天津科技大学外文翻译
天津科技大学 生物工程专业英语 部分电子版

Chapter 1 Introduction1. 1 The nature of biotechnologyBiotechnology is an area of applied bioscience and technology which involves the practical application of biological organisms , or their subcellular components to manufacturing and service industries and to environmental management®. Biotechnology 5 utilizes bacteria , yeasts , fungi , algae , plant cells or cultured mammalian cells as constituents of industrial processes. Successful application of biotechnology will result only® from the integration of a multiplicity of scientific disciplines and technologies, including microbiology , biochemistry , genetics , molecular biology , chemistry and chemical and process engineering. toBiotechnological processes will normally involve the production of cells or biomass , and the achievement of desired chemical transformations. The latter may be further subdivided into :(a ) formation of a desired end product ( e. g. enzymes , , organic acids, steroids) ; . 15(b) decomposition of a given starting material (e. g. sewage disposal ,,destruction of industrial wastes or oil spillages).The reactions of biotechnological processes can be catabolic , in which complex compounds are broken down to simpler ones ( glucose to ethanol ) , or anabolic or biosynthetic ,whereby simple molecules are built up into more complex ones (antibiotic 20 synthesis ) . Catabolic reactions are usually exergonic whereas anabolic reactions are normally endergonic.Biotechnology includes fermentation processes ( ranging from beers and wines to bread , cheese , antibiotics and vaccines ) water and waste treatment , parts of food technology , and an increasing range of novel applications ranging from biomedical to 25 metal recovery from low grade ores. Because of its versatility ,biotechnology will exert a major impact in many industrial processes and in theory almost all organic materials could be produced by biotechnological methods. Predictions of future worldwide market potential for biotechnological products in the year 2000 have been estimated at nearly US $ G5bn (Table 1. 1 ). However , it must also be appreciated that many important new 30 bio-products will still be synthesized chemically from models derived from existing biological molecules , e. g. , new drugs based on the interferons®. Thus the interface between bioscience and chemistry and its relationship to biotechnology must be broadly interpreted.1. 6 Summary . . .Biotechnology can be considered to be the application of biological organisms and processes to manufacturing industries. Biotechnology encompasses a wide range of disciplines and subjects. Although present day activities are highly sophisticated and novel many of the processes have their roots in the dawn of history.The specific processes are catalysed by microorganisms , plant or animal cells , or 5 products derived from them such as enzymes. The organisms of biotechnology can be harvested for biomass , can be used to • perform chemical conversions and may be the source of biologically active molecules ,including enzymes and monoclonal antibodies.Gene manipulation techniques have brought a new dimension to applied genetics and have created the potential for completely novel industrial processes ,for example human 10 interferon produced by bacterial cells. Significant developments are also occurring in process and control engineering and fermentation technology which will further advance the development of biologically-based industrial activity.Biotechnology appears to be an area of expansion and opportunity involving many sectors of industry , including agriculture ,food and feedstuffs ,pharmaceutical ,energy and 15 water industries. It will play a majOr role in the production of new drugs , hormones, vaccines and antibiotics , cheaper and more reliable supplies of energy and ( in the longer term ) chemical feedstuffs , improved environmental control and waste management. Biotechnology will be largely based on renewable and recyclable materials thus being better fitted to the needs of a world where energy will become increasingly more 20 expensive and in short supply. IChapter 2 Biochemistry of Growth and Metabolism2. 1 IntroductionThe purpose of a microorganism is to make another microorganism1 In some cases the biotechno1ogist , who seeks to exploit the microorganism , may wish this to happen as frequently and as quickly as possible. In other cases , where the product is not the organism itself , the biotechnologist must manipulate it in such a way that the primary goal of the microbe is diverted. As the microorganism then strives to overcome these restraints on its reproductive capacity ,it produces the product which the biotechnologist desires. The growth of the organism and its various products are therefore intimatelylinked by virtue of its metabolism.Metabolism is a matrix of two closely interlinked but divergent activities. Anabolic processes are concerned with the building up of cell materials , not only the major cell constituents ( proteins , nucleic acids , lipids , carbohydrates. etc. ) but also their intermediate precursors—amino acids,purine and pyrimidines ,fatty acicls,various sugarsand sugar phosphates. Anabolic processes do not occur spontaneously : they must be driven by an energy flow that for most microorganisms is provided by a series of ‘energy-yielding’catabolic processes. The degradation of carbohydrates to CO2 and water is the most common of these catabolic processes ,but a far wider range of reduced carbon compounds can be utilized by microorganisms in this way. The coupling of catabolic andanabolic