专升本高等数学知识点汇总

合集下载

专升本高数知识点汇总

专升本高数知识点汇总

专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。

以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。

一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。

对于定义域内的每一个输入值,都有唯一的输出值与之对应。

2、函数的性质包括奇偶性、单调性、周期性和有界性。

奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。

单调性是指函数在某个区间内是递增或递减的。

周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。

有界性则是指函数的值域在某个范围内。

3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。

4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。

5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。

无穷小的性质在极限计算中经常用到。

二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。

2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。

3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。

5、复合函数求导通过链式法则进行求导。

6、隐函数求导通过方程两边同时对自变量求导来求解。

7、微分的定义函数的微分等于函数的导数乘以自变量的微分。

8、微分的几何意义微分表示函数在某一点处切线的增量。

三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。

专升本高等数学知识点总结

专升本高等数学知识点总结

专升本高等数学知识点总结高等数学作为专升本考试的一门重要科目,需要掌握的知识点相对较多。

下面是对高等数学知识点的详细总结。

一、函数与极限1.函数概念与性质:定义域、值域、奇偶性、周期性、单调性等。

2.函数的常用性质:函数的画像、函数的基本性质、函数的运算、函数的反函数、函数的复合、函数的比较等。

3.极限的概念:极限的定义、左极限、右极限、无穷极限、函数极限等。

4.极限的性质:极限的唯一性、夹逼准则、极限的四则运算、函数极限法则等。

5.无穷小与无穷大:无穷小的定义和性质、无穷大的定义和性质。

二、导数与微分1.导数的定义:函数在一点的导数、导数的几何意义、函数的可导性等。

2.导数的计算:基本函数的导数、基本运算法则、复合函数的导数、隐函数的导数等。

3.高阶导数:导数的高阶导数、高阶导数的计算等。

4.微分:微分的定义、微分的计算、微分形式不变性等。

5.高阶导数与高阶微分的关系:高阶导数与高阶微分的计算、高阶微分的含义等。

三、积分与不定积分1.定积分的概念与性质:积分的定义、黎曼和、定积分的计算、积分中值定理等。

2.不定积分的概念与性质:不定积分的定义、不定积分的计算、定积分与不定积分之间的关系等。

3.基本积分公式:幂函数的积分、三角函数的积分、反函数的积分、特殊函数的积分等。

4.定积分的应用:曲边梯形的面积、旋转体的体积、定积分的几何应用等。

四、级数与幂级数1.数列与级数:数列的概念与性质、收敛与发散、常见数列的性质等。

2.级数的概念与性质:级数的概念、部分和、级数的性质、级数收敛性的判别法等。

3.幂级数的概念与性质:幂级数的收敛域、幂级数的性质、幂级数的运算等。

4.泰勒展开与幂级数展开:泰勒展开的定义、泰勒级数、幂级数展开的计算等。

五、多元函数与方程1.多元函数的概念与性质:多元函数的定义、多元函数的极限、多元函数的连续性等。

2.偏导数与全微分:偏导数的定义、全微分的定义、全微分近似计算等。

3.导数与梯度:偏导数与方向导数、梯度的定义和性质、梯度的运算等。

完整版)专升本高等数学知识点汇总

完整版)专升本高等数学知识点汇总

完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。

2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。

当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。

2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。

2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。

三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。

2、幂函数:y=x^u,(u是常数)。

它的定义域随着u的不同而不同。

图形过原点。

3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。

图形过(0,1)点。

4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。

图形过(1,0)点。

5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。

3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。

4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。

四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。

改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。

专转本高数知识点整理

专转本高数知识点整理

专转本高数知识点整理一、函数。

1. 函数的概念。

- 设x和y是两个变量,D是一个给定的非空数集。

如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y = f(x),x∈ D。

其中x称为自变量,y称为因变量,D称为函数的定义域。

- 函数的两要素:定义域和对应法则。

2. 函数的性质。

- 单调性:设函数y = f(x)在区间(a,b)内有定义,如果对于(a,b)内任意两点x_1和x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间(a,b)内是单调增加(或单调减少)的。

- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈ D,有f(-x)=f(x),则称y = f(x)为偶函数;如果f(-x)= - f(x),则称y = f(x)为奇函数。

