《矩形的判定》教学设计
矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)矩形的判定定理教学设计(精选5篇)作为一位杰出的教职工,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。
一份好的教学设计是什么样子的呢?下面是小编整理的矩形的判定定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。
矩形的判定定理教学设计1一、说教材《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。
矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。
二、说目标1.知识与技能在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;规范推理的书写格式;应用矩形定义、判定等知识,解决简单的实际问题。
2.过程与方法通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。
3.情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。
三、说重点难点1.重点:矩形的判定。
2.难点:矩形的判定及性质的综合应用。
判定定理都是以“定义”为基础推导出来的。
因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。
除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。
这样就猜想出对角线相等的平行四边形是矩形。
然后同学们以组为单位对判定进行证明。
这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。
矩形的判定.教学设计

矩形的判定一、教学目标及重难点教学目标:1、知识与技能:探索并证明矩形的判定定理,会运用矩形的判定定理判定一个四边形是矩形。
2、过程与方法:本节课以平行四边形定义为基础,通过问题的提出,运用剪一剪、议一议、判一判及师生共同探索启发等方式得出矩形的三个判定方法并在运用中巩固所学知识。
3、情感态度与价值观:在学习过程中,培养学生自主探索的能力,培养学生数学的学习兴趣,体会数学的思考方法。
4、教学重点:矩形判定定理的探索证明与运用5、教学难点:矩形判定方法的理解与选择运用二、教学过程:(一)复习旧知、导入新课1、矩形的定义是怎样的?矩形的定义:有一个角是直角的平行四边形叫作矩形。
(课件展示定义的实质)(二)、创设问题、酝酿新知正在上八年级的小聪,是个爱学习的孩子!他喜欢思考问题。
学完矩形的性质一课后,数学老师布置以下三个问题要求同学们课外思考:①有一个角是直角的四边形是矩形吗?有两个角是直角呢?有三个角是直角的四边形呢?四个角都是直角的四边形呢?②对角线相等的四边形是矩形吗?③对角线相等的平行四边形是矩形吗?学生剪纸操作讨论交流解决问题①:有一个角是直角的四边形是矩形吗?有两个角是直角呢?(三)、合作交流、得出新知问题:有三个角是直角的四边形是矩形吗?如图:四边形ABCD中,∠A 、∠B 、∠C 是直角,求证:四边形ABCD是矩形由前面的探究得到矩形的判定定理1:有三个角是直角的四边形是矩形。
实质是:四边形+ 有三个角是直角= 矩形量一量、测一测:问题②:对角线相等的四边形是矩形吗?教师追问:对角线相等的平行四边形是矩形吗?如下图:已知□ABCD中, 对角线AC与DB相等,求证:□ABCD是矩形证明:∵四边形ABCD是平行四边形∴AB=DC 又BC=CB AC=DB∴△ABC≌△DCB (SSS)∴∠ABC=∠DCB又∵∠ABC+∠DCB =180°∴∠ABC=90°∴□ABCD是矩形(有一个角是直角的平行四边形是矩形)由此得到矩形的判定定理2:对角线相等的平行四边形是矩形。
人教版数学八年级下册18.2.1第2课时《 矩形的判定》教学设计

人教版数学八年级下册18.2.1第2课时《矩形的判定》教学设计一. 教材分析人教版数学八年级下册18.2.1第2课时《矩形的判定》是本节课的主要内容。
通过上一节课的学习,学生已经掌握了矩形的性质,本节课将进一步引导学生探究矩形的判定方法,培养学生的逻辑思维能力。
本节课的内容在数学知识体系中起到承上启下的作用,为后续学习正方形和其他四边形的性质奠定基础。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对矩形的性质有所了解。
但是,学生在判断一个四边形是否为矩形时,可能会因为对矩形性质的理解不够深入而出现判断错误。
因此,在教学过程中,教师需要引导学生深入理解矩形的性质,并通过实例让学生学会运用矩形的性质进行判定。
三. 教学目标1.让学生掌握矩形的判定方法。
2.培养学生的逻辑思维能力和空间想象能力。
3.提高学生运用矩形性质解决实际问题的能力。