processes is the basis of all microbial biochemistry,and can be discussed either in terms of the overall balance or in terms of individual processes ,as here.In practice we can very usefully distinguish between organisms which carry out their metabolism aerobically,using oxygen from the air ,and those that are able to do this anaerobically,that is ,without oxygen. The overall reaction of reduced carbon compounds with oxygen ,to give water and CO2 ,is a highly exothermic process ;an aerobic organism can therefore balance a relatively smaller use of its substrates for catabolism to sustain a given level of anabolism , that is , of growth. Substrate transformations for anaerobic organisms are essentially disproportionations , with a relatively low ‘energy yield ‘ , so that a larger proportion of the substrate has to be used catabolically to sustain a givenlevel of anabolism.The difference is very clearly illustrated in an organism such as yeast , which is a facultative anaerobe that is , it can exist either aerobically or anaerobically. Transforming sugar at the same rate , aerobic yeast gives CO2 , water , and a relatively high yield of new yeast ,whereas yeast grown anaerobically has a relatively slow growthwhich is now coupled to a high conversion of sugar into ethanol and CO2.Chapter 3 Applied GeneticsThe initial step in developing a biotechnological process is generally a search for a suit- able organism. Such organisms will be expected to create a product or service that will generate a financial return to that industry. In practice ,the geneticist has to select an or- ganism that produces the desired product. Once a suitable organism is found ,convention- 5 al breeding and mutagenesis methods are used where possible to induce genetic changes that may produce even more of the desired product. Selection of improved . organisms is tedious and time demanding and most of the methods available to the geneticists up until recently have involved trial and error. However ,new genetic technologies ,i. e. protoplast fusion and the use of recombinant DNA techniques , are allowing new approaches by 10 which useful genetic traits can be inserted directly into the chosen organism. Thus ,totally new capabilities can be engineered and microorganisms in particular and plant and animal cells to a lesser extent may be made to produce substances beyond their naturally endowed genetic capabilities.Increased productivity is not the only goal of the applied geneticist when manipulat- 15 ing a potential industrial organism. , resistance to viral infection and increased genetic stability may be incorporated into organisms that lack them ,the formation of harm- ful by-products can be reduced or eliminated and objectionable odours ,colours or slime products can be removed.A successful industrial culture shàuld ultimately exhibit most or all of the following 20 characteristics : it should be a pure culture ; be genetically stable ; be easily propagated ; exhibit rapid growth characteristics ; have good rate of product formation ; be free of toxic byproducts ;and be amenable to genetic manipulation.Cultures that are used industrially generally have arisen in three stages (1) as a re-- search culture studied to seek a useful product ; ( 2 ) as a development culture a 25 research culture which has gained a measure of importance ;and (3) as a production culture a research culture that is now actually used for industrial production.The final culture may be the same as the original research culture but more often it will have been subjected to an array of treatments to maximize productivity. This final industrial organism will have been genetically programmed to perform a metabolic func— 30 tion far in excess of that of the wild type. This will only be achieved by maximum con- trol of the growth of the organism during production. The development of the industrial organism from a wild type will have required changes in its genetic information that eliminate undesirable properties or even introduce entirely new ones.Finding the desired organism . and improving its capabilities is now a fundamental 35 aspect of most biotechnological processes (Fig. 3. 1 )3. 1 Selection and screeningIn all aspects of biotechnology major efforts are directed to screening programmes to generate new organisms ,either from some natural source or from established cultures by way of mutation or by hybridization programmes , including genetic engineering. These organisms must be screened for useful products and grown up on a large enough scale to produce and extract the desired product and then to subject the product to critical evaluation. Screening can be defined as the use of highly selective procedures to allow the detection and isolation of only those microorganisms or metabolites of interest from a large population. The further advancement of an isolate will involve improvement. and preser20 vation of the culture. However major hindrance to the full exploitation of this capacityis the availability of suitable screening procedures which can identify the necessary prod- uct ,especially in the presence of culture medium constituents.The major group of organisms presently used in biotechnology are microorganisms. The screening methodologies to be described will concentrate largely on thisgroup.In the search for new microorganisms from the environment for biotechnological processes there are normally three types of option available ; these involve the choice of habitat for sampling , the physical separation procedures for separating out the desired microorganism and the choice of method to achieve selection which in most cases in-volved enrichment cultures (Table 3. 