高中数学 等差数列与等比数列 课件

合集下载

高一数学 等比数列(课件) ppt课件

高一数学 等比数列(课件) ppt课件

n1
(a1 0, q 0)
3、探究等比数列的图像
等差数列的图像可以看成是直线上一群孤立的点 构成的,观察等比数列的通项公式,你能得出什 么结果?它的图像如何?
a n a1 q
n 1
(n≥2)
y a1 q q x (x N )
指数函数
由此可知等比数列 an 的图象是函数
07年广西高考(文科): 1.(第16题)等比数列{an}的前n项和为Sn,已知S1, 2S2,S3成等差数列,则{an}的公比为 __ 。 2. (第21题)设{an}是等差数列, {bn}是等比数列, 且a1=b1=1 , a3+b5=21 , a5+b3=13. (Ⅰ)求{an}、 {bn}的通项公式; (Ⅱ)略
a1q 2 12 ① 3 a1q 18 ②
a4 18 2 q ① a1q 12 ② 方法2: a3 12 变式1.等比数列 , a1 1, q 3, 求a8与an a中 n
变式2.等比数列
(3)思考消元方法。
, a中 n
a1 2, a9 32, 求q
5.看看高考(课后练习)
.
10
2.5 10 10 所以到第5代大约可以得到种子2.5 10 粒。
a1 120, q 120, a5 120120
51
例2(见教材例2):一个等比数列第三项与第四项 分别是12与18,求它的第1项和第2项。
分析:方法1:
(1)如何将已知条件与要求的a1与q联系起来? (2)列出方程:
等 比 数 列
第一课时
一、温故而知新
1、等差数列的定义: 2、等差数列性质:
温馨提示: 您是否还记得?

数列ppt课件

数列ppt课件

等差数列的求和公式
总结词
等差数列的求和公式是用来计算数列 中所有项的和的数学公式。
详细描述
等差数列的求和公式是 S_n = n/2 * (2a_1 + (n - 1)d),其中 S_n 表示前 n 项的和,a_1 表示首项,d 表示公差, n 表示项数。这个公式可以帮助我们快 速计算出等差数列中所有项的和。
03 等比数列
等比数列的定义
总结词
等比数列是一种特殊的数列,其中任意项与它的前一项的比值都相等。
详细描述
等比数列是一种有序的数字排列,其中任意一项与它的前一项的比值都等于同一个常数。这个常数被称为公比, 通常用字母q表示。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
04 数列的极限与收敛
数列的极限定义
极限的定义
对于数列${ a_{n}}$,如果当$n$ 趋于无穷大时,$a_{n}$趋于某个
常数$a$,则称$a$为数列${ a_{n}}$的极限。
极限的性质
极限具有唯一性、有界性、保序性 等性质。
极限的运算性质
极限具有可加性、可乘性、可分离 性等运算性质。
收敛数列的性质
在经济学中的应用
在经济学中,很多问题也可以转化为求和问题,例如计算总收益、总成本等。而求和问题 同样可以转化为数列的极限问题。因此,数列的极限和收敛的概念在经济学中也有着广泛 的应用。
05 数列的级数
级数的定义与分类
要点一
定义
级数是无穷数列的和,可分为数项级数和函数项级数。
要点二
分类
根据项的正负和收敛性,级数可分为正项级数、负项级数 、交错级数等。
正项级数的审敛法

人教版高中数学课件-等差数列与等比数列

人教版高中数学课件-等差数列与等比数列

第9講 │ 要點熱點探究
【解答】 (1)a10=10,a20=10+10d=40,∴d=3. (2)a30 = a20 + 10d2 = 10(1 + d + d2) = 10 d+122+34 (d≠0).当 d∈(-∞,0)∪(0,+∞)时,a30∈[7.5,+∞). (3)所给数列可推广为无穷数列{an},其中 a1,a2,…, a10 是首项为 1,公差为 1 的等差数列,当 n≥1 时,数列 a10n,a10n+1,…,a10(n+1)是公差为 dn 的等差数列. 研究的问题可以是:试写出 a10(n+1)关于 d 的关系式, 并求出 a10(n+1)的取值范围.研究的结论可以是:由 a40= a30+10d3=10(1+d+d2+d3),依次类推可得:a10(n+1)=
第9講 │ 要點熱點探究
已知数列 a1,a2,…,a30,其中 a1,a2,…,a10 是首项 为 1,公差为 1 的等差数列;a10,a11,…,a20 是公差为 d 的等差 数列;a20,a21,…,a30 是公差为 d2 的等差数列(d≠0).
(1)若 a20=40,求 d; (2)试写出 a30 关于 d 的关系式,并求 a30 的取值范围; (3)续写已知数列,使得 a30,a31,…,a40 是公差为 d3 的等差 数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类 似的问题((2)应当作为特例),并进行研究,你能得到什么样的结 论?
(2)已知在等比数列{an}中,a1+a3=10,a4+a6=54,
则等比数列{an}的公比 q 的值为( )
1 A.4
1 B.2
C.2
D.8
(1)2 (2)B 【解析】 (1){an}为等比数列,所以 a4- a3=a2q2-a2q=4,即 2q2-2q=4,所以 q2-q-2=0,解得 q =-1 或 q=2.又{an}是递增等比数列,所以 q=2.