四. 教学重难点1.教学重点:矩形的判定方法。
2.教学难点:如何引导学生运用矩形的性质进行判定,并解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入矩形的判定,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究矩形的判定方法,培养学生的逻辑思维能力。
3.合作学习法:分组讨论,让学生在合作中交流,提高解决问题的能力。
4.巩固练习法:通过适量练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示矩形的判定方法及实例。
2.练习题:准备一些有关矩形判定的练习题,用于课堂练习和巩固。
3.教学道具:准备一些四边形模型,用于直观展示矩形的性质。
七. 教学过程1.导入(5分钟)利用生活实例引入矩形的判定,激发学生的学习兴趣。
如:展示一些生活中的矩形物品,如门窗、电视屏幕等,让学生观察并思考如何判断它们是矩形。
2.呈现(10分钟)呈现矩形的判定方法,引导学生主动探究。
如:用课件展示矩形的判定定理,并用动画演示判定过程。
3.操练(10分钟)分组讨论,让学生在合作中交流,提高解决问题的能力。
矩形的判定教育教学设计

矩形的判定教育教学设计
一、教学目标:
1. 了解矩形的定义和特征。
2. 能够辨认矩形。
3. 能够应用矩形特征解决实际问题。
二、教学内容:
三、教学过程:
Step 1:导入新知识
1. 教师出示一个图形,让学生说出这个图形的名称。
2. 引导学生思考如何判定一个图形是否为矩形。
1. 教师展示矩形的定义和特征,告诉学生,如果一个四边形满足以下条件,那么这个四边形就是矩形:
· 四个角都是直角。
· 对边相等且平行。
2. 通过多张图片,让学生感受矩形的特征。
Step 3:矩形和其它几何图形的区分
1. 教师出示几种常见的几何图形,让学生辨认出其中的矩形,并将其它几何图形与矩形进行对比,强化学生对矩形的认识。
2. 通过游戏,让学生运用所学知识,快乐地辨认矩形。
Step 4:应用案例解析
1. 教师在黑板上呈现一些实际问题,告诉学生如何运用矩形的特征解决这些问题。
2. 学生通过数学公式的运用,解答实际问题,提高实际运用能力。
Step 5:课堂练习
1. 结合此知识点,设计小测验,测试学生对矩形的掌握程度。
2. 分析答题情况,得出学生的优点与不足。
四、教学效果:
教学内容新颖、生动,教师以轻松的语气、易于理解的语言引领学生理解矩形的定义、特征,通过游戏、实际案例让学生针对性强,效果显著。
初中矩形的判定教案

初中矩形的判定教案教学目标:1. 理解并掌握矩形的判定方法。
2. 能够应用矩形的定义、判定等知识,解决简单的证明题和计算题。
3. 培养学生的分析能力和逻辑思维能力。
教学重点:1. 矩形的判定方法。
2. 矩形的性质。
教学难点:1. 矩形的判定及性质的综合应用。
教学准备:1. 矩形的定义和性质。
2. 判定矩形的定理。
教学过程:一、导入(5分钟)1. 引导学生回顾矩形的定义和性质。
2. 提问:矩形有哪些特点?二、新课导入(10分钟)1. 介绍判定矩形的定理。
2. 解释判定矩形的两种方法:a) 对角线相等的平行四边形是矩形。
b) 有三个角是直角的四边形是矩形。
三、例题讲解(10分钟)1. 给出例题,让学生独立解答。
2. 讲解例题,解释如何应用判定矩形的定理。
四、练习与讨论(10分钟)1. 让学生进行练习题,巩固对矩形判定的理解。
2. 引导学生进行小组讨论,分享解题方法和经验。
五、应用与拓展(10分钟)1. 给出一些实际问题,让学生应用矩形的判定方法解决。
2. 引导学生思考矩形的判定方法在实际生活中的应用。
六、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固矩形的判定方法。
2. 引导学生反思在学习过程中遇到的困难和问题,并进行解答。
教学评价:1. 通过课堂讲解、练习和讨论,评价学生对矩形判定方法的理解和应用能力。
2. 观察学生在解决问题时的思维过程,评价其分析能力和逻辑思维能力。
教学反思:本节课通过介绍判定矩形的定理和给出例题,让学生理解和掌握矩形的判定方法。
在练习和讨论环节,学生能够应用矩形的判定方法解决实际问题,培养其分析能力和逻辑思维能力。
但在教学过程中,需要注意引导学生正确理解判定矩形的条件,避免混淆和误解。
此外,可以适当增加一些判断题和证明题,提高学生的解题能力。
初中数学《矩形》教案(精选11篇)

初中数学《矩形》教案初中数学《矩形》教案(精选11篇)作为一名教师,就有可能用到教案,借助教案可以更好地组织教学活动。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的初中数学《矩形》教案,希望对大家有所帮助。
