv3=image;for i=2:(x-1)for j=2:(y-1)gh3(i,j)=(image(i+1,j-1)+2*image(i+1,j)+image(i+1,j+1)-image(i-1,j-1)-2*image(i-1,j)-imag e(i-1,j+1))/4;gv3(i,j)=(image(i-1,j+1)+2*image(i,j+1)+image(i+1,j+1)-image(i-1,j-1)-2*image(i,j-1)-imag e(i+1,j-1))/4;g3(i,j)=abs(gh3(i,j))+abs(gv3(i,j));g3(i,j)=max(gh3(i,j),gv3(i,j));% g3(i,j)=sqrt(gh3(i,j)*gh3(i,j)+gv3(i,j)*gv3(i,j));endendsubplot(224);imshow(uint8(g3),[]);title('Sobel算子');figure('Name','欧式几何法','NumberTitle','off');subplot(221);imshow(uint8(image),[]);title('原图像');[x,y]=size(image);g1=image;gh1=image;gv1=image;for i=2:(x-1)for j=2:(y-1)gh1(i,j)=image(i,j)-image(i-1,j-1);gv1(i,j)=image(i,j-1)-image(i-1,j);% g1(i,j)=abs(gh1(i,j))+abs(gv1(i,j));% g1(i,j)=max(gh1(i,j),gv1(i,j));g1(i,j)=sqrt(gh1(i,j)*gh1(i,j)+gv1(i,j)*gv1(i,j));endendsubplot(222);imshow(uint8(g1),[]);title('Roberts算子');g2=image;gh2=image;gv2=image;for i=2:(x-1)for j=2:(y-1)gh2(i,j)=((image(i+1,j-1)+image(i+1,j)+image(i+1,j+1))/3)-((image(i-1,j-1)+image(i-1,j)+im age(i-1,j+1))/3);gv2(i,j)=((image(i-1,j+1)+image(i,j+1)+image(i+1,j+1))/3)-((image(i-1,j-1)+image(i,j-1)+im age(i+1,j-1))/3);% g2(i,j)=abs(gh2(i,j))+abs(gv2(i,j));% g2(i,j)=max(gh2(i,j),gv2(i,j));g2(i,j)=sqrt(gh2(i,j)*gh2(i,j)+gv2(i,j)*gv2(i,j));endendsubplot(223);imshow(uint8(g2),[]);title('Prewitt算子');g3=image;gh3=image;gv3=image;for i=2:(x-1)for j=2:(y-1)gh3(i,j)=(image(i+1,j-1)+2*image(i+1,j)+image(i+1,j+1)-image(i-1,j-1)-2*image(i-1,j)-imag e(i-1,j+1))/4;gv3(i,j)=(image(i-1,j+1)+2*image(i,j+1)+image(i+1,j+1)-image(i-1,j-1)-2*image(i,j-1)-imag e(i+1,j-1))/4;% g3(i,j)=abs(gh3(i,j))+abs(gv3(i,j));% g3(i,j)=max(gh3(i,j),gv3(i,j));g3(i,j)=sqrt(gh3(i,j)*gh3(i,j)+gv3(i,j)*gv3(i,j));endendsubplot(224);imshow(uint8(g3),[]);title('Sobel算子');。