伺服电机选型计算公式
伺服电机功率计算选型(114)

(以电机轴心为基准计算转动惯量)
直线运动部分
JK=M
×(
PB 2π
)²
经过减速机之后的转动惯量
JL=
JK R²
M
1/R带类传动时惯量计算 JL(㎏ • ㎡)
(以电机轴心为基准计算转动惯量)
电机转矩T (N.m) 小轮1质量M1(kg) 小轮1半径r1(m) 小轮2质量M2(kg) 小轮2半径r2(m) 重物质量M3(kg) 减速比r1/r2=1/R
13
举例计算1
这种传动方式与前一种传动方式相 同,选型时主要考虑负载惯量的计 算,计算公式也与前面相同。 总结:转动型负载主要考虑惯量计算。
14
举例计算2
M
1:R2
D
1:R1
已知:负载重量M=50kg,同步带轮直 径D=120mm,减速比R1=10,R2=2, 负载与机台摩擦系数µ=0.6,负载最高 运动速度30m/min,负载从静止加速到 最高速度时间200ms,忽略各传送带轮 重量,驱动这样的负载最少需要多大功 率电机?
JL=1/2*M1*r12 + (1/2*M2*r22)/R2 + M3*r12
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
M3 M1 r1
r2 M2
10
伺服电机选型计算xls 表格计算

TMx0.8>TL
* 此值因各系列而异,请加以注 意。
⑦加减速 转矩的计 算
加减速转矩TA
0.5096 0.037
⑧瞬时最 大转矩、 有效转矩 的计算
必要的瞬时最大转矩为T1
有效转矩Trms为
T1=TA+TL T2=TL T3=TL-TA
0.0523 0.0156 -0.0211
0.029
⑨讨论 负载惯量JL 有效转矩Trms
1.528 N.M
3000
r/mi n
条件满足 条件满足
条件满足 条件满足
条件满足
kg.m2 >
初步
选择
定
R88M
-
U200
30(J
m=
根据
R88M
-
1.6E-02
U200 30的
额定转矩Tm=源自N.m1.23E-05
0.637
(N.m )
N.m N.m N.m
N.m
≦[电机 的转子惯 量JM
﹤[电机 的额定转 矩
×
[适
1.23E-05
用的 惯量
比
=30]
0.5096 N.M
﹤[电机 的瞬时最 大转矩 ≦[电机 的额定转 数 U系列的 编码器规 格为2048 (脉冲/ 转),经 编码器分 频比设定 至1000 (脉冲/ 转)的情 况下使用 。
10 15 20
3 0.1
1
80 40 0.5 0.2 0.01
③换算到 电机轴负 载惯量的 计算
滚珠丝杠的惯量JB=
负载的惯量JW=
换算到电机轴负载惯量JL=JW
JL=G2x(JW+J2)+J1
④负载转 矩的计算
伺服电机的选型和计算

电机的选择:(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2式中 M-----电动机轴转距;F------使机械部件沿直线方向移动所需的力;L------电动机转一圈(2πrad )时,机械移动的距离2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。
实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:z z M h h F M B spSPao P K 211122⎪⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩(N.mm)π2hF spao K---双螺母滚珠丝杠的预紧力矩(N.mm) Fao------预紧力(N),通常预紧力取最大轴向工作载荷Fm ax的1/3,即F ao =31F m ax当F m ax 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查:hsp-----丝杠导程(mm);K--------滚珠丝杠预紧力矩系数,取0.1~0.2;P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;W 1-----移动部件重力(N),包括最大承载重力;P 1-------有夹板夹持时(如主轴箱)的夹板夹持力;μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;η1-------滚珠丝杠的效率,取0.90~0.95;MB----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)z 1--------齿轮1的齿数 z2--------齿轮2的齿数最后按满足下式的条件选择伺服电机M M s ≤1Ms-----伺服电机的额定转距(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。
伺服电机选型必备-惯量匹配和最佳传动比

