神经网络模式识别法

合集下载

什么是模式识别模式识别的方法与应用

什么是模式识别模式识别的方法与应用

什么是模式识别模式识别的方法与应用模式识别是通过计算机用数学技术方法来研究模式的自动处理和判读。

那么你对模式识别了解多少呢?以下是由店铺整理关于什么是模式识别的内容,希望大家喜欢!模式识别的简介模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。

我们把环境与客体统称为“模式”。

随着计算机技术的发展,人类有可能研究复杂的信息处理过程。

信息处理过程的一个重要形式是生命体对环境及客体的识别。

对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。

这是模式识别的两个重要方面。

市场上可见到的代表性产品有光学字符识别、语音识别系统。

人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的不同之处,并根据一定的目的把各个相似的但又不完全相同的事物或现象组成一类。

字符识别就是一个典型的例子。

例如数字“4”可以有各种写法,但都属于同一类别。

更为重要的是,即使对于某种写法的“4”,以前虽未见过,也能把它分到“4”所属的这一类别。

人脑的这种思维能力就构成了“模式”的概念。

在上述例子中,模式和集合的概念是分未弄的,只要认识这个集合中的有限数量的事物或现象,就可以识别属于这个集合的任意多的事物或现象。

为了强调从一些个别的事物或现象推断出事物或现象的总体,我们把这样一些个别的事物或现象叫作各个模式。

也有的学者认为应该把整个的类别叫作模去,这样的“模式”是一种抽象化的概念,如“房屋”等都是“模式”,而把具体的对象,如人民大会堂,叫作“房屋”这类模式中的一个样本。

这种名词上的不同含义是容易从上下文中弄淸楚的。

模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。

随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。

(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。

第六章神经网络模式识别

第六章神经网络模式识别

梯度下降(gradient decent)法
准则函数: 准则函数: sum squared error, SSE
1 J = sse = 2S
BP 算法
∑ (t
j
S
j
− aj)
2
权值修正: 权值修正: 梯度下降法
∂J ∂J ∂n j ∂ J ( k −1) ∆ w j = −η = −η = −η a ∂w j ∂n j ∂w j ∂n j
§6.6 神经网络模式识别概述
神经网络模式识别方法是近几年的模式识别领域的一个重 要研究方向。由于神经网络的高速并行处理、分布式存储 信息等特性符合人类视觉系统的基本工作原理,且神经网 络具有很强的自学习性、自组织性、容错性、高度非线性、 联想记忆功能和逻辑推理功能等,能够实现目前基于计算 理论层次上的模式识别理论所无法完成的模式信息处理工 作。可以说,神经网络模式识别突破了传统模式识别技术 的束缚,开辟了模式识别发展的新途径。同时,神经网络 模式识别也成为神经网络最成功和最有前途的应用领域之 一。 神经网络模式识别的过程主要有两步:
j j j j j
j j j ji i
i
ij
j
i
ij
ij
ij
4. 径向基函数网络
前馈 网络
径向基函数网络:只有一个隐层,隐层单元采用径 向基函数。隐层把原始的非线性可分的特征空间变 换到另一个空间(通常是高维空间),使之可以线 性可分。 输出为隐层的线性加权求和。采用基函数的加权和 来实现对函数的逼近。 径向基函数(radial basis function, RBF):径向对称 的标量函数k(||x-xc||),最常用的RBF是高斯核函数
前馈 网络
(单层 单层) 2. (单层)感知器

7基于神经网络的模式识别实验要求

7基于神经网络的模式识别实验要求

实验七基于神经网络的模式识别实验一、实验目的理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。

通过构建BP网络和离散Hopfield 网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。

二、实验原理BP学习算法是通过反向学习过程使误差最小,其算法过程从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正。

BP 网络不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点。

输入信号先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。

离散Hopfield神经网络的联想记忆过程分为学习和联想两个阶段。

在给定样本的条件下,按照Hebb学习规则调整连接权值,使得存储的样本成为网络的稳定状态,这就是学习阶段。

联想是指在连接权值不变的情况下,输入部分不全或者受了干扰的信息,最终网络输出某个稳定状态。

三、实验条件Matlab 7.X 的神经网络工具箱:在Matlab 7.X 的命令窗口输入nntool,然后在键盘上输入Enter键,即可打开神经网络工具箱。

四、实验内容1.针对教材P243例8.1,设计一个BP网络结构模型(63-6-9),并以教材图8.5 为训练样本数据,图8.6为测试数据。

(1)运行train_data.m和test_data.m文件,然后从Matlab工作空间导入(Import)训练样本数据(inputdata10,outputdata10)和测试数据(testinputdata,testoutputdata),其次新建一个神经网络(New Network),选择参数如下表1,给出BP神经网络结构图。