1)Although many new produqer microorganisms are wild-types and have been isolated from natural environmenrs , major efforts are also directed to generating new genomes from existing genomes by laboratory manipulation. Organisms can be modified by mutation , recombinadon transformation , transduction and gene cloning either by single pro-cesses or in combinations (Table 3. 1).With natural selection and , more particularly , with genetic manipulation , all indus— trially important microorganisms will have been subjected to some form of screen- ing. The design of the screening programme is of major importance to achieve maximum recognition of new genotypes. Screens can be divided into two basic forms:( 1 ) non-selective random screens with all the isolates being tested individually for the desired qualities ;and .(2) rational screens in which there is some aspect of preselection. 253. 2 Culture maintenance .Having generated a novel microorganism either by natural selection or by genetic manipulation,the new organism must be stored or preserved with minimum degeneration of its genetic capabilities. Maintenance , preparation and propagation of the organism must achieve specific standards of reproducibility. The maintenance process of an industrial microorganism is an intergral feature of the infrastructure of biotechnology There are nomethods common to all industries. Specific maintenance techniques for industrial microorganisms are usually well kept industrial secrets. In practice most industrial microorganisms will be preserved by any one of the following procedures:(1 ) on agar medium with regular subeulturing;(2 ) by reduced metabolism-mineral oil coverage , refrigeration , or storage in a deepfreeze; .(3) drying-dry sand,silica gel,soil or filter paper;(4) freeze drying-widely practised because of convenience and gives greater stability than previous methods;(5) cryopreservation at ultra low temperatures ( 70 to 196 ‘C more costlymethod but suitable for a wide range of organisms and one that gives high survival rates)Culture collections throughout the world are playing an increasingly important role in biotechnology in providing a comprehensive range of pure , verified organisms that are of past , present or potential interest. Important operating strains must be retained in aviable and productive condition. In particular , many new genetically manipulated organ- isms exhibit some degree of instability and preservation must aim at achieving minimal straindrift.The remaining part of this chapter will examine in some detail the various tech- niques that are now available to the applied geneticist for modifying the genome of in- dustrially important organisms.3. 6 Recombinant DNA technologyThe analysis and manipulation of genetic material has been revolutionized by the development of in vitro gene c1oning techniques which have allowed the isolation , purification and selective amplification in suitable biological systems of almost any discrete segment of DNA from almost any organism. Due to deletion . of DNA not containing relevant genes , gene cloning enables the methods employed for analysis and manipulation to betargeted primarily on the gene region of interest ,thus vastly increasing the efficiency of the method used and simplifying the identification and characterization of the new modified derivatives In contrast to protoplast fusion where large parts or entire genomes are mixed and the characteristics of interest are controlled generally by a large number ofgenes(for example , antibiotics ) , recombinant DNA technology is primarily concernedwith small numbers of individual genes controlling known gene products (for example, proteins ,peptides ,etc. ).基因操作:the formation of new combinations of heritable material by the isolation of nucleic acid molecules,produced by whatever means outside the cell, into any virus, bacterial plasmid,or other vector system so as to allow their incorporation into a host organism in which they do not naturally occur but in which they are capable of continued propagation.The basic requirements for in vitro transfer and expression of foreign DNA in a hostbacterial cell are outlined in Figs 3. 6 and 3. 7 and can be summarized as follows:( I ) The isolation of circular plasmid DNA molecules which must contain one site where the integration of foreign DNA will not destroy essential functions.( 2) The generation of DNA fragments that are suitable for cloning by way of restriction endonucleases. The insert may be a chromosomal fragment from an-other microorganism (prokaryote or eukaryote ) , from an animal or plant , or from a chemically-synthesized DNA sequence.(3) A method of splicing the foreign DNA into the vector.(4) Incorporation of the hybrid DNA recombinants into the host cell .(5) Expression of the transformants which have the recombinant plasmids.3. 