- 周期性:设函数y = f(x)的定义域为D,如果存在一个不为零的数T,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x)恒成立,则称函数y = f(x)为周期函数,T称为函数的周期。

3. 反函数。

- 设函数y = f(x)的定义域为D,值域为W。

如果对于W中的每一个y值,在D中有且只有一个x值使得y = f(x),则在W上定义了一个函数,称为函数y = f(x)的反函数,记作x = f^-1(y)。

习惯上,将y = f(x)的反函数记作y = f^-1(x)。

二、极限。

1. 极限的定义。

- 数列极限:设{a_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| a_n-a|都成立,那么就称常数a是数列{a_n}的极限,或者称数列{a_n}收敛于a,记作lim_n→∞a_n=a。

- 函数极限(x→ x_0):设函数f(x)在点x_0的某一去心邻域内有定义。

专升本高数全知识点

专升本高数全知识点

专升本高数全知识点一、知识概述《专升本高数全知识点》①基本定义:高等数学就是大学数学,主要研究函数、极限、导数、积分这些东西。

函数就像是一个有输入和输出的“魔法盒子”,你给它一个数,它按照一定规则给你一个结果。

极限有点像你一直朝着一个地方走,快到目的地但还没到那个确切的点时候的情况。

导数呢,就是函数在某一点变化的快慢程度,就像汽车在某个瞬间的速度。

积分和导数相反,就像是知道速度求路程这样。

②重要程度:在专升本学科里那可是相当重要的。

很多专业都要考,而且是筛选人才的重要部分。

高数好的话,在理工科专业学习起来就会很顺利。

③前置知识:你得对基本的代数知识很熟悉,像一元二次方程这些。

还有函数的概念也要清楚,比如一次函数、二次函数的图像性质等。

④应用价值:在工程领域可以用来计算结构强度,在经济领域可以做成本效益分析之类的。

比如说盖房子的时候,通过高数能算出怎么设计结构能承受更大压力。

二、知识体系①知识图谱:整个高数体系像一棵大树,函数是树根,极限是树干,导数和积分就是树枝和树叶。

导数和积分又各自有很多分支。

②关联知识:函数和极限密切相关,有函数才有极限概念。

导数是从极限发展来的,积分又和导数是逆运算关系。

③重难点分析:重难点有极限的计算(有时候要用到很多复杂技巧)、导数的复合函数求导、积分的换元积分法。

关键是要理解概念然后多做练习才能掌握。

④考点分析:在考试里每个部分都可能考。

选择题会考查基本概念,计算题就着重极限、导数、积分的计算等。

应用题可能会把高数知识用在实际场景下考查。

三、详细讲解【理论概念类- 函数】①概念辨析:函数就是一种对应关系,一个自变量x能通过某种法则找到唯一对应的因变量y。

就像每个人(x)对应着自己唯一的身份证号(y)。

②特征分析:主要特征就是有定义域(x能取的值的范围)和值域(y 能取的值的范围)。

单值性是很重要的一点,就是一个x只能对应一个y。

③分类说明:有初等函数像多项式函数(如y = x²+1)、三角函数(如y = sinx)等,还有分段函数,就是在不同区间有不同表达式的函数。

专升本高数知识点汇总

专升本高数知识点汇总

专升本⾼数知识点汇总第⼀讲函数、极限、连续1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。

2、函数的性质,奇偶性、有界性奇函数:,图像关于原点对称。

偶函数:,图像关于y 轴对称3、⽆穷⼩量、⽆穷⼤量、阶的⽐较设是⾃变量同⼀变化过程中的两个⽆穷⼩量,则(1)若,则是⽐⾼阶的⽆穷⼩量。

(2)若(不为0),则与是同阶⽆穷⼩量特别地,若,则与是等价⽆穷⼩量(3)若,则与是低阶⽆穷⼩量记忆⽅法:看谁趋向于0的速度快,谁就趋向于0的本领⾼。

4、两个重要极限(1)使⽤⽅法:拼凑,⼀定保证拼凑sin 后⾯和分母保持⼀致(2)使⽤⽅法1后⾯⼀定是⼀个⽆穷⼩量并且和指数互为倒数,不满⾜条件得拼凑。

)()(x f x f -=-)()(x f x f =-βα,0=βαlim αβc βα=limαβ1=βαlim αβ∞=βαlimαβ100==→→xxx x x x sin lim sin lim[][][][][][]00==→→sin lim sin lime x x x x xx =+=+→∞→15、的最⾼次幂是n,的最⾼次幂是m.,只⽐较最⾼次幂,谁的次幂⾼,谁的头⼤,趋向于⽆穷⼤的速度快。