人教版数学选择性必修二考点复习:等差数列和等比数列课件

人教版数学选择性必修二考点复习:等差数列和等比数列课件
高二选择性必修二
等差数列和等比数列
考情分析
202X年
202X年
202X年
Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷 Ⅲ卷
等差数列

T4
T17 T17 T9,T14 T19 T5,T14 T17 T4,T6
新高考Ⅰ

T14,T18
等比数列 高考试题中数列一般是以两个小题或一个解答题的情势出现,难度
(2)列、解方程组:把条件转化为关于a1和d(q)的方程(组), 然后求解,
注意整体计算, 以减少运算量.
对点训练
1.(202X北京高三一模)设等差数列{an}的前n项和为Sn, 若a3=2,
a1+a4=5, 则S6=( B )
A.10
B.9
C.8
3 = 1 + 2 = 2
由题意得, ቊ

1 + 4 = 21 + 3 = 5
由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.
又因为a1-b1=1,所以{an-bn}是首项为1,公差为2的等差数列.
(2)由(1)知, an+bn=
所以an=
1
2
1
2−1
, an-bn=2n-1.
1
1
[(an+bn)+(an-bn)]=
2
2
bn= [(an+bn)-(an-bn)]=
第n环扇面形石板块数为等差数列{an},其前n项和满
足S3n-S2n=S2n-Sn=729,解方程即可得到n,进一步得到S3n
易错分析

《等比数列的概念》课件

《等比数列的概念》课件

03
等比数列的应用
等比数列在数学中的应用
解题技巧
等比数列是数学中常见的数列类型, 它在解决数学问题时具有广泛的应用 。例如,在求解一些复杂数学问题时 ,可以利用等比数列的性质简化计算 过程。
公式推导
等比数列的通项公式和求和公式在数 学中经常被用来推导其他公式或解决 一些复杂的数学问题。这些公式是等 比数列应用的基石,能够提供解决问 题的有效途径。
等比数列的公比
总结词
表示等比数列中任意两项的比值
详细描述
等比数列的公比是任意两项的比值,通常用字母 q 表示。公比是等比数列中相 隔一项的两个数的比值,即 a_n/a_(n-1)。公比反映了等比数列中每一项与前一 项的比值。
等比数列的项数与项的关系
总结词
表示等比数列中项数与项的关系
详细描述
在等比数列中,任意一项的值可以用首项、公比和项数来表 示。例如,第 n 项的值可以用 a_n=a_1×q^(n-1) 来表示, 其中 a_1 是首项,q 是公比,n 是项数。这个公式揭示了等 比数列中项数与项的关系。
《等比数列的概念》ppt课件
目录 Contents
• 等比数列的定义 • 等比数列的性质 • 等比数列的应用 • 练习题与答案
01
等比数列的定义
等比数列的文字定义
总结词:简洁明了
详细描述:等比数列是一种特殊的数列,其中任意两个相邻项之间的比值都相等 。
等比数列的数学符号定义
总结词:专业严谨
详细描述:等比数列通常表示为 a_n,其中 a 是首项,r 是公比,n 是项数。其数学定义是 a_n = a * r^(n-1),其中 r ≠ 0。
等比数列与等差数列的区别
总结词:对比分析

等差数列与等比数列PPT课件

等差数列与等比数列PPT课件

1.如果a,b,c成等差数列,而 a.c.b三数成等比 数列,则a:b:c=________________
(A)
2.数列{an}是等差数列,且S10=100, S100=10,则S110= (D) (A)90 (B)-90 (C)110 (D)-110 3.ABC的三内角成等差数列,三边成等比 数列,则三内角的公差为 (A ) (A)0 (B)150 (C) 300 (D) 450
1. 已知等比数列{an}中,an>0, 且a2a4+2a3a5+a4a6=25,则a3+a5=
提示:
a2a4=(a3)2 a4a6=(a5)2
原式=(a3+a5)2=25=> a3+a5=5 (an>0)
2.数列{an}是等差数列,且S10=100, S100=10,则S110= (A)90 (B)-90 (C)110 (D)-110
( )
解: S10,S20-S10,S30-S20,........,S110-S100成等差数列,公差100d.
例1:四个数,前三个成等比数列,它们的和是19;后三个成 等差数列,和是12,求此四个数. 解法1: 如图:a1,a2,a3,a4 等比 (a2)2=a1a3 已知: a1+a2+a3=19 等差2a3=a2+a4 已知: a2+ a3+ a4 =12 a1+a2+a3=19 (a2)2=a1a3 a2+ a3+ a4 =12 2a3=a2+a4 a1=9 a2=6 或 a3=4 a4 =2 a1=25 a2=-10 a3=4 a4 =18
练习2
练习2
1. 如果 a,b,c 成等差数列 , 而 a.c.b 三数成 等比数列,则a:b:c=________________ 1:1:1或4:1:(-2)