表1 BP网络结构模型的各项参数设置Network Name(神经网络名称)nn10_1Network Type(神经网络类型)Feed-forward backprop(前馈反向传播)Input ranges(输入信息范围)来自训练样本的输入数据(inputdata10)Training function(训练函数)TRAINGD(梯度下降BP算法)Performance function(性能函数)MSE(均方误差)Number of layers(神经网络层数)2Layer1(第1层)的Number ofneurons (神经元个数)6Layer1(第1层)的TransferFunction (传递函数)LOGSIG(S型函数)Layer2(第2层)的Number ofneurons (神经元个数)9Layer2(第2层)的TransferFunction (传递函数)LOGSIG(S型函数)(2)输入训练样本数据(inputdata10,outputdata10),随机初始化连接权(Initialize Weights),然后进行训练(Train),训练参数设置如表2所示,并观察训练目标值变化曲线图,最后把BP神经网络训练成功后(即误差不再变化后)的误差值填入表3。

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验一、实验目的利用神经网络实现模式识别,并验证其性能。

掌握基于神经网络的模式识别方法。

二、实验原理1.神经网络神经网络是一种模仿生物神经系统的计算模型,它由大量的神经元节点相互连接而成。

在模式识别中,我们一般采用多层前向神经网络进行模式的训练和识别。

2.神经网络的训练过程神经网络的训练过程可以分为两步:前向传播和反向传播。

前向传播是指将输入样本通过网络的各个层传递到输出层,并计算输出结果。

反向传播是指根据输出结果和目标结果之间的误差,将误差反向传播到网络的各个层,并根据误差调整网络中的权值。

3.模式识别对于模式识别问题,我们首先需要将输入模式转化为特征向量,然后通过神经网络来训练这些特征向量,并将其与已知类别的模式进行比较,从而进行模式的识别。

三、实验步骤1.数据准备选择适当的模式识别数据集,例如手写数字识别的MNIST数据集,将其分为训练集和测试集。

2.特征提取对于每个输入模式,我们需要将其转化为一个特征向量。

可以使用各种特征提取方法,例如像素值,轮廓等。

3.神经网络设计设计合适的神经网络结构,包括输入层、隐藏层和输出层,并确定各层的神经元数目。

4.神经网络训练使用训练集对神经网络进行训练,包括前向传播和反向传播过程。

可以使用各种优化算法,例如梯度下降法。

5.模式识别使用测试集对训练好的神经网络进行测试和验证,计算识别的准确率和性能指标。

6.性能评估根据得到的结果,评估神经网络的性能,并分析可能的改进方法。

四、实验结果通过实验我们可以得到神经网络模式识别的准确率和性能指标,例如精确度、召回率和F1-score等。

五、实验总结在本次实验中,我们利用神经网络实现了模式识别,并验证了其性能。

通过实验,我们可以掌握基于神经网络的模式识别方法,了解神经网络的训练和识别过程,以及模式识别中的特征提取方法。

实验结果表明,神经网络在模式识别问题中具有较好的性能,并且可以根据需要进行改进和优化。

模式识别关于男女生身高和体重的神经网络算法

模式识别关于男女生身高和体重的神经网络算法

模式识别实验报告(二)学院:专业:学号:姓名:XXXX教师:目录1实验目的 (1)2实验内容 (1)3实验平台 (1)4实验过程与结果分析 (1)4.1基于BP神经网络的分类器设计 .. 1 4.2基于SVM的分类器设计 (4)4.3基于决策树的分类器设计 (7)4.4三种分类器对比 (8)5.总结 (8)1)1实验目的通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。

2)2实验内容本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。

具体要求如下:BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包);SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判;决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。

3)3实验平台专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写, SVM 支持向量机和决策树通过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。

将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。

4)4实验过程与结果分析4.1基于BP神经网络的分类器设计BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验
一、实验背景
模式识别是机器学习领域中的一项重要研究领域,它可以被应用于多个领域,包括计算机视觉,图像处理,智能交通,自然语言处理和生物信息学等。