初中数学《矩形》教案篇1一、教学目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.三、例题的意图分析本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.四、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)五、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2 (补充)已知ABCD的对角线AC、BD相交于点O,△AOB 是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴ AO= AC,BO= BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴ BC= (cm).例3 (补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.证明:∵ 四边形ABCD是平行四边形,∴ AD∥BC.∴ ∠DAB+∠ABC=180°.又 AE平分∠DAB,BG平分∠ABC ,∴ ∠EAB+∠ABG= ×180°=90°.∴ ∠AFB=90°.同理可证∠AED=∠BGC=∠CHD=90°.∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).六、随堂练习1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD 到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.七、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵ 摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数初中数学《矩形》教案篇2教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.过程与方法目标:1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.情感与态度目标:1、在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2、通过对矩形的探索学习,体会它的内在美和应用美.教学重点:矩形的性质和常用判别方法的理解和掌握.教学难点:矩形的性质和常用判别方法的综合应用.教学方法:分析启发法教具准备:像框,平行四边形框架教具,多媒体课件.教学过程设计:一. 情境导入:演示平行四边形活动框架,引入课题.二.讲授新课:1. 归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)结论:有一个内角是直角的平行四边形是矩形.八年级数学上册教案2.探究矩形的性质:(1). 问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)结论:矩形的四个角都是直角.(2). 探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①. 随着∠α的变化,两条对角线的长度分别是怎样变化的?②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳.)结论:矩形的两条对角线相等.(3). 议一议:(展示问题,引导学生讨论解决.)①. 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.②. 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(4). 归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:(性质的运用,渗透矩形对角线的“化归”功能.)如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4厘米.求BD与AD的长.(引导学生分析、解答.)探索矩形的判别条件:(由修理桌子引出)(1). 想一想:(学生讨论、交流、共同学习)对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.(理由可由师生共同分析,然后用幻灯片展示完整过程.)(2). 归纳矩形的判别方法:(引导学生归纳)有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.三.课堂练习:(出示P98随堂练习题,学生思考、解答.)四.新课小结:通过本节课的学习,你有什么收获?(师生共同从知识与思想方法两方面小结.)五.作业设计:P99习题4.6第1、2、3题.课后反思:在平行四边形及菱形的教学后。
华师大版八下数学19.1.2《矩形的判定》教学设计

华师大版八下数学19.1.2《矩形的判定》教学设计一. 教材分析《矩形的判定》是华师大版八下数学19.1.2的教学内容,本节课主要让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。
