初中数学中考知识重难点分析

合集下载

初中数学学科重难点

初中数学学科重难点

精心整理初中数学重难点一、函数:(一次函数、反比例函数、二次函数)一次函数和反比例函数在初二学到,这对于学生来说是一个新的知识点,不同于以往的知识,刚接受起来会有一定的困惑,很多学生在此丢了分。

二次函数二、三、四、应用题:包括列分式方程,二元一次方程组,一元一次不等式组三种题型。

应用题是以小学应用题理解为基础的,要求学生的理解辨别能力很强,同时对分式方程,二元一次方程组,一元一次不等式组的解法有很大的要求,这三种方程是初中学习解方程的重点,不会解方程计算题就得不了分,应用题更是无法去完整解答。

五、因式分解、二次根式、科学计数法及分式化简都是初中学习的重点,中考不会以大题形式出现,但却是解答题完整解答的基础,这些基础知识掌握不好,后面的重难点就无法进行了。

六、解三角函数题:这个知识点在初三上册第一章学习,是以直角三角形为基础的,在中考中会以船三、一元一次方程1.解方程七年级(下)一、整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整式的除法二、三角形1.认识三角形2.图形的全等3.全等三角形4.探索三角形全等的条件5.作三角形6.利用三角形全等测距离八年级(下)一、一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组二、分解因式1.分解因式2.提公因式法3.运用公式法三、分式1.分式2.分式的乘除法3.分式的加减法4.分式方程四、证明(一)1.定义与命题2.为什么它们平行4.直线和圆的位置关系5.圆和圆的位置关系6.弧长及扇形的面积7.圆锥的侧面积中考数学考点汇总:1、有理数、代数式、一元一次方程。

2、整式、直线线段和三角形。

3、实数、四边形、平面直角坐标系、一次函数和二元一次方程组。

4、不等式、分式、分解因式和证明(一)。

中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

中考数学|初中阶段重点考点知识,难点分析,备考提升,明确目标

中考数学|初中阶段重点考点知识,难点分析,备考提升,明确目标

中考数学|初中阶段重点考点知识,难点分析,备考提升,明确目标中考数学|初中阶段重点考点知识,难点分析,备考提升,明确目标 -而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大,特别有关于存在性问题的考察时,是同学们之间拉开差距的重要体现。

如果在这一环节掌握不好,那么对于其他题型的解题也会产生一定的影响。

第二,整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点,同时也是中考数学计算的重要组成部分,贯穿于整个考试当中,作为比较基础的计算内容,只有将其熟练度提高,才能在考试当中提高自己的计算效率。

中考一般以选择、填空形式出现,但却是解答题完整解答的基础。

运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就很低,对于巩固基础来说是非常不利的。

所以作为计算部分比较基础的内容来说,在平时的计算和训练当中,一定要提高计算的速度和保证计算的正确率。

否则对于复习来说也会产生很大的负担。

在解决答题过程当中,计算不应该成为主爱提升效率的内容。

第三,应用题,中考中占总分的30%左右包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。

一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。

现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法,总体来说其难度不大,只要同学们掌握了各类方程的应用技巧,那么在解决实际的问题当中也能够轻松应对。

另外,方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的重要方法适当地利用这些方法能够使我们解题的效率或者是过程更加地简便。

