代数式中考真题汇编[解析版]
代数式真题汇编含答案解析

代数式真题汇编含答案解析一、选择题1.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.3.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .4.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.7.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.8.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.11.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.12.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.14.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .15.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.16.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.19.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
新初中数学代数式真题汇编及答案解析(2)

新初中数学代数式真题汇编及答案解析(2)一、选择题1.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.4.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.5.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A.22a a-D.22a a+--C.2a a22222a a-B.2【答案】C【解析】【分析】根据题意,一组数:502的和为250+251+252+…+299+21002、512、522、⋅⋅⋅、992、100==a+(2+22+…+250)a,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a+2a+22a+ (250)=a+(2+22+…+250)a,∵23+=-,2222234++=-,222222345+++=-,222222…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.6.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.下列命题正确的个数有( )①若 x 2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618. A .0 个B .1 个C .2 个D .3 个【答案】C【解析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.9.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.10.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.13.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.14.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a +=【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.17.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.20.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。
(专题精选)初中数学代数式真题汇编及解析

(专题精选)初中数学代数式真题汇编及解析一、选择题1.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .2.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.3.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=-【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.4.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.5.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.6.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.7.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.8.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.9.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.10.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.13.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.14.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.15.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为()A.63 B.64 C.65 D.66【答案】D【解析】【分析】根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.19.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.通过计算大正方形的面积,可以验证的公式是( )A .B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
深圳冠群实验学校数学代数式中考真题汇编[解析版]
![深圳冠群实验学校数学代数式中考真题汇编[解析版]](https://img.taocdn.com/s3/m/886aef6d5022aaea988f0f8e.png)
一、初一数学代数式解答题压轴题精选(难)1.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
( 2 )A:60×90%x=54x,B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。
(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。
(3)将x=170分别代入(2)种表示的在A、B两家批发所需费用的两个式子计算,然后再比较大小即可。
2.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。
(易错题精选)初中数学代数式真题汇编附答案解析

(易错题精选)初中数学代数式真题汇编附答案解析一、选择题1.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.2.若2m=5,4n=3,则43n﹣m的值是( )A.910B.2725C.2 D.4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m=5,4n=3,∴43n﹣m=344nm=32(4)(2)nm=3235=2725故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键. 3.计算3x2﹣x2的结果是()A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.7.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A.B.C.D.无法确定【答案】A【解析】【分析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AD-a)(AB-b)=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)∴-=(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)=(AB-a)(AD-a-b)∵AD<a+b,∴-<0,故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.11.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n ,解得:n =3.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .13.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.14.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】 根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.16.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.19.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.20.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.。
初中数学代数式全集汇编及答案解析

初中数学代数式全集汇编及答案解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.6.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.8.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.计算的值等于( )A .1B .C .D .【答案】C【解析】【分析】 直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】 原式= ==.故选C .【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.13.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .14.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.15.已知多项式x-a与x2+2x-1的乘积中不含x2项,则常数a的值是()A.-1 B.1 C.2 D.-2【答案】C【解析】分析:先计算(x﹣a)(x2+2x﹣1),然后将含x2的项进行合并,最后令其系数为0即可求出a的值.详解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2.故选C.点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.16.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.17.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】 根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.20.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b【答案】C【解析】【分析】根据完全平方公式的形式(a±b)2=a2±2ab+b2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b2故选C.【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.。
浙江省2023年中考数学真题分类汇编 代数式