惯量匹配和最佳传动比1 功率变化率伺服电机的基本功能就是将输入的电功率快速的转换为机械功率输出。
功率转换的越快,伺服电机的快速性越好。
功率转换的快速性用功率变化率(dP/dt)来衡量:P=T·ωT=J·dω/dtdP/dt=d(T·ω)/dt=T·dω/dt=T·T/JdP/dt=T2/J伺服电机以峰值转矩Tp进行加/减速运动时的功率变化率最大:(dP/dt)max=Tp2/Jm通常用理想空载时伺服电机的功率变化率来衡量伺服电机的快速性。
衡量伺服电机快速性的性能指标还有:●转矩/惯量比:Tp/Jm= dω/dt●最大理论加速度:(dω/dt)max= Tp/Jm这些指标都是单一衡量伺服电机加速性能的指标。
2 惯量匹配伺服系统要求伺服电机能快速跟踪指令的变化。
对一个定位运动而言,就是要求以最短的时间到达目标位置。
换一种说法,就是在直接驱动负载的定位过程中,负载以最大的功率变化率将输入功率转换为输出功率。
伺服电机驱动惯性负载J L的加速度、加速转矩计算如下:●负载的加速度(系统加速度):dω/dt=Tp/(Jm+J L)●负载的加速转矩:T L= J L·dω/dt= J L·Tp/(Jm+J L)负载的功率变化率为:dP L/dt=T L2/J LdP L/dt= J L2·Tp2/(Jm+J L)2/J L = J L·Tp2/(Jm+J L)2从式中可以看出:●J L远大于Jm时:dP L/dt= Tp2/J L,负载惯量越大,负载的功率变化率越小。
●J L远小于Jm时:dP L/dt= J L·Tp2/Jm,负载惯量越大,负载的功率变化率越小。
●负载惯量J L相对电机惯量Jm变化时,负载的功率变化率存在一个最大值。
根据极值定理,对应dP L/dt极值的J L值为使d(dP L/dt)/d(J L) = 0的值。
富士伺服电机选型计算资料

富士伺服电机选型计算资料一、关于富士伺服电机的基本资料1. 输出功率(Pout):也就是电机实际输出的功率,通常用单位瓦特(W)表示。
2. 转速(N):电机输出的转速,通常用单位转每分钟(rpm)表示。
3.转矩(T):电机产生的转矩,通常用单位牛顿米(Nm)表示。
4.电压(V):电机工作时所需的电压,通常用单位伏特(V)表示。
5.电流(I):电机工作时所需的电流,通常用单位安培(A)表示。
二、富士伺服电机选型计算方法1.计算输出功率:输出功率(Pout)= 转矩(T)× 转速(N)/ 9550单位:W2.计算所需电流:所需电流(I)= 输出功率(Pout)/ 电压(V)单位:A3.确定电机型号:根据所需输出功率和所需电流,在富士伺服电机的型录中找到适合的型号。
4.考虑额定功率:在选型时,要考虑到电机的额定功率与所需输出功率的关系。
通常情况下,额定功率应大于所需输出功率,以保证电机能够正常工作。
5.考虑载荷惯性:在选型时,要考虑到负载的惯性对电机的影响。
如果负载的惯性较大,需要选择功率较大的电机来满足负载的加速度和减速度要求。
6.考虑工作环境:在选型时,还要考虑工作环境的特殊要求,如温度、湿度、振动等因素。
7.考虑控制系统:在选型时,还要考虑控制系统的要求,如控制精度、速度响应时间等因素。
三、富士伺服电机选型计算示例假设需要选型一台富士伺服电机,输出功率要求为2000W,工作电压为220V,负载惯性为0.03kg·m²,工作环境温度为25℃。
首先计算所需电流:所需电流(I)= 输出功率(Pout)/ 电压(V)所需电流(I)=2000W/220V≈9.09A接下来根据所需输出功率和所需电流,在富士伺服电机的型录中找到适合的型号。
假设找到了型号为MHN309D,额定功率为2200W,额定电流为10A。
然后考虑负载惯性,根据负载惯性为0.03kg·m²,选择合适的电机。
伺服电机选型通用计算公式

9预选伺服电机的确认
所需要加速转矩确认 TP=2Л nM(JM+JL)/60ta +TL 所需要减速转矩确认 TS=2Л nM(JM+JL)/60td -TL 转矩有效值确认 Trms2=(TP2ta+TL2tc+Ts2td)/t 0.486054898 计算值 1.236262156 0.369312404
1 机器规格
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 名称 负载速度 直线运动部分重量 滚珠丝杠长度 滚珠丝杠直径 滚珠丝杠导程 滚珠丝杠密度 减速比 直线运动外部力 齿轮+联轴器 转动惯量 摩擦系数 综合机械效率 加速时间 减速时间 运行时间 周期时间 符号 VL m LB dB PB ρ R F JG μ η ta tb tc t 数值 15 250 1 0.02 0.01 7870 2 0 0.00004 0.2 0.9 0.1 0.1 1 1.5 单位 m/min kg m m m kg/m3 N kg・㎡ s s s s 2s最大定位完成45mm
5、11、21、33
`2速度线图
加速时间 减速时间 运行时间 周期时间 负载轴转速 电机轴速度计算值 电机轴速度选择 TL=(9.8μ m+F)*PB/(2Л Rη ) 负载转矩计算值 ta tb tc t 0.1 0.1 1 1.5 s s s s min-1 min-1 min-2 N.m 0.433474876
`6负载行走功率 `7负加速功率 8伺服电机预选
计算值 0.433474876 362.255569 3000 0.000229365 200 3000 0.637 2.23 0.0000263 0.000394 最大值 2.23 最大值 2.23 额定转矩 0.637 额定输出 额定转速 额定转矩 、最大转矩 电机转子转动惯量 容许负载转动惯量
伺服电机选型--惯量匹配