教材通过引入矩形的定义和性质,引导学生探索矩形的判定方法,培养学生的逻辑思维能力和空间想象能力。
本节课的内容是学生进一步学习几何图形的基础,对于学生形成完整的几何知识体系具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了矩形的定义和性质,具备了一定的几何知识基础。
同时,学生通过之前的学习,已经掌握了一定的逻辑思维能力和空间想象能力。
然而,学生在运用矩形的判定方法解决实际问题时,仍然存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主探究、合作交流的方式,深入理解矩形的判定方法,提高学生的解题能力。
三. 教学目标1.知识与技能:使学生掌握矩形的判定方法,能够运用矩形的判定方法解决实际问题。
2.过程与方法:通过自主探究、合作交流,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神和自主学习能力。
四. 教学重难点1.教学重点:矩形的判定方法。
2.教学难点:运用矩形的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,提高学生的学习积极性。
2.自主探究法:引导学生通过自主学习,探索矩形的判定方法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,促进学生之间的思维碰撞,提高学生的团队协作能力。
4.案例教学法:通过分析典型例题,引导学生运用矩形的判定方法解决问题,提高学生的解题能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学方案。
2.学生准备:预习相关知识点,了解矩形的定义和性质。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“判断一个四边形是否为矩形”,激发学生的学习兴趣,引导学生思考矩形的判定方法。
人教版初中数学八年级下册《矩形的判定》的教学设计

人教版初中数学八年级下册《矩形的判定》的教学设计一. 教材分析人教版初中数学八年级下册《矩形的判定》是学生在学习了平面几何基本概念、性质和判定之后的一节内容。
本节课主要让学生掌握矩形的判定方法,并能够运用矩形的性质解决一些几何问题。
教材通过引入矩形的定义和判定方法,引导学生通过观察、思考、探究,从而得出矩形的性质和判定定理。
教材内容丰富,既有理论的学习,又有实践的操作,使学生在学习过程中能够更好地理解和掌握矩形的相关知识。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念、性质和判定,具备了一定的逻辑思维和推理能力。
但矩形的判定方法和性质较为抽象,需要学生在学习过程中更好地发挥自己的观察能力、思考能力和动手能力。
此外,学生在学习过程中要能够主动参与课堂讨论,与同学进行合作交流,提高自己的学习效果。
三. 教学目标1.理解矩形的定义和判定方法。
2.掌握矩形的性质,并能够运用矩形的性质解决一些几何问题。
3.培养学生的观察能力、思考能力和动手能力,提高学生的逻辑推理能力。
4.培养学生的合作交流意识,提高学生的团队协作能力。
四. 教学重难点1.矩形的定义和判定方法。
2.矩形的性质及其应用。
五. 教学方法1.引导探究法:教师引导学生观察、思考、探究,从而得出矩形的性质和判定定理。
2.案例分析法:教师通过列举实例,让学生更好地理解和掌握矩形的性质和判定方法。
3.合作交流法:学生在课堂上进行小组讨论,与同学分享自己的观点和思考,提高学习效果。
4.动手操作法:学生通过动手操作,加深对矩形性质的理解和记忆。
六. 教学准备1.教学PPT:制作有关矩形定义、判定方法和性质的PPT,以便于课堂教学演示。
2.几何图形:准备一些矩形、正方形等图形,用于课堂展示和练习。
3.练习题:准备一些有关矩形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的矩形物体,如课本、黑板、门等,引导学生关注矩形在日常生活中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形的判定
教学目标:
知识与技能
1、探索并掌握矩形的判定
2、使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
过程与方法
通过观察和操作、发现矩形和平行四边形的联系和区别,探索矩形的判定。
情感、态度与价值观
让学生通过探索、猜想、证明的过程,来进一步发展推理论证。
教学重点:探索矩形的判定.
教学难点:矩形的判定及性质的综合应用.
教学过程:
(一)复习旧知,导入新课
1、同学们,昨天我们学习了特殊的平行四边形----矩形。
学习一种图形要学习它的哪几个方面?生:定义、性质、判定。
2、回忆矩形的定义和性质?