,以相同的⽐例趋向于⽆穷⼤;,分母以更快的速度趋向于⽆穷⼤;,分⼦以更快的速度趋向于⽆穷⼤。

7、左右极限左极限:右极限:注:此条件主要应⽤在分段函数分段点处的极限求解。

8、连续、间断连续的定义:或间断:使得连续定义⽆法成⽴的三种情况记忆⽅法:1、右边不存在 2、左边不存在 3、左右都存在,但不相等9、间断点类型(1)、第⼆类间断点:、⾄少有⼀个不存在(2)、第⼀类间断点:、都存在注:在应⽤时,先判断是不是“第⼆类间断点”,左右只要有⼀个不存在,就是“第⼆类”然后再判断是不是第⼀类间断点;左右相等是“可去”,左右不等是“跳跃” 10、闭区间上连续函数的性质()() ?>∞<==∞→m n m n m n ba X Q x P mn x ,,,lim 00()x P n ()x Q m m n =m n A x f x x =-→)(lim 0A x f x x =+→)(lim 0A x f x f A x f x x x x xx ===+-→→→)(lim )(lim )(lim 000充分必要条件是[]0)()(lim lim 000=-?+=?→?→?x f x x f y x x )()(lim00x f x f x x =→)()(lim00x f x f x x =→≠→→)()(lim )(lim )()(00x 不存在⽆意义不存在,)(lim 0x f x x -→)(lim 0x f x x +→)(lim 0x f x x -→)(lim 0x f x x +→??≠=+-+-→→→→)(lim )(lim )(lim )(lim 000x f x f x f x f x x x x xx x x 跳跃间断点:可去间断点:(1)最值定理:如果在上连续,则在上必有最⼤值最⼩值。

高等数学专升本知识点归纳

高等数学专升本知识点归纳

高等数学专升本知识点归纳高等数学是专升本考试中的重要科目,其知识点广泛且深入,涵盖了微积分、线性代数、常微分方程等多个领域。

以下是对高等数学专升本知识点的归纳总结:一、函数与极限- 函数的定义、性质(单调性、奇偶性、周期性)- 极限的概念、性质、运算法则- 无穷小量的比较- 函数的连续性与间断点二、导数与微分- 导数的定义、几何意义、物理意义- 基本初等函数的导数公式- 高阶导数- 隐函数、参数方程的导数- 微分的概念与应用三、微分中值定理及其应用- 罗尔定理、拉格朗日中值定理、柯西中值定理- 洛必达法则- 函数的单调性、极值与最值问题四、不定积分与定积分- 不定积分的概念、性质、换元积分法、分部积分法- 定积分的概念、几何意义、计算方法- 定积分的几何应用(面积、体积)五、级数- 级数的概念、收敛性判别- 正项级数、交错级数、幂级数- 函数的泰勒展开六、多元函数微分学- 多元函数的极限、连续性、偏导数、全微分- 多元函数的极值问题七、常微分方程- 一阶微分方程的解法(分离变量法、变量替换法等)- 高阶微分方程的降阶方法- 线性微分方程的解法八、线性代数基础- 向量空间、基、维数- 矩阵的运算、行列式- 线性方程组的解法(高斯消元法、克拉默法则)九、解析几何- 空间直线与平面的方程- 空间曲线与曲面的方程结束语通过以上对高等数学专升本知识点的归纳,我们可以看出,高等数学不仅要求学生掌握基础的数学概念和运算技能,更要求能够运用这些知识解决实际问题。

希望这份归纳能够帮助学生系统地复习和掌握高等数学的知识点,为专升本考试做好充分的准备。

专升本高等数学知识点汇总3篇

专升本高等数学知识点汇总3篇

专升本高等数学知识点汇总第一篇:极限与导数一、极限1.极限概念极限是指函数值在某个自变量取值趋于某个值时的极限值。

用数学符号表示为lim f(x)=A(x->a)。

2.极限的四则运算对于极限值的四则运算涉及到有限值与无限值的关系,具体如下:①有限值加减有限值:lim[f(x)+g(x)]=lim f(x)+lim g(x) (x->a)②有限值乘法有限值:lim[f(x)*g(x)]=lim f(x)*lim g(x) (x->a)③有限值除以有限值:lim[f(x)/g(x)]=lim f(x)/lim g(x) (x->a)④无限值加减无限值:极限不存在。