8 SummaryApplied genetics is concerned with deriving new and improved strains of organisms that can be utilized for the benefit of mankind. In biotechnology this will involve the selection of organisms from natural sources , from culture collections and other organizations ,or by further exploitation of ‘in house’ strains. A wide variety of techniques is available to modify , delete or add to the genetic complement of organisms. Selection and screening activities occupy a major part of biotechnological programmes. Screening is the use of procedures to allowthe detection and isolation of only those organisms or metabolites of interest among a large population. Screens may be non-selective random screens in whichall the isolates are treated as individuals for the requisite qualities or they may be ratio- nal screens involving some aspect of preselection. .Producer organisms must be preserved with minimum degeneration of genetic capabilities . Preservation can be on agar medium , by reduced metabolism , drying , freeze dry- ing or by ultra-low temperature.Organism genomes can be modified by mutagenesis or by various forms of by- bridization. Mutational programmes are primarily aimed at strain improvement and mu- tagens available include UV and ionizing radiation ,thynñne starvation and a wide selection of chemical mutagens. The mutation rate in an organism is genetically controlled and can be altered by mutator or anti-rnutator genes.Hybridization is essentially a method that facilitates the recombination of genetic material between organisms and can be expressed by sexual or parasexual mechanisms. Sexual hybridization occurs between haploid nuclei and will involve karyogamy, nuclear *fi and finally meiosis. Recombination of the genetic characteristics will arise because df rearrangement and reorganization of the chromosomes.Parasexual processes use various cellular mechanisms to bring together genetic ma- terial from different genetic sources. The main methods practised industrially involve conjugation , transduction , transformation and mitotic recombination.Protoplast fusion techniques are widely practised with many microbial cells as well as with plant and animal cells. Fusion rates have been greatly increased by means of the fusogen polyethylglycol.Recombinant DNA technologies allow the isolation ,purification and selective amplification in specific host cells of discrete DNA fragments or genes from almost any organ- ismb The basic requirements of this technology are restriction endonuclease enzymes which can cleave double-stranded DNA at specific sites generating DNA fragments of defined sizes. These fragments can then be inserted into carrier vehicles such as plasmids or phage and be covalently bonded by DNA ligase enzymes. Transformation is the main method used for the insertion of these chimeric DNA molecules into host cells. The types of host cell are typically but not exclusively specific mutant cells of E. coil ,B. subtilis orS. cerevisiae. Transformed cells are identified by several means including complementa-Hon and resistance markers hybridization , immunological methods and restriction en- donuclease analysis.Chapter 4 Fermentation Technology4. 1 The nature of fermentationThe origins of fermentation technology were largely with the use of microorganisms for the production of foods and beverages such as cheeses , yoghurts , alcoholic beverages, vinegar , sauerkraut , fermented pickles and sausages , soya sauce and the products ofmany other Oriental fermentations (Table4. 1 ) The present-day large scale production processes of these products are essentially scaled up versions of former domestic arts. Paralleling this development of product formation was the recognition of the role microorganisms could playin removing unpleasant wastes and this has resulted in mas— sive world-wide service industries involved in water purification , effluent treatment andwaste management. New dimensions in fermentation technology have made use of the ability of microorganisms (1) to overproduce specific essential primary metabolites such as glycerol , acetic acid , lactic acid , acetone , butyl alcohol , butane diol , organic acids, amino acids , vitamins , polysaccharides and xanthans ; ( 2 ) to produce useful secondary metabolites (groups of metabolites that do not seem to pLay an immediate recognizablerole in the life of the microorganism producing them ) such as penicillin , streptomycin, oxytetracycline cephalosporin , giberellins , alkaloids , actinomycin ; and ( 3 ) to produce enzymes as the desired industrial product such as the exocellular enzymes amylases ,proteases , pectinases or intracellular enzymes such as invertase , asparaginase , uric oxidase, restriction endonucleases and DNA ligase More recently , fermentation technology hasbegun to use cells derived from higher plants and animals under conditions known as cell or tissue culture. Plant cell culture is mainly directed towards secondary product formation such as alkaloids , perfumes and flavours while animal cell culture has initially been mainly concerned with the formation of protein molecules such as interferons , mono- clonal antibodies and many others.There are three main operating types of bioreactors for biotechnological processestogether with two forms of biocataysts. Bioreactors can be operated on a batch , semi- continuous (fed-batch)or continuous basis. Reactions can occur in static or agitated cultures , in the presence or absence of oxygen , and in aqueous or low moisture conditions (solid substrate fermentations ) . The biological catalysts can be free or can be attached to surfaces by immobilization or by natural adherence. The biocatalysts can be cells in agrowing or non-growing state or isolated enzymes used as soluble or immobilized catalysts. In general , the reactions occurring in a bioreactor are conducted under moderate conditions of pH(near neutrality) and temperature (20 to 65t ). In most bioreactors the processes occur in an aqueous phase and product streams will be relatively dilute.4. 