等差数列(通项+求和+性质)
等差数列的性质与公式

等差数列的性质与公式等差数列是数列中相邻两项之间的差值保持恒定的数列。
在数学中,等差数列是一种常见的数学模型,具有许多重要的性质和应用。
本文将介绍等差数列的性质与公式,并探讨其在代数、几何等领域中的应用。
一、等差数列的定义等差数列可以用下列形式表示:a,a + d,a + 2d,a + 3d,...其中,a是首项,d是公差。
首项代表数列中的第一个数,公差代表相邻两项之间的差值。
二、等差数列的性质1. 通项公式等差数列的第n项可以用通项公式表示:an = a + (n-1)d其中,an代表等差数列的第n项,a是首项,d是公差。
2. 求和公式等差数列的前n项和可以用求和公式表示:Sn = (n/2)(a + an)其中,Sn代表等差数列的前n项和,a是首项,an是第n项,n代表项数。
3. 公差与项数的关系对于等差数列,项数与公差的关系可以表示为:n = (an - a)/d + 1其中,n代表项数,a是首项,an是第n项,d是公差。
4. 等差中项等差数列中的中项可以表示为:a + (n-1)(d/2)其中,a是首项,n代表项数,d是公差。
5. 等差数列的性质等差数列具有以下性质:(1) 等差数列的任意三项成等差数列;(2) 等差数列对任意项数取整后仍为等差数列;(3) 等差数列的倒序也为等差数列;(4) 等差数列的前n项和等于后n项和。
三、等差数列的应用等差数列在数学中具有广泛的应用,特别是在代数和几何领域中。
1. 代数应用(1) 等差数列可用于解决各种代数问题,如数列的推导、求和等问题。
(2) 等差数列可用于建立各种代数方程,进而解决实际问题。
2. 几何应用(1) 等差数列可用于几何问题,如等差中项问题、等差数列构成的图形问题等。
(2) 等差数列可用于建立几何方程,求解各种几何问题。
3. 统计应用(1) 等差数列可用于统计学中的各种模型建立与应用。
(2) 等差数列可用于数理统计、经济学等领域的数据分析。
等差数列与等差数列的求和与通项公式

等差数列与等差数列的求和与通项公式等差数列是指数列中任意两项之间的差值都是相等的数列。
在数学中,等差数列是一种常见的数列类型,具有许多独特的性质和特点。
本文将介绍等差数列的定义、性质以及如何求和与求通项公式。
一、等差数列的定义与性质等差数列的定义:对于数列a₁,a₂,a₃,…,aₙ,如果存在一个常数d,使得对于任意的整数n≥2,有aₙ - aₙ₋₁ = d,那么这个数列就是等差数列。
等差数列的性质:1. 公差:等差数列中任意两项之间的差值称为公差,通常用字母d 表示。
2. 通项公式:等差数列中第n项的表达式称为通项公式,通常用字母aₙ表示。
3. 求和公式:等差数列的前n项和的表达式称为求和公式,通常用字母Sₙ表示。
二、等差数列的通项公式为了求等差数列的第n项,我们需要知道首项和公差。
首项a₁可以通过给定的数列第一项得到,公差d可以通过数列中任意两项之间的差值得到。
等差数列的通项公式可以通过以下公式得到:aₙ = a₁ + (n - 1) * d其中,aₙ表示等差数列的第n项,a₁表示首项,n表示项数,d表示公差。
三、等差数列的求和公式当我们想求等差数列的前n项和时,可以使用求和公式。
求和公式可以帮助我们快速计算等差数列的和,而不需要逐一相加。
等差数列的求和公式可以通过以下公式得到:Sₙ = (n / 2) * (a₁ + aₙ)其中,Sₙ表示等差数列的前n项和,n表示项数,a₁表示首项,aₙ表示第n项。
四、例题与应用例题1:已知等差数列的首项为3,公差为2,求该等差数列的第10项和前10项和。
解:根据等差数列的通项公式,可以得到第10项:a₁₀ = 3 + (10 - 1) * 2 = 21根据等差数列的求和公式,可以得到前10项和:S₁₀ = (10 / 2) * (3 + 21) = 120例题2:一个等差数列的首项为5,公差为3,已知前n项和为85,求n的值。
解:根据等差数列的通项公式和求和公式,可以得到以下方程:(n / 2) * (5 + aₙ) = 85(n / 2) * (5 + (5 + (n - 1) * 3)) = 85通过解方程,可以得到n的值为7。
初中数学知识归纳等差数列的通项公式

