高频开关电源的干扰问题及解决方法
抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
开关电源中的干扰

开关电源中的干扰一.电源线噪声电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的,电源线的噪声分为两大类:共模干扰和差模干扰。
1.共模干扰(Common-mode Interference):两导线上的干扰电流振幅相等,而方向相同者称为共模干扰。
(任何载流体与地之间不希望有的电位)共模干扰的消除共模扼流圈工作原理如下:共模扼流圈当电路中的正常电流通过时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当共模电流流过线圈时,由于共模电流的同向性,会在线圈类产生同向的磁场而增大线圈的阻抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流达到滤波的目的。
共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻性,使高频干扰电路短路,而低频时电路不受任何影响。
只是差模电容是两极之间短路,而共模电容是线对地短路。
消除共模干扰的方法包括:(1).采用双绞线并有效接地。
(2).强电场的地方还需要采用度锌管屏蔽。
(3).布线时远离高压线,更不能将高压电源线和信号线捆在一起走线。
(4).不要和电控所共用同一个电源。
(5).采用线形稳压电源或高品质的开关电源(纹波干扰小于50mV)(6).采用差分式电路2.差模干扰(Differential-mode Interference):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。
(任何两个载流体之间不希望有的电位差)(电容C的容量范围大致是2200pF-0.1uF,为减小漏电流,电容量不宜超过0.1uF)差模干扰的消除当干扰信号频率越高时,Zc越小,效果越明显,而低频时电路不受任何影响。
(电容C的容量大致是0.01-0.47uF)任何电源线上传导干扰信号,均用差模和共模信号来表示,差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,一般指在两根信号线上产生的幅值相等,相位相同的噪声,属于非对对称性干扰。
高频开关电源中的电磁干扰与处置方式

高频开关电源中的电磁干扰与处置方式作者:靳慧来源:《电子技术与软件工程》2018年第01期高频开关电源是电力系统中较为常用的电气设备之一,它的运行稳定与否至关重要。
文章首先对高频开关电源电磁干扰的产生机进行简要分析,在此基础上对处置高频开关电源电磁干扰问题有效方式进行论述。
期望通过本文的研究能对高频开关电源电磁干扰问题的解决提供帮助。
【关键词】高频开关电源电磁干扰处置1 高频开关电源电磁干扰的产生机理分析在分析高频开关电源电磁干扰的产生机理之前,需要先对高频开关电源的构成情况进行简单的了解,其构成框架如图1所示。
1.1 电磁干扰的成因由图1可知,高频开关电源通过整流会将工频交流变为直流,再经过逆变之后,转为高频,最后利用滤波电路完成输出,进而获得相对稳定的直流电压,在电流转换的过程中,存在大量的谐波干扰,不仅如此,变压器的漏电感应和输出二极管的反向恢复电流所形成的尖峰也都存在一定的电磁干扰。
在高频开关电源中,电磁干扰源主要集中在电流和电压变化较大的器件当中,如高频变压器、二极管、开关管等等。
1.2 电磁干扰的产生机理高频开关电源电磁干扰的产生机理与以下器件有关:开关和整流电路、高频变以及分布电容等等。
下面就此进行具体分析。
1.2.1 开关电路对于高频开关电源而言,开关电路是其核心组成部分,同时也是高频开关电源的主要干扰源。
常规的开关电路由以下两个部分组成:开关管盒高频变,由开关电路所产生出的du/dt具有脉冲冲击的特性,不但频带宽而且谐波也比较丰富,此类脉冲干扰的形成机理如下:高频变的初级线圈为开关管的负载,这个负载的性质为感性,当开关管导通时,会在初级线圈当中产生出较大的涌流,并在线圈两端呈现出较高的尖峰电压,而开关管断开时,因漏磁通的存在会导致部分能量无法才能够一次线圈传递到二次线圈,这部分能量会存在于电感当中,并与集电极电路中的电容和电阻形成衰减振荡,进而叠加于关断电压之上,在这一前提下,便会形成关断电压尖峰。
高频开关电源电磁干扰的处置措施与抗扰能力的提升

高频开关电源电磁干扰的处置措施与抗扰能力的提升摘要:随着半导体器件高频性能的逐步提升,高频开关电源得到了广泛的应用。
高频率不仅可以大大减小产品的体积,同时还能减小电源输出的纹波,保证输出的稳定。
但与此同时,高频的存在也同样增加了电源对周边环境的电磁干扰以及周边辐射对电源系统稳定性的风险。
为了使开关电源能够在相对高频的模式下顺利工作同时降低其产生的电磁干扰对其他设备的影响,必须采取有效措施抑制电磁干扰增加电磁抗扰。
因此,结合高频开关电源中电磁干扰的特点,提出了一些抑制电磁干扰,增加电源抗扰能力的措施关键词:高频开关电源;电磁干扰;抗扰能力;处置方式随着高频开关电源被广泛应用于通信、家用电器和自动控制等领域,电源的干扰与抗干扰设计越来越重要。
在大功率电源中,增加开关频率往往可有效减小电源体积,减低输出纹波,然而伴随而来的是产生较强的电磁干扰,较高的电压变化率。
电源中产生的电磁干扰信号进入电网,影响其他设备的正常工作。
较宽的频率范围和幅值导致电源开关不符合EMC 标准。
除了电网中的传导骚扰经电源入口进入电源外,从电源本身来看产生电磁干扰的主要部件是逆变过程中的功率开关管和高频变压器,这也是开关电源产生电磁干扰的主要原因。
1.高频开关电源的电磁干扰与抗扰高频开关电源的电磁干扰主要来自电源电路内部热点、功率器件以及高频变压器。
高频开关电源电磁抗扰主要是外部干扰对电源内部敏感器件的影响。
分析电磁干扰,基于以下两点分析:一、外部环境对电源的干扰,表现在电源上为电源的抗扰能力。
二、电源本身产生的干扰,表现为电磁骚扰。
一般的检测方式分为两种:一种为辐射干扰,另一种为传导骚扰。
1.1 电源外部产生的电磁干扰电源外部的电磁干扰一般包括电网内部电磁干扰、电磁脉冲干扰和静电放电干扰三种,它们体现了电源的抗扰能力。
(1)电网的电磁对电源的干扰一个完整的电网系统,必然连接诸多的电子设备和电器设备,这些设备相互之间会进行电磁转换。
开关电源的电磁干扰解决方法

