尺规作图八年级数学学案

合集下载

八年级数学上册 1.3 尺规作图学案(无答案) (新版)青岛版

八年级数学上册 1.3 尺规作图学案(无答案) (新版)青岛版

1.3《尺规作图(2)》导学案学习目标1、经历探索与实践的过程,会利用基本作图完成已知两边及夹角和已知三边作三角形.2、通过作图,培养学生的动手操作能力、逻辑思维能力、分析和解决问题的能力.3、通过作图训练学生的作图语言.学习过程:一、自主预习课本P21——P22内容,独立完成课后练习1、2后,与小组同学交流(课前完成)二、实验与探究1、思考:已知三角形的哪几个元素就可以作出这个三角形?与同学交流。

2、利用你学过的基本作图,已知三边分别为a,b,c,如何作三角形?已知::线段a,b,c a求作:△ABC,使BC=a,AC=b,AB=c bc3、图1-29是以B,C为圆心,c,b为半径作弧在B,C所在直线的上方相交的情况,是否可能在BC的下方相交?如果可能,所得到的三角形与△ABC全等吗?为什么?4、利用你学过的基本作图,已知两边及其夹角,例如已知a,c 和∠α,如何作△ABC,使∠B=∠α,AB=c,BC=a呢?与同学交流。

ac α5、在上面的作图步骤中,分别用到了哪些基本作图?挑战自我已知三条线段a,b,c,作△ABC,使AB=c,BC=a,AC=b时,对a,b,c三条线段的大小有没有限制?如果有,a,b,c的大小应当满足什么条件?三、巩固练习利用尺规作图:1、已知线段a,求作边长等于a的等边三角形。

a2、已知线段a,∠α,求作△ABC,使∠A=∠α,AB=AC=aaα四、学习小结:(回顾一下这一节所学的,你学会了吗?)五、达标检测1、已知线段a,b,求作:△ABC,使AB=AC=a,BC=b。

ab2.已知线段a、b,求作:△ABC,使AB=2a,BC=b,AC=a.(保留作图痕迹,不写作法)ab3、已知:∠1和线段a,求作:△ABC,使∠A=∠1,AB=AC=2a.a这节课我安排了三个尺规作图,第一个作图给出作法和示范,让学生进行模仿;第二个作图只给出作法,没有给出示范,让学生根据已知步骤独立作出图形;第三个作图让学生自己探索作法,并独立作出图形。

八上数学13尺规作图教学设计.doc

八上数学13尺规作图教学设计.doc

《1.3尺规作图》教学设计1.3尺规作图(第一课时)【学习目标】1、要掌握基本尺规作图“作一个角等于已知角”的方法及一般步骤。

2、通过“作图题”练习,提高学生的几何语言表达能力。

3、通过画图,培养学生的作图能力及动手能力。

【学习重点】熟练掌握相等角的作图,作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形。

【学习难点】作图语言的准确表达,作图的规范与准确。

【教学设计】温故知新1.什么是尺规作图?我们在七年级学过哪种基本的尺规作图?2.写出作一条线段使它等于已知线段的作图步骤探索新知(%1)议一议:在尺规作图中,直尺和圆规具有哪些作用?(%1)学一学:自主学习如图,已知ZAOB,用圆规和直尺准确地画一个角匕A' O' B',使它等于ZA0B作法:(1)作射线O' A,.(2)以点—为圆心,以为半径画弧,交0A于点C,交0B于点D.(3)以点为圆心,以—长为半径画弧,交O' A'于点C' .(4)以点为圆心,以长为半径画弧,交前面的弧于点D,.(5)过点D'作射线 _____ ZA,0, B,就是所求作的角.(%1)想一想:你能说出NA' O' B,=ZA0B的理由吗?归纳总结:用尺规作一个角等于已知角的方法学习诊断已知:钝角ZABC,求作:ZABC,使ZABC Z =ZABC .反思拓展1.已知ZA、ZB,求作一个角,使它等于ZA+ZB.如图,在ZAOD的内部做射线0B,使3.在上图题中,ZDOB=ZAOC存在怎样的关系?请说明课堂小结:谈谈本节课你的收获与困惑.学习效果诊断1.如图,ZAOB为已知角,试按下列步骤用圆规和直尺准确地画一个角等于ZAOB. / A0 Z -------------------第一步:画射线O' A' . B第二步:以点。