10 SummaryGrowth is the increase of cell material expressed in terms of mass or cell number. The doubling time of an organism population is the time required for the doubling in biomass while generation time relates to the period necessary for the doubling of cell numbers. Mathematical equations have been developed describing the essential features of .microbial growth in bioreactors. In batch cultivation , there is a continuously changing nutrient environment which is reflected in the physiological state of the culture. In con- trast , in continuous culture , with controlled addition and removal of medium , a steady state of population characteristics can be achieved.In fermentation technology , large numbers of cells are grown under defined con-trolled conditions far biomass or product formation. In general the processes are carried out in a containment system or bioreactor ,the main function of which is to minimize the cost of producing a product or service. Processes can be considered as conversion cost-in- tensive or recovery cost-intensive. Bioreactors can operate on a batch , fçd-batch or con- tinuous basis. The biocatalysts (microorganisms ,plant or animal cells or enzymes) canfunction in a free form or be immobilized. Optimization of a bioreactor process will in- volveminimizing raw materials and energy use and maximizing product formation.Bioreactor design will depend on the nature of thçprocess. The continuous stirred tank system WSTR) is the most widely used bioreactor and can be operated for aerobic processes as well as for anaerobic processes . Mixing in a CSTR bioreactor is achieved bya mechanically operated central shaft equipped with blades or impellers. In contrast,tow- er bioreactors do not have mechanical agitation and mixing of contents is achieved by the rising air bubbles.Medium is formulated to meet the nutritional demands of the producer organisms, the objectives of the process and the scale of the operation Cost of medium is a critiàal factor in determining the economics of a fermentation process , and for most industrial processes relatively • complex mixtures of cheap natural products are used.Instrumentation of bioreactors involves measuring specific parameters recording them . and then using this information to improve and optimize the pro- cess. Measurements can be made on—line or off-line. There is a lack of efficient on-linesensors for bioreactor processes. Off-line determinations are slow and unsuitable for computer systems. There is an increasing involvement of computer control of fermentation processes.Mass and energy transfer processes are a major part of all fermentation process- es. Mixing mechanisms aim to optimize both axial and radial dispersion to ensure corn-plete dispersion of medium components throughout the bioreactor , thus encouraging good mass transfer rates and high biological productivity.Solid substrate fermentations are concerned with the growth or microorganisms on solid materials in the . absence or near absence of free watert These fermentations can use indigenous microorganisms ,pure single cultures and pure mixed cultures. lnter-particle mass transfer and intra-particle diffusion are the two main conditions limiting solid substrate fermentations.Chapter 5 Enzyme and Immobilized Cell Technology5. 5 ImmobIlized enzymesThe most important drawbacks in the use of isolated enzymes are that they are not sufficiently stable under operational conditions and as water-soluble free molecules ,they are difficult to separate from substrate and products and to reuse repeatedly.5.6 Properties of immobilized enzymesImmobilization of an enzyme can result in significant changes in its properties.These a1-terations can be attributed to (1 ) chemical and/or conformational changes in the enzyme structure, (2) the heterogeneous nature of catalysis by immobilized enzymes ,and (3) the physical and chemical nature of the carrier used.5. 8 SummaryEnzymes are highly specific biocatalysts ,functioning at high conversion rates under mild physiological conditions in aqueous solutions. They occur naturally inside all living or— ganisms but can also occur in nature as extracellular enzymes secreted by organisms into the environment. Over 2000 enzymes have been isolated but only about 20 have gained significant commercialimportance and most of these are hydrolases , for example amy-lases ,proteases ,pectinases and cellulases. Other enzymes of importance are glucose iso- merase and glucose oxidase.Most important commercial enzymes are produced from a limited number of microorganisms which have a long history of acceptability as food and beverage producers. Safety regulations impose severe limitations to novel enzyme products.Extracellular and intracellular microbial enzymes are produced industrially by sub- , deep tank , and solid substrate fermentation techniques Most liquid media aremixtures of several complex undefined materials , sucht as molasses , starch hydrolysates, corn steep liquor , yeast extract. Batch cultivation is the most utilized method of production. Enzyme production can be controlled by environmental and genetic manipulation.Enzymes may be used in the free water-soluble state or in an immobilized form. Immobilization prevents diffusion of the enzyme in the reaction mixtures and allows easy recovery from the product stream ; immobilized enzymes can be used best in continuously operated bioreactors. Enzyme immobilization can occur . by covalent coupling , entrapment in gels , encapsulation , adsorption on solid surfaces and crosslinkingwith multifunctional agents. Immobilized enzymes have so far found limited industrial use but further applications . should come in medical and analytical use.Whole cell immobilization techniques have now been widely developed using the principles derived from enzyme studies. These techniques allow simple and multi-enzyme systems to be utilized and avoid