福州中考数学

福州中考数学

福州中考数学福州中考数学作为初中升高中的一项重要考核,一直以来都备受考生及家长关注。

为了帮助广大考生更好地备战中考数学,本文将对福州中考数学的试卷结构、考试重点与难点进行分析,并给出相应的备考策略。

一、福州中考数学试卷结构分析1.试题类型及分值分布福州中考数学试卷分为选择题、填空题、解答题三大类型。

其中,选择题占总分值的20%,填空题占20%,解答题占60%。

2.难度等级分布试卷难度分为三个等级:易、中、难。

易题占40%,中题占30%,难题占30%。

3.试题来源及占比福州中考数学试题主要来源于初中数学教材及部分省市历年中考数学试题。

其中,教材占40%,历年真题占30%,其余30%为创新题。

二、福州中考数学考试重点与难点1.初中数学基础知识中考数学重视对初中数学基础知识的考查,如数与式、方程与不等式、函数与图像、几何与测量等。

2.数学思维能力考查试卷中将有一定比例的题目考查考生的数学思维能力,如逻辑推理、归纳总结、抽象思维等。

3.数学应用题解析中考数学应用题考查考生运用数学知识解决实际问题的能力。

题目将涉及生活、科技、社会等多个方面。

三、福州中考数学备考策略1.制定合理的学习计划考生应根据自己的实际情况,制定合适的学习计划,确保每个知识点都能得到充分的复习。

2.强化基础知识巩固重视基础知识的学习与巩固,通过课堂笔记、教材、辅导书等多种途径查漏补缺。

3.提高解题技巧与速度通过大量练习,总结解题技巧,提高解题速度。

同时,做好时间管理,确保考试时能充分利用时间。

4.注重数学思维能力的培养在学习过程中,注重数学思维能力的培养,提高自己的数学素养。

5.模拟试题练习与总结多做模拟试题,总结错误原因,不断完善自己的知识体系。

6.调整心态,应对考试压力保持良好的心态,积极面对考试压力,调整好自己的状态。

总之,备战福州中考数学,需要考生对试卷结构、考试重点与难点有清晰的认识,并制定合理的备考策略。

中考难点二次函数知识点及例题最强解析

中考难点二次函数知识点及例题最强解析

中考难点二次函数例题解析二次函数可谓是初中数学考试中的常客,月考,期中考试,期末考试,模拟考试都会有它的身影,中考每年都会有一道关于二次函数的压轴题。

中考二次函数主要以综合题的形式考察,通过对近几年中考二次函数考察情况的分析,二次函数综合题得分率不高,难度系数在0.45-0.55之间,属于中考压轴题之一。

所以掌握二次函数的考点至关重要。

下面我们通过习题,引出知识点总结归纳,二次函数将不再茫然!基础知识一、基本概念:1.二次函数的概念:一般地,形如2a≠)的函数,叫做二次函数。

y ax bx c=++(a b c,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。

2. 2=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y有最【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型第二部分 考察重点1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

初中数学学习重难点与方法点拨

初中数学学习重难点与方法点拨

数学初中阶段学习重难点与方法点拨1、数与运算【学习重难点①】知识板块的条理性:我们教材上的课程设置通常是由易到难,由浅入深。

我们的数与运算同样是按照这样的思想,在不断扩充数的范围:六年级第一学期学整数和分数六年级下学期扩展到有理数进入到七年级第一学期进一步拓展到实数;跟数的内容安排一样,我们所学习的式子也是从整式(分母中没有未知数,根号下无字母)然后分式(分母中有未知数,根号下无字母)最后学习二次根式。

学生在学习过程中没有梳理、总结知识的意识,往往都是单一的学习某一块的内容,随着时间推移,接触内容多了之后,对之前学过的内容就会产生混乱。

【方法点拨】a.掌握基本定义这部分内容在考察的时候往往不太难,通常是基本的定义和简单运算。

所以把概念理解清楚是至关重要的,只有做到这些内容才能做到基础题不丢分。

b.把不同知识点对比讲解可以把不同的知识点对比着理解,这样可以让学生更加清楚各知识点的差异,能够更深刻地理解每个知识点。

c.形成知识体系做好复习工作,不光是对本学期所学内容进行复习,或者说到中考前才对整个初中阶段的内容进行复习;而是应该在适当的时机对相关内容进行复习。

比如在数与运算这块内容,我们可以在八年级上学期学完二次根式后,对数与运算相关的内容进行一个完整的梳理,这样的话有利于学生形成一个完整的知识体系,不至于学到后面,前面忘光。