初中数学知识归纳等差数列的通项公式等差数列是初中数学中的一个重要概念,也是数学中较为基础的内容之一。
在学习和应用等差数列的过程中,掌握等差数列的通项公式是非常重要的。
本文将对初中数学中等差数列的知识进行归纳总结,并详细介绍等差数列的通项公式的推导和应用。
一、等差数列的概念和性质等差数列是指一个数列中的相邻两项之间的差值都是相等的数列。
例如,2,5,8,11,14就是一个等差数列,其中的公差(即相邻两项的差值)为3。
等差数列的性质包括:1. 公差性质:等差数列中的任意两项之差都是一个固定的数,称为公差。
2. 通项性质:等差数列中的任意一项可以由首项和公差来表示。
3. 求和性质:等差数列的前n项和可以通过公式来计算。
二、等差数列的通项公式推导过程在学习等差数列时,最关键的一点就是掌握等差数列的通项公式。
等差数列的通项公式可以用来计算任意一项的数值,它的推导过程如下:设等差数列的首项为a₁,公差为d,第n项为aₙ,根据等差数列的性质,我们可以得到以下等式:a₂ - a₁ = da₃ - a₂ = da₄ - a₃ = d...aₙ - aₙ₋₁ = d将以上等式相加,得到:(a₂ - a₁) + (a₃ - a₂) + (a₄ - a₃) + ... + (aₙ - aₙ₋₁) = (aₙ - a₁) = nd因为相同的等差数列相加的结果是等差数列项数的倍数,所以我们有:nd = (a₂ - a₁) + (a₃ - a₂) + (a₄ - a₃) + ... + (aₙ - aₙ₋₁) = (n-1)d移项整理得:aₙ = a₁ + (n-1)d这就是等差数列的通项公式。
三、等差数列通项公式的应用等差数列的通项公式在数学中有着广泛的应用。
以下是几个常见的应用场景:1. 求特定项的数值:通过已知的首项、公差和项数,可以利用通项公式计算出等差数列中任意一项的值。
2. 求前n项和:通过将等差数列的通项公式代入求和公式中,可以得到等差数列前n项和的计算公式,进而求解具体数值。
等差数列的性质与计算

等差数列的性质与计算等差数列是指数列中相邻两项之差相等的数列。
在数学中,等差数列是一种常见且重要的数列形式。
本文将探讨等差数列的性质以及如何进行计算。
一、等差数列的性质1. 公差(公共差值):等差数列中相邻两项之差称为公差,用d表示。
2. 首项:等差数列中的第一项,记作a1。
3. 通项公式:等差数列的通项公式用来表示任意一项的值,通常用an表示第n项。
通项公式可表示为:an = a1 + (n-1)d。
其中,n表示项数。
4. 数列求和公式:等差数列的前n项和可以通过求和公式来计算。
求和公式为:Sn = (n/2)(a1 + an)。
其中,Sn表示前n项和。
二、等差数列的计算1. 已知两项求公差:若已知等差数列中的两项a和b,则可以通过计算差值得到公差。
公差d = b - a。
2. 已知首项和公差求任意项:若已知等差数列的首项a1和公差d,可以通过通项公式计算任意一项的值。
an = a1 + (n-1)d。
3. 已知首项和公差求前n项和:若已知等差数列的首项a1、公差d和项数n,可以通过求和公式计算前n项和。
Sn = (n/2)(a1 + an)。
三、示例1. 已知等差数列的首项为5,公差为3,求该数列的第10项的值。
根据通项公式,an = a1 + (n-1)d,代入已知条件得到an = 5 + (10-1)3,计算得到an = 5 + 27 = 32。
因此,该数列的第10项的值为32。
2. 已知等差数列的首项为2,公差为4,求该数列的前5项和。
根据求和公式,Sn = (n/2)(a1 + an),代入已知条件得到Sn = (5/2)(2+ 2 + (5-1)4),计算得到Sn = 5(2 + 10) = 60。
因此,该数列的前5项和为60。
总结:本文介绍了等差数列的性质与计算方法。
通过学习等差数列的公差、首项、通项公式以及求和公式,我们可以准确地计算等差数列中任意一项的值以及前n项的和。
等差数列在数学和实际生活中都具有很高的应用价值,希望本文能对读者有所帮助。
等差数列的四个通项公式和两个求和公式

等差数列的四个通项公式和两个求和公式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、等差数列的概念。
等差数列是指数列中相邻的两项之差是一个常数的数列。
等差数列的性质与求和