浙江省2023年中考数学真题分类汇编 代数式一、选择题1.(2023·绍兴)下列计算正确的是( )A .a 6÷a 2=a 3B .(−a 2)5=−aC .(a +1)(a −1)=a 2−1D .(a +1)2=a 2+12.(2023·台州)下列运算正确的是( ).A .2(a −1)=2a −2B .(a +b)2=a 2+b 2C .3a +2a =5a 2D .(ab)2=ab 23.(2023·宁波)下列计算正确的是( )A .x 2+x =x 3B .x 6÷x 3=x 2C .(x 3)4=x 7D .x 3⋅x 4=x 74.(2023·丽水)计算a 2+2a 2的正确结果是( )A .2a 2B .2a 4C .3a 2D .3a 45.(2023·温州)化简a 4⋅(−a)3的结果是( )A .a12B .−a12C .a2D .−a76.(2023·杭州)分解因式:4a 2−1=( )A .(2a −1)(2a +1)B .(a −2)(a +2)C .(a −4)(a +1)D .(4a −1)(a +1)7.(2023·金华)要使√x −2有意义,则x 的值可以是( )A .0B .-1C .-2D .2二、填空题8.(2023·金华)因式分解:x 2+x = . 9.(2023·温州)分解因式:2a 2−2a = 。
10.(2023·丽水)分解因式:x 2-9= ,11.(2023·宁波)要使分式3x−2有意义,x 的取值应满足 .12.(2023·嘉兴)一个多项式,把它因式分解后有一个因式为(x +1),请你写出一个符合条件的多项式: 。
三、计算题13.(2023·温州)计算:(1)|−1|+√−83+(13)−2−(−4).(2)a 2+2a+1−31+a.14.(2023·宁波)计算:(1)(1+√83)0+|−2|−√9. (2)(a +3)(a −3)+a(1−a).15.(2023·金华)已知x =13,求(2x +1)(2x −1)+x (3−4x )的值.16.(2023·嘉兴)(1)解不等式:2x −3>x +1.(2)已知a 2+3ab =5,求(a +b)(a +2b)−2b 2的值.四、综合题17.(2023·嘉兴)观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (3)请运用有关知识,推理说明这个结论是正确的.答案解析部分1.【答案】C【解析】【解答】解:A、a6÷a2=a4,故此选项计算错误,不符合题意;B、(-a2)5=-a10,故此选项计算错误,不符合题意;C、(a+1)(a-1)=a2-1,故此选项计算正确,符合题意;D、(a+1)2=a2+2a+1,故此选项计算错误,不符合题意.故答案为:C.【分析】由同底数幂的除法,底数不变,指数相减,进行计算可判断A选项;由幂的乘方,底数不变,指数相乘,可判断B选项;由平方差差公式,两个数的和与这两个数的差的积,等于这两个数的平方差,可判断C选项;由完全平方公式的展开式是一个三项式可判断D选项.2.【答案】A【解析】【解答】解:A、2(a-1)=2a-2,故此选项计算正确,符合题意;B、(a+b)2=a2+2ab+b2,故此选项计算错误,不符合题意;C、3a+2a=5a,故此选项计算错误,不符合题意;D、(ab)2=a2b2,故此选项计算错误,不符合题意.故答案为:A.【分析】根据去括号法则(括号前面是负号,去掉括号和负号,括号里的每一项都要变号;括号前面是正号,去掉括号和正号,括号里的每一项都不变号,括号前的数要与括号里的每一项都要相乘),即可判断A选项;由完全平方公式的展开式是一个三项式可判断B选项;整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序没有关系,与系数也没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数不变,但不是同类项的一定就不能合并,从而即可判断C选项;由积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可判断D选项.3.【答案】D【解析】【解答】解:A、x2+x不能合并,故A不符合题意;B、x6÷x3=x3,故B不符合题意;C、(x3)4=x12,故C不符合题意;D、x3·x4=x7,故D符合题意;故答案为:D【分析】只有同类项才能合并,可对A作出判断;利用同底数幂相除,底数不变,指数相减,可对B作出判断;利用幂的乘方,底数不变,指数相乘,可对C作出判断;利用同底数幂相乘,底数不变,指数相加,可对D作出判断.4.【答案】C【解析】【解答】解:a2+2a2=3a2,故答案为:C【分析】利用合并同类项的法则:把同类项的系数相加,字母和字母的指数不变,据此可求解. 5.【答案】D【解析】【解答】解:a4·(-a)3=a4·(-a3)=-a7.故答案为:-a7.【分析】直接根据同底数幂的乘法法则(同底数幂相乘,底数不变,指数相加)计算即可. 6.【答案】A【解析】【解答】解:4a2-1=(2a)2-1=(2a-1)(2a+1).故答案为:A.【分析】直接利用平方差公式分解即可.7.【答案】D【解析】【解答】解:由题意得x-2≥0,解得x≥2,所以A、B、C三个选项都不符合题意,只有选项D符合题意.故答案为:D.【分析】根据二次根式的被开方数不能为负数列出不等式,求解得出x的取值范围,从而即可一一判断得出答案.8.