【例题解析】【题目】同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。

试探索:(1)求|5-(-2)|=______。

(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是_____。

(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由。

(8分)【答案】【解析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.解:(1)原式=|5+2|=7 答案为7(2)令x+5=0或x-2=0时,则x=-5或x=2当x<-5时,∴-(x+5)-(x-2)=7,-x-5-x+2=7,x=5(范围内不成立)当-5<x<2时,∴(x+5)-(x-2)=7,x+5-x+2=7,7=7,∴x=-4,-3,-2,-1,0,1当x >2时,∴(x+5)+(x-2)=7, x+5+x-2=7, 2x=4, x=2, x=2(范围内不成立)∴综上所述,符合条件的整数x 有:-5,-4,-3,-2,-1,0,1,2 (3)由(2)的探索猜想,对于任何有理数x ,|x-3|+|x-6|有最小值为3【推荐课程】六年级秋季课程/六年级寒假课程/六年级春季课程/七年级暑假课程/七年级秋季课程/七年级寒假课程/八年级暑假课程/八年级秋季课程/八年级寒假课程2、方程与不等式 【学习重难点①】 列方程解应用题:许多学生总觉得应用题难。

初中数学中考必考知识点之难点归纳

初中数学中考必考知识点之难点归纳

初中数学中考必考知识点之难点归纳一.整数运算和代数1.整数运算:包括整数的加减乘除运算,要求掌握运算法则,特别是二元一次方程的解法。

2.代数式与等式:包括代数式化简和等式解法,要求学生能够进行因式分解、提公因式、合并同类项等操作。

二.分数与比例1.分数的加减乘除:要求学生能够进行分数的加减乘除运算,尤其需要掌握分数的约分和通分。

2.比例与比例关系:要求学生能够理解比例与比例关系,能够应用比例关系解决实际问题。

三.平面图形与空间几何1.平面图形的认识和性质:包括对各种平面图形的名称、性质和特征的认识,要求学生能够理解和应用平行四边形、正方形、等腰三角形、等边三角形等形状的性质。

2.空间几何的认识和性质:包括对立体的认识,要求学生能够理解和应用箱体、球体、圆柱体等几何体的计算和性质。

四.数据与统计1.数据的收集和整理:包括对数据的收集、整理和处理,要求学生掌握数据的分类、整理和统计的方法。

2.统计图表的应用:要求学生能够读懂和应用各种统计图表,包括直方图、折线图、饼图等。

五.方程与不等式1.一元一次方程:要求学生能够解一元一次方程的应用题,特别是应用题中的词语和符号的转化。

2.一元一次不等式:要求学生能够解一元一次不等式的应用题,特别是应用题中的词语和符号的转化。

六.函数1.函数的概念与性质:要求学生能够理解函数的概念和性质,包括定义域、值域、图像、导数等。

2.函数的应用:要求学生能够应用函数解决实际问题,包括函数的最大值、最小值、零点等求解方法。

总结起来,初中数学中考必考的难点主要集中在整数运算和代数、分数与比例、平面图形与空间几何、数据与统计、方程与不等式、函数等方面。

学生在备考中应重点掌握和理解这些知识点,并能够熟练运用解决各种实际问题。

北京中考数学考纲,北京中考数学考纲详解知识点、难易度及备考经验

北京中考数学考纲,北京中考数学考纲详解知识点、难易度及备考经验

北京中考数学考纲,北京中考数学考纲详解知识点、难易度及备考经验1、考试知识点北京中考数学考试的知识点涵盖了初中数学的方方面面,包括数与公式、代数、函数、几何、统计、概率。