为圆心,以适当长为半径画弧,交0A于C,交0B于D.第三步:以点—为圆心,以—长为半径画弧,交O' A'于C'.第四步:以点—为圆心,以—长为半径画弧,交前一条弧于D,.2.已知ZA、ZB,画一个角,使其等于ZA+2ZB.1.3尺规作图(第二课时)【教学目标】1、要掌握用基本作图已知三边、两角及夹边作三角形的方法及一般步骤。

1.6尺规作图教学设计2024-2025学年浙教版数学八年级上册

1.6尺规作图教学设计2024-2025学年浙教版数学八年级上册
2.讲授新课(15分钟)
-教师围绕教学目标和教学重点,讲解尺规作图的基本概念和工具,如尺、规、圆规、直尺等。
-演示和讲解基本作图方法,如画线段、画角、画圆、画平行线等,确保学生理解和 Nhomakorabea握新知识。
3.巩固练习(10分钟)
-教师提供一些练习题,让学生独立完成,巩固对尺规作图方法的理解和掌握。
-学生之间进行讨论,共同解决问题,教师巡回指导,解答学生的疑问。
-作图的应用:解决一些实际问题,如测量距离、画图形等。
2.教学难点
-尺规作图的操作技巧:如何准确地使用尺规进行作图,特别是在画圆和画平行线时。
-作图的步骤和方法的灵活运用:学生往往对作图的步骤记忆不牢,难以灵活运用作图方法解决实际问题。
-作图问题的解决策略:在面对复杂的作图问题时,学生往往缺乏解决问题的策略和思路。
5.教师评价与反馈:针对学生在尺规作图过程中的表现,我给予了积极的评价和反馈。对于那些能够准确作图并解决实际问题的学生,我给予了表扬和鼓励,以增强他们的自信心。对于那些在作图中遇到困难的学生,我提供了具体的指导和建议,帮助他们克服困难,提高作图能力。
总体来说,学生们在尺规作图方面取得了一定的进步。然而,仍有一些学生在画圆和画平行线时存在一些困难。在今后的教学中,我将继续关注这些学生的学习情况,并提供更多的练习和指导,以帮助他们更好地掌握尺规作图的方法。同时,我也会继续鼓励学生积极参与讨论和练习,提高他们的数学素养和解决问题的能力。
-尺规作图在工程、艺术、科学等领域的应用
-实际生活中的尺规作图实例分析
7.尺规作图的拓展与挑战
-复杂图形的尺规作图方法
-尺规作图与其他数学领域的结合
8.尺规作图的评估与评价
-学生作图能力的评估标准

新华师大版八年级数学上册《尺规作图》导学案

新华师大版八年级数学上册《尺规作图》导学案

《尺规作图》导学案学习目标:1、会利用尺规作三角形(已知三边作三角形、已知两角及夹边作三角形、已知两边及夹脚作三角形)2、会写出作三角形的已知、求作和作法。

一、自主学习(已知三边作三角形)阅读课本52页完成下列问题例:已知线段a、b、c,求作ΔABC,使AB=c,BC=a,AC=b.abc作法:(1)作线段_______=_____.(2)以点_____为圆心,以_____为半径画弧。

