八年级数学上册-平方根课件-北师大版
合集下载
北师大版八年级上册.2平方根课件(1)

9.若x2=3, 则 x=± √ ,3
若 x2 =3,则x= ±3 .
选做题
1. 实数a在数轴上的位置如图所示,则化简a 2 (a 1)2
的结果是 1
.
-1 0 1 a 2
2.已知一个自然数的算术平方根是a,则该自然数的下
一个自然数的算术平方根是( D )
A. a+1 B. a 1 C. a2+1 D. a2 1
自学指点2:(5分钟)
(理解概念,灵活运用)
认真阅读课本P28例题3,解决以下问题:
1.我们是根据哪种运算来求平方根?(一定要注意表
示法 ± a )
2.仿例题做习题
求下列各数的平方根(按照课本例题格式)
(1)49 (2)100 (3)(-15)2
(4)10-4
49 先平方运算
再开方运算
(1)49 (2)100 (3)(-15)2
学习目标:(1分钟)
1.掌握平方根和开平方的概念. 2.能够通过平方运算求一个非负数的平方根. 3.能判断一个正数的两个平方根之间的关系.
重点:平方根的概念。
难点:平方根与算术平方根的区分与联系。
自学指点1:(6分钟)
自学课本P27-P28例3之前的内容,思考并完成. 以下问题.
1.a的平方根怎样表示?这里的a取值有什么要求?
请改正.
解:小张将求出的m的值代入这个数的算术平方
根2m-6中求解,求出的不是这个数.
当m=4时,这个数为(2m-6)2=4;
当m= 8 时,2m-6=2× 8 -6=- 2 <0,不
3
3
3
符合题意.
所以这个数为4.
2.完成P28议一议.
一个正数a有_两_个平方根,表示为±___a_,0有_一___个平 方根,它是__0_____; __负___数没有平方根.
若 x2 =3,则x= ±3 .
选做题
1. 实数a在数轴上的位置如图所示,则化简a 2 (a 1)2
的结果是 1
.
-1 0 1 a 2
2.已知一个自然数的算术平方根是a,则该自然数的下
一个自然数的算术平方根是( D )
A. a+1 B. a 1 C. a2+1 D. a2 1
自学指点2:(5分钟)
(理解概念,灵活运用)
认真阅读课本P28例题3,解决以下问题:
1.我们是根据哪种运算来求平方根?(一定要注意表
示法 ± a )
2.仿例题做习题
求下列各数的平方根(按照课本例题格式)
(1)49 (2)100 (3)(-15)2
(4)10-4
49 先平方运算
再开方运算
(1)49 (2)100 (3)(-15)2
学习目标:(1分钟)
1.掌握平方根和开平方的概念. 2.能够通过平方运算求一个非负数的平方根. 3.能判断一个正数的两个平方根之间的关系.
重点:平方根的概念。
难点:平方根与算术平方根的区分与联系。
自学指点1:(6分钟)
自学课本P27-P28例3之前的内容,思考并完成. 以下问题.
1.a的平方根怎样表示?这里的a取值有什么要求?
请改正.
解:小张将求出的m的值代入这个数的算术平方
根2m-6中求解,求出的不是这个数.
当m=4时,这个数为(2m-6)2=4;
当m= 8 时,2m-6=2× 8 -6=- 2 <0,不
3
3
3
符合题意.
所以这个数为4.
2.完成P28议一议.
一个正数a有_两_个平方根,表示为±___a_,0有_一___个平 方根,它是__0_____; __负___数没有平方根.
平方根 北师大版数学八年级上册

特别的,我们规定0的算术平 方根是0 ,即 0 =0
得出算术平方根的性质: :(1)一个正数算术平 方根是一个正数 (2) 0的算术平方根是0
(3)负数没有算术平方根。
2023/2/21
宜昌博文国际学校 向常春
例1、 求下列各数的算术平方根: (1)900;(2)1; (3)49 (4)14
64
解: (1)因为302=900, 所以900的算术
训练3. 如图,等边三角形△ABC中,AD是BC边上的
高线,已知AB=2cm,求AD的长(用算术平方根表
示).
A
B
D
C
训练4.已知 4a2-49=0,求 39 10a 的值.
2x 6 2 训练5.已知 2023/2/21
和宜昌|博y文-国际学校| 向互常春为相反数,求x,y的值.
本节课学了哪些内容?
练一练(1)随堂练习2
(2)、如图,从帐篷支撑竿AB的顶部A向 地面拉一根绳子AC固定帐篷.若 绳子的长度为8米,地面固定点 C到帐篷支撑竿底部B的距离是6.4 米,则帐篷支撑竿的高是多少米?
2023/2/21
宜昌博文国际学校 向常春
解:由题意得AC=8米,BC=6.4米,
∠ABC=90°,在Rt△ABC中,由勾股定
2023/2/21
,已知幂和 指数,求底数x, 你能求出来吗?
这就是我们这节课学习算术平方根
什么是算术平方根
引出算术平方根概念
宜昌博文国际学校 向常春
知识一点般地一,:如果一个正数x的平方等于a ,
即x2=a ,那么这个正数x就叫做a的算术 平方根, 记为“ a ” ,读作“根号
a” 。
a
即:x= a
(2)先把负数的平方转化为正数再求算术平方根
北师大版八年级数学上册《平方根》(课件)