the hazards of long enzyme purification procedures. In practice the immobilized cells may be dead ,in a resting state ,or actively grow- ing and can be treated to allow easy entry and exit of specific molecules through the plasma membranes. Such ‘permeabilization’ involves the formation of small pores in the cell membrane but retaining the enzymes inside the cell. Cofactor regeneration by immoS bilized living cells is an important commercial advantage. Multi-enzyme reactions aremore advantageously carried out in whole cells as opposed to isolated and/or immobilized ensymes.The most commonly used bioreactor systems for immobilized enzymes and cells are packed bed bioreactors and fluidized bed bioreactors.Cells may also be immobilized by attachment to surfaces by natural mechanisms of adhesion and subsequent film growth. Examples of these techniques include percolating or trickling filters , rotating surface bioreactors or biological contactors , or film growths on support particles in stirred tanks or fluidized bed bioreactors.Chapter 6 Downstream Processing in Biotechnology6. 1 Introduction‘Downstream processing’ is a useful collective term for all the steps which are required in order actually to recover useful products from any kind of industrial process. It is par- ticularly important in biotechnology where the desired final forms of the products are usually quite far removed from the state in which they are first obtained in the bioreactor. For examp’e , a typical fermentation process gives a mixture of a dispersed solid(the eell mass , perhaps with some components from the nutrient medium , etc. ) and a dilute water solution ;the desired product may be within the cells ,as one constituent of a very。
目的论视角下《红楼梦》英译本翻译策略分析——以霍克斯译本第一回为例

152《名家名作》·翻译一、 引言目的论理论是弗米尔于1978年在其《普通翻译理论基础》一书中首先提出,是功能翻译理论最核心的理论。
其核心概念是,决定翻译过程的最主要因素是整体翻译行为的目的,原文和译文的互动由翻译的目的来决定。
译者需要使用灵活的翻译策略来达到目的语文本要达到的目的,即目的决定方法。
翻译过程需要遵守三个原则:目的原则、连贯原则和忠信原则,而目的原则为最高原则。
《红楼梦》作为中国四大名著之一,是中国古典小说中“文备众体”的最优秀文学经典。
自清乾隆中叶成书以来,备受学者与读者关注。
嘉庆末年《京都竹枝词》中有言:“闲谈不说《红楼梦》,读尽诗书也枉然。
”《红楼梦》自出版以后,很快有多种译本问世并传至海外。
第一个英文全译本即为英国著名汉学家霍克斯所译,1974年由英国企鹅出版有限公司陆续出版。
另一个全译本为中国的杨宪益夫妇所译,1978年由外文出版社分三卷出版。
这些不同译本对推动《红楼梦》走出去,让更多的西方读者了解并欣赏这部经典发挥了重要作用。
本文就以霍克斯译本的第一回为例,从诗歌层面、词汇层面和句子层面探讨译者如何采用不同的翻译策略以实现其翻译目的,让西方读者理解这部中国古典小说的语言特色和艺术价值。
二、诗歌层面诗歌在《红楼梦》中占据重要地位。
这些诗歌或阐发主旨,或描述人物命运,或描述书中人物的性格特点,发挥了其独特的艺术和审美价值。
因此,译者为了译入语读者接受的方便和有效,除了做跨语言的转换之外,还为目标语读者提供了必要的背景知识和大量注释,在客观上极大地消除了西方读者在跨语言和跨文化方面造成的诸多障碍,它们共同构成了小说审美价值和艺术价值的重要组成部分。
石头偈无才可去补苍天,枉入红尘若许年。
此系身前身后事,倩谁记去作奇传?Found unfit to repair the azure sky,Long years a foolish and mortal man was I.My life in both worlds on this stone is writ,Pray who will copy out and publish it?此为小说开篇第一首诗。
天津科技大学优秀外文资料翻译

外文资料翻译FOREIGN LITERATURE TRANSLATION专业:国际经济与贸易姓名:潘博洋指导教师:外商直接投资对清洁能源的使用,碳排放和经济增长的贡献*Jung Wan Lee本文研究了外商直接投资(FDI)净流入对清洁能源的使用,碳排放和经济增长的贡献。
本文运用协整检验来研究变量和固定效应模型之间的长期均衡关系,以考察外商直接投资对其他变量贡献的大小。
本文分析了二十国集团中19个国家自1971至2009年的面板数据。
研究结果表明,外商直接投资对二十国集团的经济增长起到了非常重要的作用,但同时又限制了其在经济中对碳排放增长的影响力。
研究也发现对于外商直接投资与清洁能源使用的联系没有令人信服的证据来证明。
根据研究结果,文章讨论了外商直接投资在实现绿色增长目标中的潜在作用。
一、引言在政治领域,有一种普遍的看法,外商直接投资(FDI)增强了东道国的生产力并促进了经济的增长。
此概念表明外商直接投资不仅可能提供直接融资的资本,也可以通过采用国外技术和技术诀窍来创造积极的外部效应。
Batten和V o (2009)提出外商直接投资通过技术转让、溢出效应、生产力提高以及新的流程和管理技术的引进来刺激经济增长。
Fernandes和Paunov(2012)最近表明外商直接投资对创新活动和生产效率产生了积极的影响。
Hermes和Lensink(2003)指出外商直接投资在实现经济现代化和促进经济增长中扮演着重要的角色。
世界银行公布的历史数据表明,外商直接投资可能在应对经济增长的挑战中发挥中重要作用,特别是对二十国集团(G20)国家而言。
二十国集团是由来自于20个主要经济体中的政府或国家元首组成的团体,即19个国家加上欧盟,包括阿根廷,澳大利亚,巴西,加拿大,中国,法国,德国,印度,印度尼西亚,意大利,日本,韩国,墨西哥,俄罗斯,沙特阿拉伯,南非,土耳其,英国和美国。
总的来说,根据世界经济增长指标数据,二十国集团经济体占据着超过80%的世界生产总值,80%的世界贸易量和62%的世界人口数量。
《三体》英译本简化特征考察——基于语料库的研究

社会科学研究《"体$英译本简化特征考察—-基于语料库的研究陈建生王琪(天津科技大学,天津300222)摘要:借助于语料库的方法,该研究旨在从词汇、句法两个角度,通过对获得2015年雨果奖的《三体》的英译本特征分析来验证翻译共性中的简化特征。
《三体》的英译者刘宇昆凭借着精通汉英双语的这一优势,通过灵活的翻译技巧,将有着“中国科幻文学的里程碑之作”之称的《三体》成功地介绍到美国,促进了中美文化的交流。
结果表明《三体》英译本在词汇和句法层面上都不具备翻译共性的简化特征。
关键词:语料库;《三体》;翻译共性;简化中图分类号:H315.9A Corpus-based Study of Simplification in the English Translation of SantiCHEN Jiansheng, WANG Qi(Tianjin University of Science and Technology, Tianjin 300222, China) Abstract(This corpus linguistics based paper aims to verify one of the translation universals, simplification, with the English version of Three-Body Problem as the research subject, which won the 2015 Hugo Award for the Best Novel, and by using both qualitative and quantitative research methods from the aspects of lexicon and syntax. The results suggest that the English version of this masterpiece gives vey little evidence of simplification from either lexicon or syntax.Key words: corpus; Three-Body Problem; translation universals; simplification_、引言 兴起,语料库翻译学油然而生,这种新式的研究范语料库技术运用于语言学的研究最早可以追 式是基于两种转变而形成的。
聚乙烯催化剂

天津科技大学本科生毕业设计(论文)外文资料翻译学院:材料科学与化学工程学院系(专业):化学工程与工艺—姓名:杜波________________学号:—06033403 __________以MeCL 为载体的TiCl4催化剂的发现及进 展NORIO KASHIWAR & D Center, Mitsui Chemicals, Incorporation, 580-32 Nagaura, Sodegaura,Chiba 299-0265, JapanReceived 20 August 2003; accepted 22 August 2003摘要:聚乙烯(PE )和聚丙烯(PP )作为聚烯烃的代表物,是我们日常生活必不可少的原料。
TiCl 3催化剂是由Ziegler 和Natta 在20世纪50年代确定的,由此诞生 出了聚烯烃工业。
然而,由于催化剂的活性和立体选择性很低,导致在PE 和PP 工业生产中需要清除催化剂残渣和无规产物。
我们发现以MgCl 2为载体的TiCl 4 催化剂,活性提高了 100多倍,并且具有更高的立体选择性,这样我们不需要清 除残渣,是一次工艺革新。
此外,缩小了 PE 和PP 的分子量分布,可精确控制聚合物结构,生产低密度聚乙烯,在低温下生产热封膜。
产品革新的一个典型例 子就是现在可以用这种高立体定向性、窄分子量分布的高性能抗冲聚合物代替金 属做汽车保险杠。
这些工艺与产品的革新奠定了聚烯烃工业。
最新的以MgCl 2 为载体的TiCl 4催化剂能很完美的控制PP 等规度,而且有望做进一步的改进和 完善。
关键词:MgCl 2作载体TiCl 4催化剂;聚烯烃;立体定向性聚合物;共聚物;聚乙烯 NorioKashiwa 博士是三井化学公司的高 级研究人员,是公司专门为他安排的职位。
1964年毕业于日本Osaka 大学,于1966年获得该校工程硕士学位。
同年,他进入了Mitsui 石油化学公司。
电力系统短期负荷预测

电力系统短期负荷预测POWER SYSTEM SHORT-TERM LOAD FORECASTING专业:电气工程及其自动化姓名:指导教师姓名:申请学位级别:学士论文提交日期:二零一六年十二月学位授予单位:天津科技大学摘要电力系统负荷预测是电力生产部门的重要工作之一.准确的负荷预测,可以合理安排机组启停,减少备用容量,合理安排检修计划及降低发电成本等.准确的预测,特别是短期负荷预测对提高电力经营主体的运行效益有直接的作用,对电力系统控制、运行和计划都有重要意义.因此,针对不同场合需要寻求有效的负荷预测方法来提高预测精度。