今天我们接着学习矩形的---判定
学习目标:
1、探索并掌握矩形的判定方法
2、能运用矩形的判定方法进行相关的证明和计算
(二)讲授新课:
1、问题情境:昨天,我们上体育课的时候,体育老师让我班体
委画一个矩形的场地,咱班的体委是这样做的:用“边——直
角、边——直角、边——直角、边”这样四步,画出了一个四
边形,他说这就是一个矩形。
猜想他判断的依据?
我们猜想:有三个角是直角的四边形是矩形。
大家结合图形写出已知、求证,并进行证明。
于是我们得到判有的第二个方法,第一个判定定理:三个角是直角的四边形是矩形定矩形。
符号表达式:
∵∠A=∠B=∠C=90°
∴四边形ABCD是矩形。
2、问题情境:我们的房子洋同学家里在装修,他的爸爸在装修公司定了一扇门。
等门到了,他爸爸就拿了一根绳子到公司去取门,他量了门的两组对边,都相等。
就把门拉回来家。
可到家后安不上,门稍微有些斜。
无奈,又把门送回公司重新做。
隔了些日子,他又来取门,这回他把儿子房子洋同学带去了,房子洋也带了一根绳子。
他不仅量了门的两组对边相等,还量了两条对角线,发现对角线也相等。
房子洋同学说:“这回的门是矩形,不斜了。
”回家后果然顺利的安上了门。
你们知道房子洋这样做的道理吗?
猜想:对角线相等的平行四边形是矩形
画图,写出已知、求证并进行证明。
于是我们得到判有的第三个方法,第二个判定定理:
对角线相等的平行四边形是矩形
符号表达式:
∵四边形ABCD是平行四边形
且AC=BD
∴是矩形
(三)跟踪练习
在平行四边形ABCD中,对角线AC,BD相交于点O,且OA=OD, ∠OAD=50o.求∠OAB的度数。
(四)巩固练习
1、判断对错:(小组竞赛)
(1)有一个角是直角的四边形是矩形;
(2)四个角都相等的四边形是矩形;
(3)四个角都是直角的四边形是矩形
(4)对角线相等的四边形是矩形;
(5)对角线互相平分且相等的四边形是矩形
(6)两组对边分别平行,且对角线相等的四边形是矩形.
2、链接中考:
如图,工人师傅做铝合金窗框分下面几个步骤进行:
(1)先截出两对符合规格的铝合金窗(如图①)使AB=CD、EF=GH
(2)摆放成(如图②)的四边形,则这时窗框的形状是,根据的数学道理是。
(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格这时窗框是。
根据的数学道理是。
3、情境再现:
多年以后曹广安事业有成准备回家盖房子。
如图,这是他家地基。
为了检验地基是否合格,它是这样做的:他测量了四边形ABCD的边长,AB=CD= 6,BC= AD=8,AC= 10,他说: 四边形ABCD是矩形,合格。
为什么?
4、多年以后李佳宝逍遥给养育自己多年的父母该一幢别墅,于是就把这项工程包给了施工队。
有一天他回家看看施工进度,正好看到地基刚挖完。
于是他就找来一根没有刻度又不太长的绳子。
他首先测量了四边形的两组对边相等,当他想测量对角线时,绳子不够长,于是他就找到一边AD 的中点E ,再测量BE=CE 。
他就说地基是矩形,合格,可以继续施工了。
为什么?
(五)课堂小结:
本节课的收获?
(六)作业布置:书上55页第2题
板书设计:
矩形的判定
定理1:三个角是直角的四边形是矩形定矩形。
符号表达式:
∵ ∠A=∠B=∠C=90°
∴四边形ABCD 是矩形。
定理2:对角线相等的平行四边形是矩形
A B C D
E A B C D
符号表达式:
∵四边形ABCD 是平行四边形
且AC=BD
∴
是矩形
例1
在平行四边形ABCD 中,对角线AC,BD 相交于点O,且OA=OD, ∠OAD=50o .求∠OAB 的度数。
A
B。