模式识别的目的是从观察到的数据中检测,理解和预测结果。

其中,神经网络(应用模式识别)是人工智能的关键部分,它模拟人类的神经元的工作方式,并且可以被用来识别,分类,计算和获取模式。

二、实验目标
本次实验的目的是,探讨神经网络在模式识别中的应用,并使用一个基于神经网络的模式识别系统来识别模式。

三、实验内容
(一)数据预处理
在进行本次实验之前,需要进行数据预处理,以便能够更好地使用神经网络。

数据预处理的目的是通过将原始数据处理成神经网络可以处理的格式,以便更好地提取特征。

(二)神经网络模型设计
(三)神经网络模型训练
在训练神经网络模型时,首先需要准备一组被识别的模式。

什么是计算机模式识别请解释几种常见的算法

什么是计算机模式识别请解释几种常见的算法

什么是计算机模式识别请解释几种常见的算法计算机模式识别是一种利用计算机技术来识别、分类和理解图像、声音、文字等数据的技术。

在现代社会中,计算机模式识别被广泛应用于人脸识别、语音识别、医学影像分析、金融数据分析等领域。

这些应用都要求计算机能够自动地对输入的数据进行分类、识别和理解,以帮助人们更高效地处理和利用信息。

常见的计算机模式识别算法包括:K近邻算法(K-Nearest Neighbors, KNN)、支持向量机(Support Vector Machine, SVM)、决策树(Decision Tree)、神经网络(Neural Network)等。

下面,我将对这几种算法进行详细介绍:1. K近邻算法(K-Nearest Neighbors)K近邻算法是一种基本的分类算法,其原理是将未知数据与已知数据进行比较,将其归类为距离最近的K个数据所在的类别。

KNN算法简单易懂,适用于分类和回归问题,但在处理大规模数据时效率较低。

2. 支持向量机(Support Vector Machine)支持向量机是一种用于分类和回归问题的监督学习算法,其特点是能够有效地处理高维数据,并具有很好的泛化能力。

SVM通过寻找一个超平面来将数据分为不同类别,使得不同类别之间的间隔最大化。

支持向量机在图像识别、手写字符识别等领域有着广泛应用。

3. 决策树(Decision Tree)决策树是一种基于树状结构的分类算法,通过不断地对数据进行分裂,最终得到一个具有层级结构的分类模型。

决策树易于理解和解释,适用于处理大规模数据,并且能够处理具有缺失值的数据。

决策树算法在医学诊断、金融风控等领域具有较好的应用效果。

4. 神经网络(Neural Network)神经网络是一种模仿人类神经系统的学习模型,通过多个神经元之间的连接和权重调节来实现数据的分类和识别。

神经网络在模式识别领域有着广泛的应用,如图像识别、语音识别等。

深度学习中的深度神经网络已经在许多领域取得了显著的成果。

模式识别概念原理及其应用

模式识别概念原理及其应用
数字识别是指利用计算机技术自动识别和分析手 写数字的能力。
详细描述
手写数字识别系统通过采集手写数字图像,提取特征 并转换为数字格式,然后与预定义的标准数字进行匹 配,实现数字的自动识别。该技术广泛应用于邮政编 码、支票和银行票据等领域的自动化处理。
医学影像诊断
总结词
医学影像诊断是指利用医学影像技术获取人体内部结构 和功能信息,进而对疾病进行诊断和治疗的过程。
结构模式识别
总结词
基于结构分析和语法规则的模式识别方法,通过建立输入数据的结构模型进行分 类和识别。
详细描述
结构模式识别通过分析输入数据的结构和语法规则,建立相应的结构模型,然后 根据这些模型对输入数据进行分类和识别。常见的结构模式识别方法包括句法分 析、语法制导的翻译等。
模糊模式识别
总结词
基于模糊逻辑和模糊集合论的模式识别方法,通过建立模糊隶属度函数进行分类和识别。
02 模式识别的基本原理
特征提取
特征提取
01
从原始数据中提取出具有代表性的特征,以便更好地分类和识
别。
特征选择
02
选择与分类任务最相关的特征,去除无关或冗余的特征,提高
分类准确率。
特征变换
03
将特征进行变换,使其更适应分类器的需求,提高分类性能。
分类器设计
分类器设计
根据不同的分类任务和数据集,设计合适的分类器。
详细描述
语音识别在智能语音助手、语音搜索、语音 导航、智能家居等领域有广泛应用。通过语 音识别技术,用户可以更方便地与设备进行 交互,提高用户体验和效率。
生物特征识别
总结词
生物特征识别是利用个体独特的生物特征进 行身份认证和识别的技术。
详细描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 1 2 (n
二值模式向量 (分量:+1, -1)