在伺服系统选型及调试中,常会碰到惯量问题。
其具体表现为:在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。
此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。
一、什么是“惯量匹配”?1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量J ×角加速度θ角”。
加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。
如果θ变化,则系统反应将忽快忽慢,影响加工精度。
由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。
2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM +电机轴换算的负载惯性动量JL。
负载惯量JL由(以平面金切机床为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。
JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。
如果希望J变化率小些,则最好使JL所占比例小些。
这就是通俗意义上的“惯量匹配”。
二、“惯量匹配”如何确定?传动惯量对伺服系统的精度,稳定性,动态响应都有影响。
惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。
衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。
不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。
不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,但大多要求JL与JM的比值小于十以内。
伺服电机选型计算

分度盘 机构选 型计算 表格
分度盘直
径
DT=
分度盘厚
度
LT=
工作物直
径
DW=
工作物厚
度
LW=
工作台材
质密度
ρ=
工作物数 量
n=
由分度盘中心至工作 物中心的距离
l=
定位角度
θ=
定位时间
t=
加速时间
比
A=
减速机减
速比
i=
减速机效
率
ηG=
0.2 m
0.118 m
*
0.03 m
*
0.05 m
*
2700 kg/m3
*
10 个
*
0.125 m
180 °
*
3s
*
10%
10
1
1)决定 加减速时 间
加速时间
2)电机转 速
t0= t*A
= 0.3
s
360 t 0(t t 0)
减速机输 出轴角加 速度
减速机输 出轴最大 转速
电机轴角 加速度
电机输出 轴转速
3)计算负 载转矩
因为摩擦负载及小, 故忽略
4)计算电 机轴加速 转矩(克 服惯量)
工作台的 惯量
工作物的 惯量
(工作物同时绕工作物中 心轴旋转,如果工作物没有 自转,可以不考虑这部分 惯量)
工作物质 量
βG= 360
t 0(t t 0)
= 3.878518519 rad/s2
βG t0 2
N= = 11.11111111 rpm
βm= βG*i = 38.78518519 rad/s2
NM= N*i = 111.1111111 rpm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【伺服电机基本三要素】
1、转数N:根据客户实际要求,对于同等功率电机可选配不同转数电机,一般来说,转数越低,价格越便宜。
2、扭矩T:必须满足实际需要,但是不需要像步进电机那样留有过多的余量。
3、惯量J:根据现场要求选用不同惯量的电机,如机床行业一般选用大惯量的伺服电机。
【伺服电机功率基本计算】
输出功率P = 0.1047*N*T
式中N为旋转速度,T为扭矩。
旋转速度基本为3000转。
扭矩T = r*M*9.8
式中r为轴半径,M为物体重量。
【伺服电机功率选择要点】
电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。
如果电动机功率选得过小,就会出现“小马拉大车”现象,造成电动机长期过载,使其绝缘因发热而损坏。
甚至电动机被烧毁。
如果电动机功率选得过大,就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。
而且还会造成电能浪费。
【伺服电机功率实际选型计算方法】
1、要正确选择电动机的功率,必须经过以下计算或比较:
功率P = F*V /1000 (P=计算功率KW,F=所需拉力N,V=工作机线速度M/S)
2、对于恒定负载连续工作方式,可按下式计算所需电动机的功率:
P1(kw):P=P/n1n2
式中n1为生产机械的效率;n2为电动机的效率,即传动效率。
按该公式求出的功率P1,不一定与产品功率相同。
因此,所选电动机的额定功率应等于或稍大于计算所得的功率。
3、用类比法来选择电动机的功率:
所谓类比法,就是与类似生产机械所用电动机的功率进行对比。
具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用相近功率的电动机进行试车。
试车的目的是验证所选电动机与生产机械是否匹配。
验证的方法是:使
电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得的电流与该电动机铭牌上标出的额定电流进行对比。
如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大。
则表明所选电动机的功率合适。
如果电动机的实际工作电流比铭牌上标出的额定电流低70%左右。
则表明电动机的功率选得过大,应调换功率较小的电动机。
如果测得的电动机工作电流比铭牌上标出的额定电流大40%以上。
则表明电动机的功率选得过小,应调换功率较大的电动机。
4、最后需要综合考虑扭矩(转矩),电机功率和转矩计算公式:
即扭矩T = 9550 P/n
式中P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。
电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数。
机械功率公式:P=T*N/97500
式中P:功率单位W;T:转矩,单位克/cm;N: 转速,单位r/min。