北师大版初中数学八年级《平方根》
平方根
学习目标:
• 了解算术平方根的概念,会求一个正数的算术平方 根
• 算术平方根的概念及运算 • 利用算术平方根解决实际问题
自学指点:
1、认真阅读P38页(1) 、(2)并完成下列问题(1)、说 明 为什么不是有理数
(2)、用计算器估算的近似值(精确到百分位) 2、用5分钟时间研读P38页算术平方根的概念,用红笔勾出关
想一想
(1)9的算术平方根是3,也就是说,3的平
方是9,还有其它的数,它的平方也是9吗?
(2)平方等于 的4 数有几个?平方等于0.64
的数呢?
25
如果一个数x的平方等于a , 即x2 =a,那么 这个数x叫做a的平方根(square root 也叫做 二次方根).
议一议
(1)一个正数有几个平方根? (2)0 有几个平方根? (3)负数是有理数?
哪些是无理数?
定 义
一个正数x的平方等于a,即x2=a, 这个正数x叫做a的算术平方根,记 作“a ” 读作“根号a”
我们规定0的算术平方根是0,即: 0 0
例 题 例1 求下列各数的算术平方根
81, 4 , 0.09, 1, 23, - 5, 0 25
例 例2 题自由下落物体的高度h
(米)与下落时间t(秒)的关系 为h=4.9t2.有一铁球从19.6 米 高的建筑物上自由下落,到达 地面需要多长时间 ?
解 : 将h 19.6代入公式h 4.9t 2,得: 19.6 4.9t 2 t2 4
t 4 2(秒) 答:铁球到达地面需要2秒
练
一个正数有两个平方根,0只有一个 平方根,它是0本身;负数没有平方根.
定义
求一个数a的平方根的运算, 叫做开平方(extraction of square root),其中a叫做被开方数.
平方根
学习目标:
• 了解算术平方根的概念,会求一个正数的算术平方 根
• 算术平方根的概念及运算 • 利用算术平方根解决实际问题
自学指点:
1、认真阅读P38页(1) 、(2)并完成下列问题(1)、说 明 为什么不是有理数
(2)、用计算器估算的近似值(精确到百分位) 2、用5分钟时间研读P38页算术平方根的概念,用红笔勾出关
想一想
(1)9的算术平方根是3,也就是说,3的平
方是9,还有其它的数,它的平方也是9吗?
(2)平方等于 的4 数有几个?平方等于0.64
的数呢?
25
如果一个数x的平方等于a , 即x2 =a,那么 这个数x叫做a的平方根(square root 也叫做 二次方根).
议一议
(1)一个正数有几个平方根? (2)0 有几个平方根? (3)负数是有理数?
哪些是无理数?
定 义
一个正数x的平方等于a,即x2=a, 这个正数x叫做a的算术平方根,记 作“a ” 读作“根号a”
我们规定0的算术平方根是0,即: 0 0
例 题 例1 求下列各数的算术平方根
81, 4 , 0.09, 1, 23, - 5, 0 25
例 例2 题自由下落物体的高度h
(米)与下落时间t(秒)的关系 为h=4.9t2.有一铁球从19.6 米 高的建筑物上自由下落,到达 地面需要多长时间 ?
解 : 将h 19.6代入公式h 4.9t 2,得: 19.6 4.9t 2 t2 4
t 4 2(秒) 答:铁球到达地面需要2秒
练
一个正数有两个平方根,0只有一个 平方根,它是0本身;负数没有平方根.
定义
求一个数a的平方根的运算, 叫做开平方(extraction of square root),其中a叫做被开方数.
北师大版数学八年级上册 平方根