差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。
开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。
但开关电源的突出缺点是产生较强的电磁干扰(EMI)。
EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。
如果处理不当,开关电源本身就会变成一个干扰源。
随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。
2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。
它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。
基本整流器的整流过程是产生EMI最常见的原因。
这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。
实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。
变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。
它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。
产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。
在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。
这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。
(2) 由高频变压器产生的干扰。
解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。
2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。
3. 地线布局:合理布置地线,减少电磁干扰。
不同元器件的地线要分开布局,避免共
用一个接地点。
4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。
5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。
6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。
7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。
8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。
以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。
高频开关电源电磁干扰

内容摘要现代电子、通信技术的发展对电源的要求越来越高。
高频开关电源以其体积小、重量轻、变换效率高等优点,广泛应用于家电、计算机、通信、控制等设备中。
但高频开关电源固有的高频辐射及传导的电磁干扰发射对开关电源效率及使用的影响已成为人们关注的热点。
因此,本文主要研究了高频开关电源电磁干扰及其抑制措施。
论文首先介绍了开关电源的概念、高频开关电源电磁干扰产生的原因,并综述了高频开关电源的发展趋势,其次具体探讨了抑制高频开关电源电磁干扰的措施。
关键词:高频开关电源;电磁干扰;抑制措施目录内容摘要 (I)引言 (3)1 高频开关电源电磁干扰产生的原因分析 (4)1.1 开关电源的定义 (4)1.2 高频开关电源的电磁干扰分析 (4)1.3 高频开关电源的发展趋势 (5)2 高频开关电源的电磁干扰的抑制措施 (8)2.1 抑制开关电源中各类电磁干扰源 (8)2.2 破坏电磁干扰传输途径 (8)2.3 其它解决方法 (10)3 高频开关电源电子干扰滤波的分析与仿真 (11)3.1 研究方法和实验方案 (11)3.2 开关电源电磁干扰的仿真 (12)结论 (14)参考文献 (15)引言开关电源由于具有体积小、重量轻、效率高、稳压范围宽等许多优点,己经广泛应用于计算机及其外围设备、通信、自动控制、家用电器等领域。
然而,开关电源自身产生的各种噪声干扰却形成了一个很强的电磁干扰源。
这些干扰随着开关频率的提高、输出功率的增大而明显地增强,不仅对与通信电源在同一电网上供电的其它设备及电网产生干扰,同时对由通信电源供电的其它设备产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。
因此,只有提高开关电源的电磁兼容性,才能发挥开关电源的更大优势,使开关电源在那些对电源噪声指标有严格要求的场合下被采用。
1 高频开关电源电磁干扰产生的原因分析1.1 开关电源的定义开关电源是作为线性稳压电源的一种替代物出现的,开关电源这一称谓也是相对于线性稳压电源而产生的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频开关电源的干扰问题及解决方法
随着电源技术的发展,高频开关电源控制从最初的模拟电路逐渐发展到微处理器、DSP等高集成度的控制器件,这些器件体积小、精密度高,但开关电源内的电磁干扰、辐射相对其他通讯设备工作环境更强,这对辅助电源提出了更高的要求。
本文对高频开关电源内辅助电源的工作特性和波形加以阐述,并着重根据实验数据来分析高频开关电源设计中应注意的问题和参数的选择。
一、高频开关电源的干扰问题
在目前的智能开关电源中,都有机内微处理器或DSP,作机内监控和通讯之用。
微处理芯片对供电电源要求很高,要求幅值相当稳定,更不能带有较大尖峰毛刺,造成电磁干扰,而且要求辅助电源的交流适应能力比整流器正常工作的范围更广。
当整流器接上交流输入电时,必须是监控部分先正常工作,进行自检和各种状况的检测,以确定整流器能否开机;如遇极高或极低交流电压,整流器虽已停止工作,但监控部分仍要正常工作,保持正常的监控和通讯。
某些电源产品运行过程中曾出现无故复位等现象,在进行大功率开关电源的辅助电源设计的时候,对其进行分析,发现其辅助电源在不同交流输入电压、不同负载条件下存在比较多的问题:交流适应范围窄,负载能力。