具体来说,考生需要掌握整数、分数、小数的基本性质,函数的概念,常用函数的图像,平面图形的特征和计算等。

考生在备考的过程中,要有意识地对每个知识点逐一进行复习,注意练习,尤其是一些细节和错误。

还要重点掌握一些重要的公式和思想,比如勾股定理、三角函数和初中数学的基本定理。

考生还要注意对数学语言的理解和运用,必要时阅读相关参考书或教材,更好地理解题意。

2、难易度分析北京中考数学考试难度逐渐加大,一般分为易、中、难三个等级。

选择题和填空题相对容易,但也有一些细节和难点需要考生注意。

解题和应用题难度相对较大,要求考生对所学知识有全面的把握,解题水平较高。

考生在备考过程中,要有意识地提高自己的解题能力,训练自己的思维方式和解题技巧。

可以通过同步练习、模拟考试等形式进行训练,更好地适应考试难度和解题时间。

考试过程中,考生需要冷静思考,由易到难,先解决简单题,充分利用时间,避免在简单题上浪费太多时间。

在解题和应用题中,要注意分析问题,构造思路,尤其要注意语言理解和计算的准确性。

3、备考经验准备数学考试需要周密的学习计划,合理分配时间。

首先要全面的复习知识点,找出自己的薄弱环节,有针对性的练习和加强。

可以通过做错题集和模拟考试来巩固,加深对知识点的理解。

建议考生在备考过程中,多做真题和模拟题,尽量分析错题原因,总结解题方法和技巧。

同时要注意对是非习题集的整理和反思,及时发现和纠正错误。

考前要保证充足的睡眠,保持身体健康,提高精神和身体状态。

考试时要做好时间安排,注意答题顺序。

我们可以跳过不会的题,集中精力攻克容易的题和高分的题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中考知识重难点分析
适当练习大家都知道学习数学最重要的是练习,平时多做一些基础题可以锻炼解题熟练度,多做一些中档题可以熟悉考试题型,过于困难的题目不建议大家多做,接下来小编为大家整理了初三数学学习相关内容,一起来看看吧!
初中数学怎么学才能学好?
1、上课以及课前课后
同学们平时的学习时间是在课上,但是大家要树立一个意识:课前课后也很重要。

利用好这些时间,在配合适当的学习方法,学好数学其实并不难。

课前:课前预习很重要,一方面可以先了解上课知识,课上能跟上老师思路,另一方面标记出自己不会的知识点,课上可以根据自己的情况侧重去听。

课上:课上45分钟,大多数同学都很难保证整节课集中精神,这就要求我们课前一定要预习,找到自己不会的知识点,课上尽量理解吸收。

还是希望大家课上尽量集中精神,跟随老师的进度了解重点与难点,有利于复习。

课后:课后的时间一般用来复习,大家可以把自己没有掌握的知识点复习一下,也可以对本节所学知识进行检测与巩固。

如果课后复习还存在不理解的地方,大家一定要找老师和同学去问清楚。

有了课前课上课后三个阶段,相信大家数学基础基本差不多了,
也希望大家继续保持这个习惯。

2、提高作业效率
很多同学都跟学大君反映家庭作业太多,很多家长也觉得自己孩子压力很大。

孩子作业都没时间完成,复习什么的更无从谈起,导致学习成绩不佳。

但是家长和同学们有没有想一想,每个人的课后时间都是一样多的,为什么其他同学都可以完成,甚至还有很多学生利用课余时间报兴趣班呢?
有可能是我们的效率不够高。

我可以问大家几个问题,大家做作业的同时有没有集中精力?有没有玩手机或者吃零食?是不是中间还会休息一下,经常走神?如果有这些情况,同学们还觉得是作业多吗?是不是自己效率不够高呢?
可能是同学们没有进行上边三步,导致自己做作业效率不高,最后怪罪到作业多上来。

其实这是一种非常不好的学习习惯,导致做作业效率不高,那么我们应该怎么提高做作业的效率呢?
几个建议大家可以参考一下:
1端正态度
估计同学们都被老师说过:想要学习好,首先要摆出一个学习的态度来。