i 1
n
xi xi )
j

i 1
n
xi 2
j
xi
n 2
xi :输入样本的第i个分量;
xij:第j类典型样本的第i个分量; n:样本向量的维数。
输入样本与典 型样本越相似: 汉明距离越小, 匹配度越大。
匹配网上层每个神经元的输出:
BP算法的学习过程
y1 „ „ yM
设:某层任一神经元j的 输入为netj,输出为yj; 相邻低一层中任一 神经元i的输出为yi。
net
j
j i



i
w ij y i

y
j
f ( net j )
x1 x2
„ „ xn
wij:神经元i与j之间的连接权; f(∙):神经元的输出函数。
S型输出函数:
w ij ( t 1) w ij ( t ) j y i [ w ij ( t ) w ij ( t 1)]
α:平滑因子,0<α<1。 —— 收敛快、权值平滑变化
BP算法存在问题:
* 存在局部极小值问题;
* 算法收敛速度慢;
* 隐层单元数目的选取无一般指导原则; * 新加入的学习样本影响已学完样本的学习结果。
2. δ学习规则 (1)选择一组初始权值wij(1); (2)计算某一输入模式对应的实际输出与期望输出的误差; (3)更新权值,阈值可视为输入恒为(-1)的一个权值;
w ij ( t 1) w ij ( t ) [ d
j
y j ( t )] x i ( t )
式中, η:学习因子; dj,yj(t):第j个神经元的期望输出与实际输出;
wij(t+1):修正一次后的某一权值;
η:学习因子,表示学习速率的比例常数; yj(t),yi(t):分别表示t时刻第j个和第i个神经元的状态(输出)。
x i (t )
由 y i (t )
有:
w ij ( t 1) w ij ( t ) [ y j ( t ) x i ( t )]
为一个神经元)。
感知器结构示意图
设输入模式向量,X
n
[ x1 , x 2 , , x n ]
T
,共M类。
x1 x2 ┇ xi ┇ w1j w2j ┇ wij ┇ wnj j yj
输出层第j个神经元对应第j个模式类,
输出为
y
j
f ( w ij x i j )
i 1
θj:第j个神经元的阈值;
p
w p
jk

E w
p
jk
其中,
由 net


E net
p

k
net w
k jk
jk
k

j
w
jk
y
j
式得到:
net w
k jk

w
jk

j
w
jk
y pj y pj
令 pk
E
p
net
k
,可得
( d pk y pk ) y pk (1 y pk )
T j
T

y
j
f ( w ij x i ) f (W
i 1
X)
M类问题判决规则( 神经元的输出函数) 为
y f (W
T j
j
1, X) 1,
若X 若X
j j
1 j M
* 正确判决的关键: 输出层每个神经元必须有一组合适的权值。 * 感知器采用监督学习算法得到权值; * 权值更新方法:δ学习规则。 算法描述 第一步:设置初始权值wij(1),w(n+1)j(1)为第j个神经元的阈值。 第二步:输入新的模式向量。 第三步:计算神经元的实际输出。
第8章 神经网络模式识别法
8.1 人工神经网络发展概况
8.2 神经网络基本概念
8.3 前馈神经网络
8.4 反馈网络模型Hopfield网络
8.1 人工神经网络发展概况
人工神经网络(Artificial Neural Networks,ANN): 简称神经网络。 模拟人脑神经细胞的工作特点: * 单元间的广泛连接;
w n 1
,点积形式:
y sgn( W
T
T
X)
T
式中,W
[ w 1 , , w n , w n 1 ]
X [ x 1 , , x n , 1]
8.2.3 神经网络的学习 学习: 神经网络的最重要特征之一。 实质:
同一个训练集的样本输入输出模式反复作用于网络,网 络按照一定的训练规则自动调节神经元之间的连接强度或拓 扑结构,使实际输出满足期望的要求或者趋于稳定。 典型的权值修正方法: Hebb学习规则、误差修正学习
8.3.3 竞争学习神经网络 1.竞争学习 典型的非监督学习策略。 结构特点:
与二层前馈网络类似; 输出层具有侧抑制。
侧抑制:
竞争层: 竞争学习 网络的核心
* 输出层各单元之间相互用较大的负权值输入对方,
构成正反馈。
加强自身
* 具有最高输入总和的单元的输出状态为1,其他单 元为0。
2.汉明(Hamming)网分类器 仿效生物神经网“中心激励,侧向抑制”的功能。 结构:
互连强度 输出函数
n维输入向量X
接收的信息
(其它神经元的输
出)
x1 x2 ┇ xn
w1 w2 ┇ wn ∑ f
y
输出
作比较 的阈值
图8.2 人工神经元模型
人工神经元间的互连:信息传递路径轴突-突触-树突的简化; 连接的权值:两个互连的神经元之间相互作用的强弱。
神经元的动作:
net