3.极限的求解求出极限的基本方法:①查找零点②分母分子有理化③将式子化成等价无穷小形式④采用夹逼定理二、导数1.导数概念导数是表示函数一点的切线在该点的斜率,用数学符号表示为f’(x)或df/dx。

2.导数的几何意义导数的几何意义是函数在某一点处的切线的斜率,也就是曲线在该点处的瞬时变化率。

3.导数的求法导数的求法可以使用以下几种方法:①查公式②使用某个函数的导数性质推导出新函数导数的公式③使用导数的四则运算④使用导数的几何性质以上是关于极限与导数的一些基本知识点,通过对这些知识点的学习,我们可以更好地理解数学的基础,从而更好地应用数学知识进行实际问题的解决。

第二篇:微积分中的函数与极限一、函数的概念函数是指一个变量和另一个变量之间的依赖关系,也就是根据一个变量的取值,可以求出另一个变量的值。

二、函数的分类根据函数的定义域和值域的不同,函数分为以下几类:①一次函数:y=kx+b(k,b∈R且k≠0),其中k为斜率,b为截距。

②二次函数:y=ax²+bx+c (a,b,c∈R且a≠0),其中a 为抛物线开口方向和大小的常数,b为对称轴与x轴交点的横坐标,c为抛物线与y轴交点的纵坐标。

③指数函数:y=a的x次方 (a>0且且a≠1),其中a为底数,x为指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y b kx y ++=+=2一般形式的定义域:x ∈R(2)x k y =分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。

当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。

2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。

(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。

三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。

2、幂函数:ux y =, (u 是常数)。

它的定义域随着u 的不同而不同。

图形过原点。

3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。

4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。

图形过(1,0)点。

5、三角函数(1) 正弦函数: x y sin =π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f . (4) 余切函数: x y cot =.π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。

(2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。

(3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2,2()(ππ-=D f 。

(4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。

极限一、求极限的方法1、代入法代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。

”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。

2、传统求极限的方法(1)利用极限的四则运算法则求极限。

(2)利用等价无穷小量代换求极限。

(3)利用两个重要极限求极限。

(4)利用罗比达法则就极限。

二、函数极限的四则运算法则设A u x =→λlim , B v x =→λlim ,则 (1)B A v u v u x x x ±=±=±→→→λλλlim lim )(lim (2)AB v u v u x x x =⋅=⋅→→→λλλlim lim )(lim . 推论(a)v C v C x x λλ→→⋅=⋅lim )(lim , (C 为常数)。

(b )nx n x u u )lim (lim λλ→→= (3)B A v u v u x x x ==→→→λλλlim lim lim , (0≠B ). (4)设)(x P 为多项式n n n a x a x a x P +++=- 110)(, 则)()(lim 00x P x P x x =→ (5)设)(),(x Q x P 均为多项式, 且0)(≠x Q , 则 )()()()(lim 000x Q x P x Q x P x x =→ 三、等价无穷小常用的等价无穷小量代换有:当0→x 时,x x ~sin ,x x ~tan ,x x ~arctan ,x x ~arcsin ,x x ~)1ln(+,x e x ~1-,221~cos 1x x -。

对这些等价无穷小量的代换,应该更深一层地理解为:当0 □→时, □~ □sin ,其余类似。

四、两个重要极限重要极限I 1sin lim 0=→xx x 。

它可以用下面更直观的结构式表示:1 □ □sin lim0 □=→ 重要极限II e x x x =⎪⎭⎫ ⎝⎛+∞→11lim 。

其结构可以表示为:e =⎪⎭⎫ ⎝⎛+∞→□ □ □11lim 八、洛必达(L ’Hospital)法则 “00”型和“∞∞”型不定式,存在有A x g x f x g x f a x a x ==→→)()(lim )()(lim ''(或∞)。