这句话没有错,对待作业,首先思想上要重视起来,养成一个良好的习惯。

但是坚持一个好习惯是非常困难的,过程中很多同学容易产生放弃的念头,还会产生负面情绪,但是大家要知道,一个好习惯是受益终生的,养成好习惯,问题越来越少,成绩自然提高。

2集中精力
不要在写作业的时候干其他的事或想其他事,一心不能二用。

尽快地反作业做完了才能够去做别的事情。

3学会总结
如果在看到题目后能很快反映出这题目所需要的知识点,那么做题速度就会提高,在做题之后也要总结一下思路。

多总结一下会发现很多题目都有规律可循,这样可以起到事半功倍的效果,以后再碰到类似问题时,就可以很轻松了。

4营造一个良好的学习环境
孩子写作业时尽量保持安静,书桌上除了放书、学习用品等之外,不要放其他的东西,以免分散他们的注意力。

家长也不要过度的唠叨和训斥,要多鼓励孩子。

3、适当练习大家都知道学习数学最重要的是练习,平时多做一些基础题可以锻炼解题熟练度,多做一些中档题可以熟悉考试题型,过于困难的题目不建议大家多做,可以尝试解决了解难度,掌握做题技巧,训练不要盲目,不要钻牛角尖。

做题要学会总结,总结哪些题目经常出现,这可能是中考常考题型。

有的同学每天都在做题,辅导书用掉一堆却没有提高,这就是盲目做题没有技巧,没有总结。

同学们在做题时多关注一下解题思路、方法、技巧等,掌握做题思路,总结做题技巧,这对考试来说至关重要考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

4、计算能力计算一直是数学的一个核心内容,几乎每一个数学
问题都需要通过计算。

那么,计算的准确率就显得尤为重要了。

想要提高数学成绩,计算的准确率是一定要提高的。

那么如何提高计算的准确率呢?这里我也同样给出了几条建议。

1强化学生的有意注意和良好的计算习惯
(1)仔细审题的习惯。

拿到题目后认真审题,看清题目的要求,想明白过程中应该注意哪些问题。

(2)细心检查的习惯。

先从思路上检查一遍看是否有遗漏,再将答案代回原来的问题验算。

若为计算题则仔细检查每一个步骤。

(3)认真书写的习惯。

书写要干净整洁,这样能使自己在做题时看清题目,避免
错误的发生。

2强化口算能力
任何计算都是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。

要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。

3速算巧算
平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。

4强化估算能力
很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时
候发生计算错误就能够一下子看出来。

所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。

5合理利用一些数的性质
比如说奇数乘以偶数一定是一个偶数,各位数字和是3的倍数的数一定能被3整除等等性质,都可以帮助我们对运算是否准确做一些辅助的判断。

说了这么多,总结起来其实也很简单,只要坚持一个好的学习习惯,做好复习练习,那么数学学习就能够事半功倍,学好数学自然也就不在话下。

5、建立错题本俗话说,一朝被蛇咬,十年怕井绳,可是同学们常会一次又一次地掉入相似甚至相同的陷阱里。

因此,学大君建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。

毕竟,中考或者在平时考试当中是分分必争,一分也失不得。

这样复习时,这个错题本也就成了宝贵的复习资料。

初中数学中考知识重难点分析
1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。

特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。

而且一道解答题一般会在试卷最后两题中出现,一般二次函数的
应用和二次函数的图像、性质及三角形、四边形综合题难度较大。

有一定难度。

如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。

2.整式、分式、二次根式的化简运算
整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。

中考一般以选择、填空形式出现,但却是解答题完整解答的基础。

运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。

3.应用题,中考中占总分的30%左右
包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。

一般会出现二至三道解答题(30分左右)及23道选择、填空题(10分15分),占中考总分的30%左右。

现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。

方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。

4.三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。

三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。

只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。

其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。

因此在初中数学学习中也是一个重点。

四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。

经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。

5.圆,中考中占总分的10%左右
包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。

其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。

相关文档
最新文档