【答案】x(x+1)【解析】【解答】解:x2+x=x(x+1).故答案为:x(x+1).【分析】直接利用提取公因式法分解因式即可.9.【答案】2a(a−1)【解析】【解答】解:2a2-2a=2a(a-1).故答案为:2a(a-1).【分析】直接利用提取公因式法分解分解因式即可.10.【答案】(x+3)(x-3)【解析】【解答】解:x 2-9=(x+3)(x-3)故答案为:(x+3)(x-3)【分析】观察此多项式的特点:有两项,两项符号相反,都能写成平方形式,因此利用平方差公式分解因式.11.【答案】x ≠2【解析】【解答】解:∵ 分式3x−2有意义,∴x-2≠0, 解之:x≠2. 故答案为:x≠2【分析】利用分式有意义,则分母不等于0,可得到关于x 的不等式,然后求出不等式的解集.12.【答案】x 2−1(答案不唯一)【解析】【解答】解:令另一个因式为(x-1),则该多项式为(x+1)(x-1)=x 2-1.故答案为:x 2-1.(答案不唯一)【分析】令另一个因式为(x-1),则该多项式为(x+1)(x-1),然后利用平方差公式进行计算.13.【答案】(1)解:原式=1−2+9+4=12;(2)解:原式=a 2+2−3a+1=a 2−1a+1=(a+1)(a−1)a+1=a −1.【解析】【分析】(1)先根据绝对值性质、立方根的的定义、负整数指数幂的性质及去括号法则分别化简,再计算有理数的加减法运算即可;(2)根据同分母分式的减法,分母不变,分子相减进行计算,进而将分子利用平方差公式分解因式后约分化简即可.14.【答案】(1)解:(1+√83)0+|−2|−√9=1+2−3=0;(2)解:(a +3)(a −3)+a(1−a)=a 2−9+a −a 2=a −9.【解析】【分析】(1)先算乘方和开方运算,同时化简绝对值,再利用有理数的加减法法则进行计算.(2)利用多项式乘以多项式的法则和多项式除以单项式的法则,先去括号,再合并同类项.15.【答案】解:原式=4x 2−1+3x −4x 2=−1+3x.当x=13时,原式=−1+3×13=0.【解析】【分析】先根据平方差公式及单项式乘以多项式的法则分别计算,再合并同类项化简,最后将x的值代入化简结果按有理数的加减乘除混合运算的运算顺序计算即可.16.【答案】(1)解:移项,得2x−x>1+3,解得,x>4.(2)解:原式=a2+2ab+ab+2b2−2b2,=a2+3ab,=5.【解析】【分析】(1)根据移项、合并同类项的步骤进行求解;(2)根据多项式与多项式的乘法法则以及合并同类项法则即可对待求式进行化简,然后将已知条件代入进行计算.17.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。
3.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.4.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
5.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。
(2)根据x=40时,分别求出两种优惠方案所付费用,再比较大小,即可作出判断。
(3)抓住已知:两种优惠方案可同时使用,可以先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,计算出所需费用,再比较大小,可得出结论。
6.某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:时间(h)057x甲车位置(km)190﹣10流动加油车位置(km)170270(1)甲车开出7小时时的位置为________km,流动加油车出发位置为________km;(2)当两车同时开出x小时时,甲车位置为________km,流动加油车位置为________km (用x的代数式表示);(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.【答案】(1)-90;-80(2)190﹣40x;﹣80+50x(3)解:当x=3时,甲车开出的位置是:190﹣40x=70(km),流动加油车的位置是:﹣80+50x=70(km),则甲车能立刻获得流动加油车的帮助【解析】【解答】解:(1)根据题意得:甲车开出7小时时的位置为:190﹣7×(200÷5)=﹣90(km),流动加油车出发位置为:270﹣(270﹣170)÷2×7=﹣80(km);故答案为:﹣90,﹣80;⑵根据题意得:当两车同时开出x小时时,甲车位置为:190﹣40x,流动加油车位置为:﹣80+50x;【分析】(1)根据题意可知甲车开出5小时时的位置为-10,得到甲车的速度是(190+10)÷5,求出甲车开出7小时时的位置;根据流动加油车出发5小时的位置是170和出发7小时的位置是270,得到流动加油车的速度是(270-170)÷2;求出流动加油车出发的位置;(2)根据题意当两车同时开出x小时时,甲车位置是190﹣40x,流动加油车位置是﹣80+50x;(3)根据题意当x=3时,甲车开出的位置是70km,流动加油车的位置是70km,得到甲车能立刻获得流动加油车的帮助.7.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.8.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。