等差等比数列的证明ppt课件

等差等比数列的证明ppt课件
等差、等比数列的证明
1、定义法 an+1 - an=d 或 an-an-1=d
2、中项法 2an=an-1+an+1 (n>1)
3、通项公式法 an=pn+q(关于n的一次函数)
4、前n项和法 Sn=An2+Bn
1
等差、等比数列的证明 一、等差数列的证明
例1 已知数列an的前n项和为Sn=3n2 -2n, 证明数列an 成等差数列,并求其首项、
11
12
13
14
(2)
证明
an 2n
为等差数列,并求an
5
第七课时B组
8.已知数列an 的前n项和为Sn,Sn
=
1 3
(an
1)
(1)求a1、a2 .
(2)求证:数列an 是等比数列
6
等差、等比的计算问题的常用方法
方法1、利用等差、等比的性质 方法2、利用基本量(解方程组)
项(an)的性质: an=am+(n-m)d 任两项的关系式
am+an=ap+aq(m+n=p+q)角标和性质
和(Sn)的性质: Sm ,S2m -Sm ,S3m -S2m ,L 成等差
Sn与项an的关系:
7
重点回顾
数列
等差数列
等比
定义 通项公式
an+1-an=d 或 an-an-1=d
an= a1+(n-1)d
前n项和
性质 和Sn与项an 的关系
aanm=+ama+n(=n-amp)+d aq(m+n=p+q)
公差、通项公式
2
第四课时拓展延伸(2015新课标全国卷)