i 1
—— 反馈网络
8.3 前馈神经网络
8.3.1 感知器 感知器(Perceptron):F.Rosenblatt于1957年提出。
y1 „ „ yM
结构特点:
* 双层(输入层、输出层); * 两层单元之间为全互连; * 连接权值可调。

* 输出层神经元个数等于类 别数(两类问题时输出层
xn
x1
x2

s j f ( w ij x i j )
xi(t):第j个神经元的第i个输入。
(4)返回 (2) ,直到对所有训练模式网络输出均能满足要求。 神经网络的学习体现在: 权值变化;
网络结构变化。
8.2.4 神经网络的结构分类 分层结构 有明显层次,信息流向由输入层到输出层。 —— 前馈网络
相互连接结构
没有明显层次,任意两个神经元之间可达,具有输出 单元到隐层单元或输入单元的反馈连接 。
yj 1 0.5 0 θj netj
1 1 e
( net j j ) h 0
y
j
f ( net j )
θj:神经元阈值; h0:修改输出函数形状的参数。 设:输出层中第k个神经元的实际输出为yk,输入为netk; 与输出层相邻的隐层中任一神经元j的输出为yj。
net
k


j
w
jk
y1 y2 -ε +1 +1 -ε „ 匹配网 „ x1 x2 „ „ xn „ „ yM
最大网
X [ x1 , x 2 , x n ]
T
分类准则:样本间汉明距离最小。
工作原理:
* 每个模式类由一个典型样本代表; * 匹配网计算输入样本与各类典型样本的匹配度,由匹配度 决定匹配网的输出; * 由最大网给出输入样本所在类别号(分类)。 匹配度= n-输入样本与典型样本之间的汉明距离
第三阶段:复兴期,从1982年到1986年。 Hopfield的两篇论文提出新的神经网络模型;
《并行分布处理》出版,提出反向传播算法。 第四个阶段:1987年至今,趋于平稳。 回顾性综述文章“神经网络与人工智能” 。
8.2 神经网络基本概念
8.2.1 生物神经元 1.生物神经元的结构 细胞体、树突、轴突和突触。
输出单元的误差: pk
输出单元的修正增量: p jk

pk
y pj
对于与输出层相邻的隐层中的神经元j和该隐层前低一层 中的神经元i :

pj
y pj (1 y pj )
k
pk
w
jk
Δ p w ij
pj
y pj
输出层中神经元输出的误差反向传播到前面各层,对各 层之间的权值进行修正。
误差反向传播算法
y1 „ „ yM
认识最清楚、应用最广泛。
输出层
1.多层感知器 针对感知器学习 算法的局限性:模式 类必须线性可分。
结构: 前馈网络;

第 二 隐 层

第 一 隐 层 输入层
x1 x2 „ „ xn
中间层为一层或多层处理单元; 只允许一层连接权可调。
2.BP算法
两个 正向传播阶段:逐层状态更新 阶段 反向传播阶段:误差
1.Hebb学习规则 如果神经网络中某一神经元与另一直接与其相连的神经 元同时处于兴奋状态,那么这两个神经元之间的连接强度应
该加强。
x1 x2 i yi ┇ ┇ xn ┇ xi
w1j w2j ┇ wij ┇ wnj j yj
神经元间的连接
w ij ( t 1) w ij ( t ) [ y j ( t ) y i ( t )]
n
wi xi
( xi , w i R )
相关文档
最新文档