0
.
如何用字母表示你所发现的规律呢?
归纳总结
a2 (a≥0) 的性质:
一般地, a2 = a (a ≥0).
思考:当 a<0 时, a2 = ?
例3 化简:
(1) 16 ;
(2) (5)2 .
你还有其 它算法吗?
解:(1) 16 42 4. (2) (5)2 25 5.
(5)2 52 5.
填一填(2)
写出左圈和右圈中的“?”表示的数:
x
-88
3
4
-43
-1111
0.6
? ? ?
-0.6 ?
0
? ?
没有? ?
x2 ?64
9 ?16
121 0.36
0 -4
概念学习
平方根的定义: 一般地,如果一个数 x 的平方等于 a,即
x2 = a,那么这个数 x 就叫做 a 的平方根(或二 次方根).
解:(1) ( 1.5)2 1.5.
想一想:本小题 用到了幂的哪条 基本性质呢?
(2) (2 5)2 22 ( 5)2 4 5 20.
积的乘方: (ab)2 = a2b2
思考2:根据前面得出的性质填一填,
并说明理由.
22 =
2
;
0.12 = 0.1 ;
2 3
2
=
2 3 ; 02 =
第二章 实数
2.2 平方根
第2课时 平方根
1. 什么叫算术平方根? 若一个正数的平方等于 a,则这个数叫做 a 的
算术平方根,表示为 a(a≥0) .
2. 我们已经学习过哪些运算?它们中互为逆运算
的是什么? 答:已学过加法、减法、乘法、除法、乘方五种运算. 其中加法与减法互逆;乘法与除法互逆. 思考:乘方有没有逆运算?
初中数学《平方根》完美课件 【北师大版】1

由于
,
所以这个数是3或-3. 这里的3是前面学过的 9 的__算__术__平__方___根__.
-3与 9 的算术平方根有什么关系?
-3与 9 的算术平方根互为相反数.
思考 根据上面的研究过程填表:
1
16
36
49
如果我们把
分别叫做 1、16、36、49、 的平
方根,你能类比算术平方根的概念,给出平方根的概念吗?
例题 说出下列各式的意义,并求它们的值:
如果知道一个数的算术平 方根就可以立即写出它的 负的平方根,为什么?
正数的两个平方根互为相反数.
练习 1.判断下列说法是否正确:
(1)0的平方根是0;
(2)1的平方根式1;
(3)-1的平方根式-1;
(4)0.01是0.1的一个平方根.
练习 2.填表:
x
8 -8
正数a的算术平方根可以表示用_____表示; 正数a的负的平方根,可以用符号______表示, 正数a的平方根用符号________表示. 读作“正、负根号a”.
例如,
平方根的表示 符号 有意义的条件是什么?
表示 a 的算术平方根.
任何数的平方都不可能是负数,所以负数没有算术平方根, 所以当a≥0时有意义,a<0时无意义.
复习巩固 1.求下列各数的算术平方根:
(1)81;
(3)0.04;
初中数学《平方根》完美课件 北师大版1-精品课件ppt(实用版)
初中数学《平方根》完美课件 北师大版1-精品课件ppt(实用版)
复习巩固 2.下列各式是否有意义,为什么?
初中数学《平方根》完美课件 北师大版1-精品课件ppt(实用版)
练习 说出下列各式的意义,并求值.
北师大版八年级数学上册《平方根(1)》课件

谢谢观赏
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10
北师大版初二数学上册2.2平方根(第一课时)