本文采用神经网络方法对电力系统短期负荷进行预测。
本文主要介绍了电力负荷预测的主要方法和神经网络的原理、结构,分析了反向传播算法,建立三层人工神经网络模型进行负荷预测,并编写相关程序。
与此同时采用最小二乘法进行对比,通过对最小二乘法多项式拟合原理的学习,建立模型编写相关程序。
通过算例对两种模型绝对误差、相对误差、拟合精度进行分析,同时比较它们训练时间,得出标准BP神经网络具有更好的精度优势但训练速度较慢。
最后针对标准BP神经网络训练速度慢、容易陷入局部最小值等缺点,对标准BP神经网络程序运用附加动量法进行修改,分析改进后网络的优点。
关键词:短期负荷预测标准BP神经网络最小二乘法附加动量法ABSTRACTPower system load forecasting is one of the most important work of the electricity production sector。
The accurate load forecasting can arrange unit start-stop, reduce the spare capacity, reasonable arrangement of the maintenance plan and reduce power cost,etc。
聚二甲基硅氧烷消泡剂
天津科技大学本科生毕业设计(论文)外文资料翻译学院:材料科学与化学工程学院专业:化学工程与工艺姓名:***学号:********指导教师(签名):2014年3月01日聚二甲基硅氧烷消泡剂摘要:使用最为广泛的众多消泡剂都是以聚二甲硅氧烷油为基础的,但这些产品的基本信息几乎没有。
在多数配方中,疏水强化的粒子分散在油中以增强消泡率,但这种方法涉及到的主要作用机理一直未被确定。
为了解决这些问题,我们对聚二甲基硅氧烷消泡剂进行了系统的研究。
通过测量其表面界面、接触角、油的扩张速率、粒径分布以及个别膜的稳定特性,并同步测量泡沫的稳定性,我们可以定量的测定聚二甲基硅氧烷消泡剂反应的重要因素。
我们发现消泡剂性能的损失(泡沫寿命以60s为标准)与消泡剂粒径大小(<6μm)的降低相一致。
更重要的是我们有直接证据表明,位于油水相界面的疏水强化的粒子,可以穿过作为消泡剂粒子的通道的有机相水相界面,从而提高油的进入速率以及消泡剂的效率。
关键词:工业消泡剂,聚二甲基硅氧烷油1 引言泡沫问题出现在各种工业生产中,例如:精馏、过滤以及发酵。
而且不必要的泡沫会引起产品缺陷,例如在油漆、印刷、模塑以及粘合方面的应用。
因此在广泛的工业问题和应用行业,抑泡剂和消泡剂显得十分重要,且在不同的状态和不同工作条件下有着各不相同的消泡和抑泡要求。
为了满足上述各种要求,我们需要知晓消泡剂的基本工作原理。
只有这样,我们才能设计出新的产品以及优化现行的产品。
当前,很多消泡剂都是按照配方用PDMS配制出来的,因此我们研究消泡剂的方向是聚合油。
最近Garrett[1]提出了杰出且全面的一般消泡理论,在这个领域所有的重要作品以及发展过程都可以在论文中找到。
然而,也正如Garrett在文中指出的那样,我们缺乏对PDMS实际应用的系统的研究。
没有这些研究,我们不能充分的评估出相关的工业系统。
因此我们的主要目的是总结聚二甲基硅氧烷消泡剂的作用机理,同时为这些机理提供必要的实验数据。
现代电力电子学与交流传动
现代电力电子学与交流传动3.42 余弦交点控制一个通用的可获得线性传输特性的控制方式是余弦交点方式。
图3-40是该方式的单项桥式变流器的图解说明。
将正弦输入电压V ab 相位前移π/2生成余弦波;在每个下半周期将其取反,构造如图b 所示的“余弦波”。
每半个周期的控制电压Vc 和余弦波形的焦点极为触发延迟角a ,则 COSa=Vp Vc(3-74)式中,Vp 是余弦的峰值,将式(3-74)代入V d =V do *COSa ,则V d =Vp VdoV c =KV c (3-75)表明输入输出之间是增益为K 的线性关系。
这时变流器就相当于一个开关式线性放大器。
注意,即使余弦波德幅值随输入电压变化,K 不变。
需注意,式(3-75) 只适用于连续导电模式。
对于非线性,就像前面说的一样,K 是非线性的,取决于a 角和负载参数。
图3-41给出了三相桥式变流器的余弦交点控制方式;图3-42和图3-43说明了方式的工作原理。
图中只给出了晶闸管q 触发逻辑信号的生成,但该原理同样适用于其他晶闸管。
输入线电压V ac 为参考波,其相角从0~π对应于晶闸管Q1的触发延迟角的范围。
相电压-V b 比V ac 超前π/2,构成晶闸管Q1的余弦基准波。
如图3-41所示,通过变压器将相电压和线电压降压后练到比较器,将控制电压Vc 与相电压-V b 相比较,在触发延迟角a 时输出进行逻辑与后,用其前沿触发双稳态触发器9,然后依次与脉冲列(未画出)相耦合送至Q1 的门极。
当Q3触发时,其被复位,这样是门极脉冲持续限制在2π/3。
通过相应的增大或减小Vc 的值,可使Q1的触发延迟角前移或后移。
如图3-41所示,超前限定负脉冲接至与门5,后限定脉冲接至或门7。
3.43 相振荡器原理上节讨论的余弦交点片式是直接从输^电压中得到余弦基准波形。
变流器产生的谐波流过电源阻抗,引起输入电压的畸变。
类似的畸变和瞬态变化可纳入到本身或并联欲行的变流器映入到系统中。
大学计算机基础(二)实验指导
实验一Word文档编辑与排版一.实验目的1.掌握Word文档基本操作2.掌握Word文字编辑和文档排版3.掌握图片的插入与排版方法二.实验内容1.建立一个word文档,文档名为“学号姓名word实验一”。
如学号为06101101,姓名为张晓,则该文档名为“06101101张晓word实验一”。
2.在题1所建立的文档内录入如下文字:荷塘月色(节选)朱自清曲曲折折的荷塘上面,弥望的是田田的叶子。
叶子出水很高,像亭亭的舞女的裙。
层层的叶子中间,零星地点缀着些白花,有袅娜(niǎo,nuó)地开着的,有羞涩地打着朵儿的;正如一粒粒的明珠,又如碧天里的星星,又如刚出浴的美人。
微风过处,送来缕缕清香,仿佛远处高楼上渺茫的歌声似的。
这时候叶子与花也有一丝的颤动,像闪电般,霎时传过荷塘的那边去了。
叶子本是肩并肩密密地挨着,这便宛然有了一道凝碧的波痕。
叶子底下是脉脉(mò)的流水,遮住了,不能见一些颜色;而叶子却更见风致了。
月光如流水一般,静静地泻在这一片叶子和花上。
薄薄的青雾浮起在荷塘里。
叶子和花仿佛在牛乳中洗过一样;又像笼着轻纱的梦。
虽然是满月,天上却有一层淡淡的云,所以不能朗照;但我以为这恰是到了好处——酣眠固不可少,小睡也别有风味的。
月光是隔了树照过来的,高处丛生的灌木,落下参差的斑驳的黑影,峭楞楞如鬼一般;弯弯的杨柳的稀疏的倩影,却又像是画在荷叶上。
塘中的月色并不均匀;但光与影有着和谐的旋律,如梵婀(ē)玲(英语violin小提琴的译音)上奏着的名曲。
荷塘的四面,远远近近,高高低低都是树,而杨柳最多。
这些树将一片荷塘重重围住;只在小路一旁,漏着几段空隙,像是特为月光留下的。
树色一例是阴阴的,乍看像一团烟雾;但杨柳的丰姿,便在烟雾里也辨得出。
树梢上隐隐约约的是一带远山,只有些大意罢了。
树缝里也漏着一两点路灯光,没精打采的,是渴睡人的眼。
这时候最热闹的,要数树上的蝉声与水里的蛙声;但热闹是他们的,我什么也没有。
毕业论文外文翻译报告范文
毕业论文外文翻译报告范文AbstractThis report presents a translation of an academic article titled "The Impact of Technology on Education." The article discusses the various ways in which technology has transformed the field of education, particularly in terms of teaching methods, student engagement, and access to educational resources. The translation aims to accurately convey the content and meaning of the original article, while ensuring clarity and coherence for the readers.IntroductionTechnology has revolutionized nearly every aspect of our lives, including the field of education. In recent years, there has been a significant increase in the use of technology in classrooms and educational institutions worldwide. This article explores the impact of technology on education, highlighting its benefits and potential challenges.Teaching MethodsOne of the key effects of technology on education is the transformation of traditional teaching methods. With the introduction of interactive whiteboards, online learning platforms, and educational apps, teachers now have access to a wide range of tools and resources to enhance their teaching. These technologies enable teachers to create dynamic and engaging lessons, integrating multimedia content and interactive activities, which enhance student understanding and participation.Student EngagementTechnology has also had a profound impact on student engagement in the learning process. With the use of digital tools, students can now actively participate in their education and take ownership of their learning. Interactive quizzes, online discussions, and collaborative projects allow students to actively engage with the subject matter, promoting critical thinking and problem-solving skills. Moreover, technology enables personalized learning experiences, catering to individual student needs and preferences.Access to Educational ResourcesAnother significant benefit of technology in education is the increased access to educational resources. Online libraries, open educational resources, and digital textbooks provide students with a vast amount of information at their fingertips. This access to a wide range of resources goes beyond what traditional textbooks and classrooms can offer, empowering students to explore and learn at their own pace.Challenges and ConsiderationsWhile the impact of technology on education is largely positive, there are also