(3)以点_____为圆心,以_____为半径画弧。

两弧交于点_____。

(4)连接______、_______,△ABC即为所求。

练一练:(相信你是最棒的)1、已知线段a求作ΔABC,使AB=AC=BC=a.2、已知线段a、b,求作ΔABC,使AB=AC=a,BC=b.二、自主学习(已知二边及夹角作三角形)例:已知线段a、b,∠a 求作ΔABC,使BC=a,AC=b. ∠ACB=aab作法:(1) ∠MCN=_______.(2)以点____为圆心,______为半径画弧交CN与点____.(3) 以点____为圆心,______为半径画弧交CM与点____.(4)连接______,△ABC即为所求。

细心做一做:(我能行)1、已知线段a和∠a 求作ΔABC,使AB=AC=a, ∠A=∠a2、已知线段a、b,和直角a 求作ΔABC,使BC=a,AC=b. ∠C=∠a三、自主学习(已知二角及夹边作三角形)例:已知∠a,∠β线段a, 求作ΔABC,使BC=a, ∠ABC=∠a, ∠ACB=∠βc βα作法:(1) ∠MBN=_______.(2) 以点____为圆心,______为半径画弧交CN与点____.(3)以点____为顶点,以____为一边,作∠BCE=_____,CE交与BM与点____.△ABC即为所求。

仔细想一想:(你一定能行,相信自己)已知a,直角a,锐角,求作直角三角形ABC使∠C=∠a,∠A= BC=a.。

13.4尺规作图教案2022-2023学年华东师大版八年级数学上册

13.4尺规作图教案2022-2023学年华东师大版八年级数学上册

13.4尺规作图教案一、教学目标本课程的教学目标主要包括以下几个方面:1.了解尺规作图的基本概念和基本工具;2.学习使用尺规作图的方法和技巧;3.掌握尺规作图的注意事项和常见错误,并能进行纠正;4.提高学生的空间想象能力和几何思维能力;5.培养学生的合作意识和动手能力。

二、教学内容1. 尺规作图的基本概念尺规作图是一种使用尺子和直尺(通常称为尺和规)进行几何图形的绘制。

在尺规作图中,只允许使用尺子和直尺,不允许使用其他工具如圆规和量角器。

2. 尺规作图的基本工具尺规作图的基本工具包括尺子和直尺。

尺子用来测量长度,直尺用来绘制直线段。

在使用尺规作图时,需要准确使用尺子和直尺,并合理利用尺子的标尺分度和直尺的边缘。

3. 尺规作图的方法和技巧尺规作图的方法和技巧包括以下几个方面:•分析题意,确定问题所需的几何图形和要求;•利用尺子测量和直尺绘制几何图形的线段;•利用尺规仪器的平行和垂直关系进行作图;•利用尺规仪器的等分和倾斜关系进行作图;•根据题目中的条件和要求,合理利用上述技巧进行绘图。

4. 尺规作图的注意事项和常见错误在尺规作图过程中,需要注意以下几点:•尺子和直尺的使用要准确,避免误差;•合理利用尺子的标尺分度和直尺的边缘;•确保作图精度,在给定的误差范围内完成作图;•注意尺规作图的规范性,如直线要顺滑、线段要标记、角度要准确等;•遇到错误要及时纠正,不要强行完成作图。