(1) 49 ; (2) 25 ; 196
(3) 0.09 ; (4) 64 .
应用举例
例2 自由下落物体的高度h(米)与下 落时间t(秒)的关系为 h4.9t2 .有一 铁球从19.6米高的建筑物上自由下落, 到达地面需要多长时间?
解:将h=19.6代入公式 h4.9t2 ,
得 t2 4, 所以正数 t 42(秒). 即铁球到达地面需要2秒.
特别地,我们规定0的算术平方
根是0,即 0 0 .
应用举例
例1 求下列各数的算术平方根:
(1) 900;(2) 1;(3) 49 ;(4) 14.
64
解: (1)因为302=900,
所以900的算术平方根是30,
即 90030; (2)因为12=1, 所以1的算术平方根是1,
即 11 ;
应用举例
八年级数学上册 北万荣县实验中学
学校对面的公园 里有两块正方形 草坪,大正方形 草坪的面积是100 平方米,小正方 形草坪的面积是5 平方米,
(1)大正方形草坪的边长 是多少米?(2)小正方形 草坪的边长呢?
一般地,如果一个正数 x 的平方 等于a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根,记为 “ a ”,读作“根号 a ”.
一个正数的算术平方根是一个正数; 0的算术平方根是0;负数没有算术平方根.
拓展训练
1.若一个数的算术平方根是 7 ,那
么这个数是 7 ;
2. 9 的算术平方根是
3;
3.( 2 ) 2 的算术平方根是
3
2 3
;
4.若 m2 2 ,则 (m2)2 16 .
达标检测
一、求下列各数的算术平方根:
(1) 36 (2) 9 (3)17 (4) 10 4
(3) 0.09 ; (4) 64 .
应用举例
例2 自由下落物体的高度h(米)与下 落时间t(秒)的关系为 h4.9t2 .有一 铁球从19.6米高的建筑物上自由下落, 到达地面需要多长时间?
解:将h=19.6代入公式 h4.9t2 ,
得 t2 4, 所以正数 t 42(秒). 即铁球到达地面需要2秒.
特别地,我们规定0的算术平方
根是0,即 0 0 .
应用举例
例1 求下列各数的算术平方根:
(1) 900;(2) 1;(3) 49 ;(4) 14.
64
解: (1)因为302=900,
所以900的算术平方根是30,
即 90030; (2)因为12=1, 所以1的算术平方根是1,
即 11 ;
应用举例
八年级数学上册 北万荣县实验中学
学校对面的公园 里有两块正方形 草坪,大正方形 草坪的面积是100 平方米,小正方 形草坪的面积是5 平方米,
(1)大正方形草坪的边长 是多少米?(2)小正方形 草坪的边长呢?
一般地,如果一个正数 x 的平方 等于a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根,记为 “ a ”,读作“根号 a ”.
一个正数的算术平方根是一个正数; 0的算术平方根是0;负数没有算术平方根.
拓展训练
1.若一个数的算术平方根是 7 ,那
么这个数是 7 ;
2. 9 的算术平方根是
3;
3.( 2 ) 2 的算术平方根是
3
2 3
;
4.若 m2 2 ,则 (m2)2 16 .
达标检测
一、求下列各数的算术平方根:
(1) 36 (2) 9 (3)17 (4) 10 4
陕西省八年级数学上册第2章实数2平方根第2课时平方根pptx课件新版北师大版

=± .
解: ±
1
( . )2=0.000 4.
4
5
6
7
8
- (−.) =-0.1.
9
10
11
12
13
14
15
16
17
18
19
20
13. 下列判断正确的是(
D
)
A. 若 = ,则 a = b
B. 若| a |=( )2,则 a = b
C. 若 a > b ,则 a2> b2
D. 若( )2=( )2,则 a = b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
14. [2024西安雁塔区月考]如果 的平方根等于±2,那么 a
=
1
16
2
3
.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
15. 若 ( − ) =3- x ,则 x 的取值范围是
解: 由题意得 a -2 026≥0,所以 a ≥2 026,
所以|2 024- a |+ − = a -2 024+ −
=a,
所以 − =2 024,所以 a =2 0242+2 026,
所以 a -2 0242=2 026.
1
2
3
4
5
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P40 习题2.3 P63 复习题 2
1.一个正方形的面积变为原来的n倍,它的边 长为原来的几倍? 2.一个正方形的面积为原来的100倍时,它的 边长变为原来的多少倍?
铁球1 9从. 6 米高的建筑物上自由下落,
到达地面需要长时间?
小思考
1.负数的算术平方根 是否为负数呢?
2.若 2 2 4 ,则 4 2 对么?
或者
4 对 么2 ?
小思考分析
1.由定义我们知道首先必须 a 0 ,才
能说正数 x 才是它的算术平方根。所
以负数没有算术平方根。
2.因为算术平方根都是正数,所以 2
不是 4 的算术平方根。由第1问得
知 4 没有算术平方根。
• 1)若一个数的算术平方根是 5 ,则
• •
பைடு நூலகம்
这23))正个94 数数的_是1算_2 __5术_的_平。平方方根为是1 4 4__。23 _。
5
25
• 4) 8 1 的算术平方根为__3 _,0 .0 4 =_0_. 2_。
• 5) 1.44 2 的算术平方根为_1 _. 4_4_。
定义:
一般地,如果一个正数 x 的平方
等于 a ,即 x 2 a,那么这个正数 x
就叫做 a 的算术平方根,记作 a ,读 作“根号 a ”。
例1.求下列各数的算术平方根: (1)9 0 0 (2)1 (3) 4 9 (4)1 4
64
例2.自由下落的物体的高度 h (米)与下 落时间t (秒)的关系为h 4.9t2 。有一
学校要举行美术作品比赛,小鸥很 高兴。他想裁出一块面积为25dm2 的正方形画布,画上自己的得意之 作参加比赛,可是这块正方形画布 的边长应怎么取呢?
小明想正方形面积公式是S=a2,现在 想知道a,又突然想到52=25,所以这 个a=5,裁一个边长为5dm的画布就行 了。
想一想
若 x 2 a ,则 a 叫 x 的平方,反过来 x 叫 a 的什么呢?