高考数学文(二轮复习)课件《等差与等比数列》

高考数学文(二轮复习)课件《等差与等比数列》

4.(2014· 安徽高考)数列{an}是等差数列,若a1+1,a3+ 3,a5+5构成公比为q的等比数列,则q=________.
答案:1
解析:解法一:因为数列{an}是等差数列,所以a1+1,a3 +3,a5+5也成等差数列,又a1+1,a3+3,a5+5构成公比为q 的等比数列,所以a1+1,a3+3,a5+5是常数列,故q=1. 解法二:因为数列{an}是等差数列, 所以可设a1=t-d,a3=t,a5=t+d, 故由已知得(t+3)2=(t-d+1)(t+d+5),得d2+4d+4=0, 即d=-2, 所以a3+3=a1+1,即q=1.
等差与等比数列
该类小题一般考查等差、等比数列的基本量的运算及性质 的灵活运用.有时等差数列、等比数列相交汇考查.该类小题具有 “新”“巧”“活”的特点.在备考中,一要重视与两种数列基 本量有关的公式的理解与应用,二要重视两种数列基本性质的 应用,三要重视方程组思想或整体思想在求解数列问题中的应 用.
(2)已知等差数列某两项的和(或等比数列某两项的积)求数 列中的某一项或求数列和(或积)的问题,运用等差数列(或等比 数列)的性质或整体代入的思想较为快捷.该类题目在平时的练 习中要学会使用性质,在短时间内准确求解.
[回访名题] (1)(2014· 福建高考)等差数列{an}的前n项和为Sn,若a1=2, S3=12,则a6等于( )
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死”,就不能“用活”! 1.把握两个定义 若一个数列从第二项起,每项与前一项的差(比)为同一个常 数,则这个数列为等差(比)数列. 2.等差、等比中项 (1)若x,A,y成等差数列⇔A为x,y的等差中项⇔2A=x+y. (2)若x,G,y成等比数列⇔G为x,y的等比中项⇒G2= xy(G≠0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲等差数列与等比数列高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下.真题感悟1.(2019·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=12n2-2n2.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( ) A.32f B.322f C.1225f D.1227f3.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.4.(2019·全国Ⅱ卷)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.考 点 整 合1.等差数列(1)通项公式:a n =a 1+(n -1)d ;(2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ; (3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ;②a n =a m +(n -m )d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列.2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0);(2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q 1-q; (3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.温馨提醒应用公式a n=S n-S n-1时一定注意条件n≥2,n∈N*.热点一等差、等比数列的基本运算【例1】(1)(2019·全国Ⅲ卷)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.2(2)(2019·北京卷)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.①求{a n}的通项公式;②记{a n}的前n项和为S n,求S n的最小值.探究提高 1.等差(比)数列基本运算的解题途径:(1)设基本量a1和公差d(公比q).(2)列、解方程组:把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量.2.第(2)题求出基本量a1与公差d,进而由等差数列前n项和公式将结论表示成“n”的函数,求出最小值.【训练1】(1)(2019·全国Ⅲ卷)记S n为等差数列{a n}的前n项和.若a3=5,a7=13,则S10=________.(2)(2018·全国Ⅲ卷)等比数列{a n}中,a1=1,a5=4a3.①求{a n}的通项公式;②记S n为{a n}的前n项和.若S m=63,求m.热点二等差(比)数列的性质【例2】(1)在等比数列{a n}中,a6,a10是方程x2+6x+2=0的两个实数根,则a8的值为()A.2B.-2或 2C. 2D.- 2(2)设S n为等差数列{a n}的前n项和,(n+1)S n<nS n+1(n∈N*).若a8a7<-1,则()A.S n的最大值是S8B.S n的最小值是S8C.S n的最大值是S7D.S n的最小值是S7探究提高 1.利用等差(比)性质求解的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.活用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.【训练2】(1)(2019·天一大联考)记等差数列{a n}的前n项和为S n,若a6=16,S5=35,则{a n}的公差为()A.-3B.-2C.3D.2(2)等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和S8为()A.4B.2C.3D.5热点三等差(比)数列的判断与证明【例3】已知数列{a n}的前n项和为S n,a1=1,a n>0,S2n=a2n+1-λS n+1,其中λ为常数.(1)证明:S n+1=2S n+λ;(2)是否存在实数λ,使得数列{a n}为等比数列?若存在,求出λ;若不存在,请说明理由.【迁移】若本例中条件“a1=1”改为“a1=2”其它条件不变,试求解第(2)问. 探究提高 1.判定等差(比)数列的主要方法:(1)定义法:对于任意n≥1,n ∈N *,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为与正整数n 无关的一常数;(2)中项公式法. 2.a n +1a n=q 和a 2n =a n -1a n +1(n ≥2)都是数列{a n }为等比数列的必要不充分条件,判定时还要看各项是否为零.【训练3】 (1)定义首项为1且公比为正数的等比数列为“M -数列”.已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”.(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和,判断数列{b n }是等差数列还是等比数列,并求数列{b n }的通项公式. 热点四 等差数列与等比数列的综合问题【例4】 (2018·天津卷)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.探究提高 1.等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.2.数列的通项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.【训练4】 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与其前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使得对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.在应用性质时要注意前提条件,有时需要进行适当变形.3.应用关系式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.A 级 巩固提升一、选择题1.(2018·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.-12B.-10C.10D.122.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13B.12C.11D.103.(2019·广州模拟)已知数列{a n},{b n}满足a1=1,且a n,a n+1是方程x2-b n x+2n =0的两根,则b10等于()A.24B.32C.48D.644.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则此人第4天和第5天共走的路程为()A.60里B.48里C.36里D.24里5.(2019·郑州模拟)数列{a n}的前n项和为S n,且3a n+S n=4(n∈N*),设b n=na n,则数列{b n}的项的最大值为()A.8164 B.2716C.32 D.2二、填空题6.(多填题)(2019·合肥质检改编)已知{a n}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=________;公差d=________.7.(多填题)(2019·北京卷)设等差数列{a n}的前n项和为S n,若a2=-3,S5=-10,则a5=________,S n的最小值为________.8.(2019·湖南雅礼中学质检)若数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*).令b n=log3(a n+1),则b1+b2+b3+…+b100=________.三、解答题9.设{a n}是等差数列,且a1=ln 2,a2+a3=5ln 2.(1)求{a n}的通项公式;(2)求e a1+e a2+…+e a n.10.(2019·全国Ⅰ卷)记S n为等差数列{a n}的前n项和.已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.B级能力突破11.(2019·广州质检)已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列.若a1=1,S n是数列{a n}的前n项和,则2S n+16a n+3(n∈N*)的最小值为()A.4B.3C.23-2D.9 212.(2019·成都诊断)设等差数列{a n}的前n项和为S n,a=(a1,1),b=(1,a10),若a·b=24,且S11=143,数列{b n}的前n项和为T n,且满足2a n-1=λT n-(a1-1)(n∈N*).(1)求数列{a n}的通项公式;(2)是否存在非零实数λ,使得数列{b n}为等比数列?并说明理由.。

相关文档
最新文档