三、教学步骤第一步:导入通过提问和举例,引发学生对尺规作图的兴趣,并激发学生的空间想象能力。

第二步:讲解向学生介绍尺规作图的基本概念、基本工具、方法和技巧,并重点讲解尺规作图的注意事项和常见错误。

第三步:示范示范一个尺规作图的例子,让学生通过观察和思考,掌握尺规作图的步骤和技巧。

第四步:练习组织学生进行尺规作图的练习,通过多次实践,培养学生的动手能力和几何思维能力。

第五步:总结总结尺规作图的要点和技巧,加深学生对尺规作图的理解和记忆。

华师大版数学八年级上册13.4《尺规作图》导学案1

华师大版数学八年级上册13.4《尺规作图》导学案1

13.4 尺规作图(1)学习目标:1.掌握三种尺规作图的方法及一般步骤,并能熟练掌握根本作图语言。

2.通过动手操作、合作探究,培养作图能力、语言表达能力、逻辑思维和推理能力。

3.激情投入,全力以赴,认识到尺规作图与实际生活的严密联系,激发学习兴趣 重点:掌握作线段等于线段,作一个角等于角,作角的平分线的作法。

难点:尺规作图的理论依据 导学过程 一.自主学习 预习课本尺规作图定义: 二.作一条线段等于线段。

:线段MN =a ,求作一条线段等于a. 作法:〔1〕 〔2〕 〔3〕三.作一个角等于角:∠AOB 求作一个角等于∠AOB. 作法:〔1〕作 O 1P 1;〔2〕以O 为圆心,以 作弧, 交 ,交 ; 〔3〕以 为圆心,以 作弧, 交 ;〔4〕以 为圆心,以 半径作弧,交 ;ODCBAaM NaMN(5)经过 作 。

那么 即为所求的角。

想一想:为什么两个角相等?你会证明吗?四.做角的角平分线:∠AOB ,求作∠AOB 的平分线.作法:〔1〕以O 为圆心,以适当长为半径画弧, 交OA 于C 点,交OB 于D 点;〔2〕分别以C 、D 两点圆心,以大于21CD长为半径画弧,两弧相交于P 点;〔3〕过O 、P 作射线OP ,即为所求作的角平分线. 五.练习〔尺规作图〕1.任意画出两条线段AB 和CD ,再作一条线段,使它等于AB+2CD∠1和∠2,使∠1 > ∠2,再作一个角,使它等于∠1—∠23.把下列图所示的角四等分4.:线段a 和b(a >b)OBAO求作:一个等腰△ABC,使它的腰长等于线段a,底边长等于b。

5.任意画一个〔锐角、钝角〕和直角三角形,画出三个内角的角平分线.,并总结规律〔不写画法,保存作图痕迹〕。

尺规作图(3)教案青岛版八年级数学上册

三、学友互学合作交流
小组内交流:1作图是否正确?
2作法书写是否规范?
四、展示评价精讲Biblioteka 拨一体机展示几位同学的作图及作法,教师讲解规范做法
五、训练反馈检测自评
1 、已知两角∠α,∠β及其夹边m作三角形时,若第一步先作出线段m,
(1)则第二步作第一个角时不可以()
A、以m为一边作∠α B、以m为一边作∠β
教学方法
探究法小组合作,讲练结合
教具准备
教师准备:多媒体、课件、三角板
学生准备:三角形、圆规,练习本
教学设计
个性设计
一、激情导入引课明标
如图:已知∠α,
求作:∠AOB=α(不写作法,保留作图痕迹)。
二、导学引领自主学习
已知:∠α,∠β,线段a。
求作:△ABC,使BC=a,∠B=∠α,∠C=∠β.
作法:
课题:1.3尺规作图(3)
主备人: 审核人: 使用教师:
备课时间:年 月 日 上课时间:年 月 日
教学内容
1.3尺规作图(3)
课型
新授
教学目标
1、掌握(1)已知两角及其夹边,作三角形;
(2)已知两角及其中一角的对边,作三角形。
2、理解分析问题的思路。
教学重点
根据已知两角 和夹边作三角形
教学难点
作图的规范与准确
作业设计
板书设计
教学反思
(2)第三步作第二个角不可以()
A、以m为一 边作∠ α,且使∠α与∠β在m的同旁
B、以m为一边作∠α,且使∠α与∠β在m的异旁
2已知锐角∠α,线段a,如图,求作直角三角形:
①使其一锐角为∠α,一直角边长为a;
②使其一 锐角为∠α,斜边长为a

八年级上册尺规作图导学案

喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻-------孟德斯鸠 尺规作图编写人:八年级D 段【学习目标】1、理解作一条线段等于已知线段以及作一个角等于已知角的方法。