some challenges and considerations that need to be addressed. One concern is the potential for technology to create a divide between students who have access to technology and those who do not. It is essential to ensure equitable access to technology and training for all students to prevent further disparities in education.Additionally, the integration of technology in the classroom requires teachers to adapt and acquire new technological skills. Adequate training and support must be provided to empower teachers to effectively incorporate technology into their teaching practices.ConclusionIn conclusion, technology has had a transformative impact on education. It has revolutionized teaching methods, enhanced student engagement, and provided increased access to educational resources. However, it is important to address the challenges and considerations that arise with the integration of technology in education. By doing so, we can ensure that technology continues to benefit and enhance the learning experience for all students.References:[Original Article Reference]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从传统ASP到摘要:是微软公司应对网络应用程序发展的新产品。
在内部的革新对于这个产品导致了重大的工业普及意义。
因此对于的教育有一个增长的需求。
网络应用程序的发展是大学生在大学三年级时的本科课程。
为了满足工业产业和大学生的需求,我们已经改变了从传统ASP到这个课程的焦点。
这篇论文报告了这个改变。
有重大意义的产品特点和对于改变的动机在其中被讨论。
在这个过程中,遇到的问题和一些有用的网上学习资源在论文中被描述。
关键词:网络应用程序的发展,传统ASP,,移动,1.介绍不仅仅是ASP的一个新版本。
它为移动窗口应用到网络应用程序提供了革新。
网络服务和微软网络框架已经使愿景成为了一个现实,就是让它作为下一代计算机信息计算处理的平台。
伴随着服务器端控件、网页表单和代码隐藏(代码后置)等一系列技术的的应用,我们可以通过完整的面向对象的编制程序设计(OOP)模型发展网络应用程序。
这就有助于人们了解,以及使在行业中普及。
这个行业的项目工程是新西兰国立理工学院(UNITEC)计算机系统学士学位(BCS)的最后的课程,这是大学生们从事现一个现实的真正的工作的工程项目。
在我们学校我们已经观察到一个快速增长、快速成长的的相关产业的项目工程。
这个网络应用程序开发(The Web Application Development)论文是本科大学生大学三年级的课程。
它最初提供使用的是ASP 2.0和应用服务器平台(ColdFusion)。
为了满足来自产业行业和大学生们的需求情况,我们已经改变了课程的教学内容,它们包括、Visual () 、和应用服务器平台(ColdFusion)。
这些改变已经从2003年的第一学期就开始了。
这篇论文将要调查的产品功能,以及说明解释为什么 的产品功能是独一无二的。
有关迁移到的动机我们进行了讨论并进行了分析。
我们分析了在我们学校有关的产品行业工程项目的当前的发展形势,还分析了对我们的学生的短期的调查结果,以及分析了是否是一个更好的工具对于教育教学。
有关迁移到遇到的问题也被讨论,同时也提出了一些对学习有用的资源。
通过预知可知,对于那些想要打算去介绍引进的老师来说是很有帮助的。
2.为什么使用是特别的?在互联网上有许多文章是论述超过传统的动态服务器网页 (ASP)的优势。
例如,引进了一个综合的完整的开发环境(IDE),,一个单一的应用开发库为形形色色所有类型的应用程序服务,编译以及输入强有力的类型代码,一个面向对象的应用程序设计相当于网络应用程序开发。
(Goodyear, 2002, Bloom, 2002)。
从传统上来讲,我们有三个类型版本的ASP(ASP1.0,ASP2.0 和ASP3.0),这些通常被叫做传统的ASP。
虽然每一个新的版本的ASP都提供了几个新的产品功能来克服它们前一个版本的缺点,但是这些版本的ASP都遵循着它们相同的工作模式并且有着许多的局限性。
他们的继承者支持新的完整的工作模式,同时保留了传统的工作模式,并且提供了创新的技术来克服传统ASP 所带来的局限性。
2.1构建提高和延伸扩展了Windows DNA(操作系统分布式的互联网应用程序)。
Windows DNA的详述对于使用微软公司(DCOM/COM)的技术去构建n层应用程序来讲是一门方法论。
闯入功能件的应用程序和部署这些在网络上设计,是一项战略,是为了更好的使用组织资源。
这需要一个好的有计划的体系结构。
在过去,Windows DNA .DCOM通信通常有防火墙和代理服务器系统的问题。
这意味着Windows DNA仅仅能够在企业内部网中被很好的使用,而不是在互联网中。
DCOM/ COM也需要注册表。
使创造和整合网络服务的进程变得更加容易,它可以在Windows DNA中用于相似的方式。
从此DCOM/COM不再被涉及到。
HTTP(像通道),SOAP(格式化)和XML被用于通信和数据转移在分布式组件中。
这克服了跨越互联网和公共防火墙之间通讯的问题有求助于要求附加端口对外部存取开放的所有的解决方案。
此外,URI(Uniform Resource Identifier统一资源标识符)和UDDI(Universal Description Discovery And Integration发现和集成)被用于远程部件的引用而不是注册表。
2.2发展使集成开发环境无缝地结合。
包括内置的对创造和修改目录的支持。
对于开发人员,这样使ASP/VB程序设计模型结合起来。
来代替开放的多元的集成开发环境(就像传统的ASP平台),开发人员可以打开一个单一的集成开发环境,在一个干净的、始终如一的界面开始他们的工作。
配备有强大的调试并可以排除故障的环境。
这意味着对于操作系统应用程序强大的调试程序现在同样的对网络应用程序有效。
能够使程序员利用面向对象的程序设计模型,例如代码共享。
在面向对象程序设计模型下,一个最常见的方法去实现、去达到代码共享就是继承,他无法再使用传统ASP。
自从完整的面向对象程序设计功能在上被支持,开发人员能够使面向对象程序设计方案平稳地转移到的代码中,同时能够授权给与他们在网络应用程序开发中相似的软件公司,使他们在操作系统应用程序开发中保持自己的风格。
与此同时,他们也能够在没有重大的变动下在网络应用程序下转变操作系统应用程序。
通过改进的状态维护功能,使我们能够为用户提供比传统的ASP更加丰富和更快捷的网络应用程序(Olges,2002年)。
还支持先进的会话状态管理。
在传统的ASP中,有两个主要的会话管理问题。
会话对象被保存在网络服务器内存中,会话标识部分作为Cookie被保存在客户端计算机。
这些阻止会话管理的问题被有效的实施。
用两种方法解决了这些问题:一方面是它提供了一个“没有Cookie”会话对象的选项,这样以至于可以通过全球资源定位器(URL)渠道传递会话ID;另一方面是它提供了三种不同的会话模式(在进程中,状态服务器和SQL Server 数据库),以至于一个会话对象可以被任意存储在网络服务器,远程服务器或者数据库中。
3.改变的动机3.1业内动机我已经检查了我们学校的三个学期中几乎所有的行业项目计划,无论他们是否与WAD技术有关系,如果是有关系,那他们习惯使用什么样的工具。
表格1展示了三个学期的成绩的总结。
总体上来讲所有的ASP/项目工程是增长的,但是是缓慢增长的。
然而传统的ASP的项目工程是迅速坠落的,项目工程是迅速增长的(以每学期超过12%的速度增长)。
这些情况给了我们一个想法那就是在这个行业中,被认为比传统的ASP有优势,尤其是在2002年第一个正式版本发布的时候。
来自通讯行业的我们学生的反馈信息确认了这一观点。
在互联网上,有大量的文章同样的也支持了这一观点。
这些都鼓励着我们在WAD课程中放弃传统的ASP从而转移到 上。
多年以来高等教育已经意识到它是一个服务行业,多年来高等教育已经认识到它是一个服务的行业并且不得不重新估计重新评价在这个行业上的他们的方法,他们将更加重视更加强调对会议的期望以及利益相关者的需求(Nair, 2002)。
3.2. 学生的学习动机大学生们需要。
当学生们选我们的WAD课程时,他们中的大多数计划自己将来成为一位职业的软件开发者。
事实上,他们中的一些已经使软件开发人员,或者他们作为软件开发人员争取回到职场。
在职场高度需要技术是吸引他们最重要的地方。
一项短期的调查,显示出了现在的学生和过去的学生各自的情况。
对于过去的学生,在11个回复者中,百分之一百仍然想学习。
并且如果让他们选择,百分之八十二的学生更喜欢学习,而不是传统的ASP,百分之十八的学生两者都喜欢学。
这些回答通过评论被支持,例如“我更喜欢知道这个行业要求我工作需要的技术”,“我想在将来作为一名WAD专职人员,同时我认为在这个领域非常有用”。
对于当前的学生来讲,在16位回复者中,百分之七十五的学生更喜欢学习而不是传统的ASP。
然而,百分之二十五的学生却没有想法。
这可能是由于他们缺少传统ASP知识导致的,这项调查是在六周的教学时间之后完成的。
3.3教学动机从教育学上讲,对于行业来说一个好的工具不一定对于教学也是一个好的工具。
对于教学来讲,与传统的ASP相比是一个更好的工具?比传统的ASP提供了更加丰富的语言功能。
我们经常会有选择权去执行特定的任务。
一个关键的好处是从单一到强大的程序设计模型,或者从简单到困难的程序设计模型都存在一个平缓的过渡。
虽然 支持面向对象程序设计模型,但是你不得不使用那种模型进行程序设计。
一个网页表单没有代码隐藏将会工作的很完美。
一个用完整的传统的ASP模型的网页仍然能工作。
虽然与结合起来了,但是我们仍然被限制使用。
笔记本和拥有网络应用程序目录的FTP服务器仍然允许我们开发一个合理的大的应用程序。
随着发展,我们可以任意的开发大型的网络服务和消费者的分布式应用,或者建立一个单一的简单的网络应用程序。
因此,为我们提供了足够的空间去整理我们的课程材料使其适合学生们的水平。
对于一个演讲者的挑战是怎样找到一个平衡关于能力和朴素,或者找到一个容易和困难的平衡点提供的编程方法比传统的ASP更加令人习惯。
它拥有现代编程的语言的所有功能。
传统的ASP编程的风格,喜欢开发商来自HTML编码的背景,而是更适合专业的软件开发人员。
给我们全部的WAD学生来讲授C/Delphi编程的课程,我们的目标是输出软件专业人才,对于我们来讲 是一个更好的教学工具。
提高了编程的概念并为学生学习先前的课程和现在的先进的分布式计算处理技术和先进的面向对象程序设计提供了一个很好的桥梁。
4.进程我们第一步将要做的是要学会。
在读完说明书和网络教程之后,接下来的一步是非常实际的。
我们在笔记本电脑上用独立的环境建立一个安装启用服务。
.NET微软网络框架的版本要求为IIS5版本及以上。
.NET在Windows 2000和Windows专业版上也可以正常运行工作。
然而,.NET在Windows XP 家庭版和Windows 98上不能运行。
在客户端上,我们能够和Web Matrix.其中的任意一个。
在这些中,仅有使用需要花钱,其他都是免费的。
.NET微软网络框架被包含在的程序包中。
我们也可以在互联网上下载.NET微软网络框架。
在.NET微软网络框架安装成功之后,的快速启动教程被建立。
这通常是基于互联网的。
对于经验丰富的开发人员这个教程是一个好的出发点。
有人宣称读者应该很流利的使用HTML和一般的网络开发的术语。
并应该熟悉交互式网页的概念,包括表格窗体、脚本和数据的存取。
从.NET微软网络框架软件工具开发包(SDK)文件中和Microsoft Visual Studio .文件中更多的难懂的复杂的实例被发现第二步将要检验教学环境,一个教学服务器在校园内部网上被建立。