一元函数微分学一、导数的定义设函数)(x f y =在点0x 的某一邻域内有定义,当自变量x 在0x 处取得增量∆x (点x x ∆+0仍在该邻域内)时,相应地函数y 取得增量)()(00x f x x f y -∆+=∆。

如果当0→∆x 时,函数的增量y ∆与自变量x ∆的增量之比的极限0lim →∆x x y ∆∆=0lim →∆x xx f x x f ∆-∆+)()(00=)(0x f ' 注意两个符号x ∆和0x 在题目中可能换成其他的符号表示。

二、求导公式1、基本初等函数的导数公式(1)0)(='C (C 为常数)(2)1)(-='αααx x (α为任意常数)(3)a a a x x ln )(=')1,0(≠>a a 特殊情况x x e e =')((4)ax e x x a a ln 1log 1)(log ==')1,0,0(≠>>a a x , x x 1)(ln =' (5)x x cos )(sin ='(6)x x sin )(cos -='(7)xx 2'cos 1)(tan =(8)xx 2'sin 1)(cot -= (9)2'11)(arcsin x x -=)11(〈〈-x(10))11(11)(arccos 2'〈〈---=x x x(11)2'11)(arctan xx += (12)2'11)cot (x x arc +-= 2、导数的四则运算公式(1))()(])()([x v x u x v x u '±'='±(2))()()()(])()([x v x u x v x u x v x u '+'='(3)u k ku '='][(k 为常数)(4))()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡ 3、复合函数求导公式:设)(u f y =, )(x u ϕ=,且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为)().('x u f dxdu du dy dx dy ϕ'=⋅=。

三、导数的应用1、函数的单调性0)('>x f 则)(x f 在),(b a 内严格单调增加。

0)('<x f 则)(x f 在),(b a 内严格单调减少。

2、函数的极值0)('=x f 的点——函数)(x f 的驻点。

设为0x(1)若0x x <时,0)('>x f ;0x x >时,0)('<x f ,则)(0x f 为)(x f 的极大值点。

(2)若0x x <时,0)('<x f ;0x x >时,0)('>x f ,则)(0x f 为)(x f 的极小值点。

(3)如果)('x f 在0x 的两侧的符号相同,那么)(0x f 不是极值点。

3、曲线的凹凸性0)(''>x f ,则曲线)(x f y =在),(b a 内是凹的。

0)(''<x f ,则曲线)(x f y =在),(b a 内是凸的。

4、曲线的拐点(1)当)(''x f 在0x 的左、右两侧异号时,点))(,(00x f x 为曲线)(x f y =的拐点,此时0)(0''=x f .(2)当)(''x f 在0x 的左、右两侧同号时,点))(,(00x f x 不为曲线)(x f y =的拐点。

5、函数的最大值与最小值极值和端点的函数值中最大和最小的就是最大值和最小值。

四、微分公式dx x f dy )('=,求微分就是求导数。

一元函数积分学一、不定积分1、定义,不定积分是求导的逆运算,最后的结果是函数+C 的表达形式。

公式可以用求导公式来记忆。

2、不定积分的性质(1))(])(['x f dx x f =⎰或dx x f dx x f d )()(=⎰(2)C x F dx x F +=⎰)()('或C x F x dF +=⎰)()( (3)⎰⎰⎰⎰±±±=±±±dx x x dx x f dx x x x f )()()()]()()([ψϕψϕ 。

(4)dx x f k dx x kf ⎰⎰=)()((k 为常数且0≠k )。

2、基本积分公式(要求熟练记忆)(1)⎰=C dx 0(2))1(111-≠++=+⎰a C x a dx x a a . (3)C x dx x +=⎰ln 1.(4)C a adx a x x +=⎰ln 1 )1,0(≠>a a (5)C e dx e x x +=⎰(6)⎰+-=C x xdx cos sin(7)⎰+=C x xdx sin cos (8)C x dx x +=⎰tan cos 12.(9)C x dx x +-=⎰cot sin 12. (10)C x dx x +=-⎰arcsin 112.(11)C x dx x +=+⎰arctan 112.3、第一类换元积分法对不定微分dx x g ⎰)(,将被积表达式dx x g )(凑成 )()()()]([)('x d x f dx x x f dx x g ϕϕϕϕ==,这是关键的一步。

相关文档
最新文档