2、会作已知角的平分线、经过一点作已知直线的垂线以及已知线段的垂直平分线。

3、培养利用尺规作图的解决问题的能力。

【重点难点】重点:掌握尺规作图的基本原则,规范作图。

难点:能写出主要作法,并能说明作图依据。

【自主学习、夯基寻困】1.什么是尺规作图 ______________________________________。

2.作一条线段等于已知线段MN 为已知线段,你能用直尺和圆规准确地作出一条与MN 相等的线段吗?保留作图痕迹。

【总结】作一条线段等于已知线段的主要步骤:____________________________________________________________________________________________________________________________________________________________________________________________________________【合作探究、互助解惑】1.作一个角等于已知角∠AOB 为已知角,你能用直尺和圆规准确地作一个角等于∠AOB ?写出作法并保留作图痕迹。

2.作已知角的平分线∠AOB 为已知角,试按下列步骤用直尺和圆规准确地作出∠AOB 的平分线. 第一步: 在射线OA 和OB 上,分别截取OD 、OE ,使OD =OE ;第二步: 分别以点D 、 E 为圆心,以适当长(大于线段DE 长的一半)为半径A BA O B喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻-------孟德斯鸠 作弧,在∠AOB 内,两弧交于点C ;第三步: 作射线OC .射线OC 就是所要作的∠AOB 的平分线.我们如何证明这样作出来的射线是符合要求的?3.经过已知直线上一点作已知直线的垂线。

八年级数学上人教版《 尺规作图》教案

《尺规作图》教案【教学目标】1.掌握尺规作图的基本步骤和要求,学会用尺规作图。

2.培养学生严谨的思维和规范的作图习惯。

【教学内容】1.尺规作图的基本步骤和要求。

2.常见图形的尺规作图方法。

【教学重点与难点】1.重点:尺规作图的基本步骤和要求。

2.难点:如何根据题目要求准确地画出图形。

【教具准备】1.黑板、粉笔。

2.教科书、学习辅导资料。

3.多媒体教学设备。

【教学过程】一、导入新课:通过复习上节课内容,引出尺规作图的概念和基本要求,强调尺规作图的重要性和规范性。

二、新课学习:介绍尺规作图的基本步骤和要求,包括画图、标记、写结论等步骤。

通过举例和讲解,让学生理解并掌握这些基本步骤和要求。

同时,引导学生思考如何根据题目要求准确地画出图形,培养他们的逻辑思维和空间想象能力。

三、巩固练习:通过一系列的练习题,让学生加深对尺规作图基本步骤和要求的理解和应用。

可以包括证明题和应用题等类型,让学生在练习中掌握如何用尺规准确地画出图形,并能够根据题目要求进行规范作图。

四、归纳小结:通过总结本节课学到的知识,让学生明确尺规作图的重要性和应用价值,同时引导学生思考如何运用尺规作图解决实际问题。

强调作图时的规范性和准确性,培养学生的严谨思维和良好的作图习惯。

五、布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题和应用题等类型,让学生巩固本节课学到的知识。

同时,鼓励学生自主探究和学习,培养他们的数学应用能力。

六、教学反思:通过本节课的教学,反思自己在教学内容的组织和安排、教学方法的选择和实践以及教学效果的反馈和反思等方面是否存在问题和不足之处,以便在今后的教学中加以改进和提高。

同时,也要关注学生的学习情况和反馈意见,及时调整教学策略和方法,以提高教学质量和效果。

1.6尺规作图-浙教版八年级数学上册教案

1.6 尺规作图-浙教版八年级数学上册教案一、教学目标1.了解什么是尺规作图,能够掌握尺规作图的基本原理;2.学习使用尺规作图的基本方法,能够利用尺规作图构造一些简单的几何图形。

二、教学重难点1.尺规作图的基本原理;2.尺规作图的基本方法。

三、教学内容1.什么是尺规作图尺规作图是指在平面上只使用尺子和圆规两种工具来作图的方法。

2.尺规作图的基本原理尺规作图的基本原理是利用圆规开弧和尺子量长的方法来构造几何图形。

圆规利用的是“π”的无理数性质,保证了几何图形的精确性;尺子量长则让我们能够控制构造图形的比例。

3.尺规作图的基本方法3.1 作线段要构造一个线段AB,首先利用尺子在纸面上画一条不规则线,假设这条线段的长度为a。

然后利用圆规以一个定点O为圆心画一个长度为a的圆,那么这个圆与不规则线段AB的交点就是点A。

同理,再以A为圆心,长度为b的圆心画一个圆,那么这个圆与不规则线段AB的交点B就是所构造出的线段。

3.2 作垂线要在一条已知的线段上构造一个垂线,首先用尺子在该线段上取一个点P,然后再圆规以P为圆心画一个小圆,并将圆规的长度调整到刚好与该线段重合。

接着再以该小圆上的任意一点为圆心,圆规长度取大于该小圆半径的长度R继续画弧,这时两个弧交于B、C两点,其延长线AB和AC就是所求垂线的位置。

3.3 作等分线要在一个角A上作出其平分线,首先以A为圆心,开一定大小的圆,将弧AB 和弧AC所得的两点分别用直线连接。

这时,这两条线段的交点O就是该角的平分线。

四、教学方法1.教师讲授法:介绍尺规作图的基本原理和基本方法,重点讲解如何用尺规作图构造线段、垂线和等分线。

2.课件演示法:通过PPT演示尺规作图的过程和方法,帮助学生更加直观地理解尺规作图的操作方法和构造原理。

3.板书法:重点讲解构造线段、垂线和等分线的方法,并在黑板上进行实际演示,帮助学生更好地理解尺规作图的基本方法。

五、课后作业1.构造一个三角形ABC,其中AB=5cm,AC=7cm,∠A=60°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

潞城实验中学八年级数学学案
1, 尺规作图的“尺”指 “规”指 。

2,尺规作图的五种基本作图是 、 、 、 、 。

(一)、作一条线段等于已知线段。

已知线段MN. M N 。

作一条线段AC ,使AC=MN 。

作法:(1),用直尺作一条 AB 。

(2)用圆规,以 为圆心。

以 长为半径。

在射线AB 上截取 。

使 = 线段AC 就是所求的线段。

(二)、作一个角等于已知角。

已知∠BOA 。

作∠B ′O ′A ′=∠BOA.
作法:(1)作 ;
(2)以O 为圆心,以 为半径画弧,交OA 与点C , ;
(3)以O ′为圆心,以 为半径画弧, ;
(4)以C ′为圆心,以 为半径画弧, ;
(5)过 作射线O ′B ′, 就是所求作的角。

(三)、作已知角的平分线。

已知:∠AOB,求作射线OC 。

使OC 平分∠AOB,作法的错误步骤是( )
(1)连接OC;(2)在OA 和OB 上,分别截取OD 、OE 使OD=OE;
(3)分别以D 、E 为圆心,以2
1DE 的长为半径作狐,在∠AOB 内两弧交于点C. A.123 B.12 C.13 D.23
作已知角的平分线时,分别以D 、E 为圆心,大于
2
1DE 的长为半径作狐时,两弧才有交点。

其根据是 。

作一个角等于已知角和平分已知角,其作图都是根据全等三角形 公理作出。

二、巩固练习。

1、作课本P 71的练习一二.
三.巩固提高。

1、线段AB=4cm ,在线段AB 上截取BC=1cm ,则AC= cm
2、已知:∠1.∠2.
求作;∠3,使∠3=3∠1-2∠2.
3、用尺规三等分一个平角。

4、如图,已知∠AOB ,OA=OB,点E 在OB 边上,四边形AEBF 是矩形,请你只用无刻度的直尺在图中画出∠AOB 的平分线。

实验中学八年级数学学案。

相关文档
最新文档