等差数列的性质与求和等差数列是数学中的重要概念之一,它的性质和求和公式在数学和实际问题中具有广泛的应用。
本文将介绍等差数列的性质,探讨其求和公式的推导,并结合实例进行说明。
一、等差数列的性质等差数列是指数列中相邻两项之间的差值保持不变的数列。
设等差数列的首项为a,公差为d,则数列的通项公式可以表示为:an = a + (n-1)d,其中n为项数根据等差数列的性质,我们可以得出以下几个重要的结论:1. 第n项与首项的关系第n项可以通过首项与公差相乘再加上n-1乘以公差来求得。
2. 公差与项数的关系项数n可以通过首项与第n项的差值再除以公差加1来求得。
3. 项数与和的关系项数n与等差数列的和Sn之间存在如下关系:Sn = (a + an) × n / 2这个公式是等差数列求和的基本公式,可以通过将首项与尾项相加再乘以项数的一半得到。
通过以上性质,我们可以更好地理解等差数列的规律,并在解决问题时运用这些性质。
二、等差数列求和公式的推导为了得到等差数列求和的公式,我们可以利用数列的性质和一些数学推导。
设等差数列的首项为a,公差为d,项数为n,数列的和为Sn。
首先,我们可以通过数列的性质得到:Sn = (a + an) × n / 2将an替换为a + (n-1)d得到:Sn = (a + (a + (n-1)d)) × n / 2化简后得:Sn = (2a + (n-1)d) × n / 2进一步化简可得:Sn = (2a + (n-1)d) × (n/2)Sn = (2a × n + (n-1)d × n) / 2Sn = (2an + dn^2 - dn) / 2Sn = an + dn^2/2 - dn/2注意到等差数列的首项为a,最后一项为an,将其替换进去得:Sn = a + (n-1)d + dn^2/2 - dn/2Sn = a + dn(n-1)/2这就是等差数列求和的公式。
等差数列性质公式总结

等差数列性质公式总结等差数列,是指数列中的每一项都与它的前一项之差保持相等的数列。
等差数列具有许多性质和公式,本文将对这些性质和公式进行总结。
以下是对等差数列性质公式的详细总结:一、基本概念与公式1. 等差数列:数列中的每一项都与它的前一项之差相等,这个差值称为公差d。
记作a1, a2, a3, ...,其中a1为首项,d为公差,则等差数列的通项公式为an = a1 + (n-1)d。
2. 前n项和公式:等差数列的前n项和Sn = (a1 + an) * n / 2 或Sn = (2a1 + (n-1)d) * n / 2。
3. 首项与末项的关系:an = a1 + (n-1)d。
4. 公差与项数的关系:d = (an - a1) / (n-1)。
5. 首项与末项的平均值:(a1 + an) / 2 = a[(n+1) / 2],其中a是中项的下标。
6. 首项与末项的乘积:a1 * an = a[m + (n-m)/2] * a[m - (n-m)/2],其中m为项数之和。
7. 通项求和:已知a1,an和n,求等差数列的每一项之和Sn。
Sn = (a1 + an) * n / 2。
二、相邻项间的关系8. 任意两项的平均值:(an + a(n+1)) / 2 = a[(n+2) / 2]。
9. 任意三项的关系:a(n-1) + a(n+1) = 2an。
10. 任意四项的关系:a(n-2) + a(n-1) + a(n+1) + a(n+2) = 2(an + an+1)。
11. 连续奇(偶)数项之和:an + a(n-2) + ... + a3 + a1 =(n+1)a[(n+1)/2]。
12. 连续奇(偶)数项之和:an + a(n-2) + ... + a4 + a2 = na[n/2]。
13. 间隔和公式:a1 + a3 + a5 + ... + a(2n-1) = n^2。
14. 间隔和公式:a2 + a4 + a6 + ... + a(2n) = n(n+1)。
等差数列通项求和及其性质

等差数列通项求和及其性质1.等差数列概念及通项公式1) 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
2) 等差数列的判定方法:(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
(2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
3) 等差数列的通项公式:如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。
说明:该公式整理后是关于n 的一次函数。
通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *. 2.等差数列性质2.1等差中项:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2.2.2已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=…. (2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.2.3等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列. 3.等差数列求和(倒序相加法) 等差数列的前n 项和:① 2)(1n n a a n S +=②d n n na S n 2)1(1-+= 说明:对于公式②整理后是关于n 的没有常数项的二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列复习1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
例1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;(2)2212-,2313-,2414-,2515-; (3)11*2-,12*3,13*4-,14*5。
解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)nn n -+。
点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。
如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__ ;(2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ;解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N )又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。
点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式a n =S n -S n -1的推理能力.但不要忽略a 1,解法一紧扣定义,解法二较为灵活。
练一练:设{}n a 是等差数列,求证:以b n =na a a n +++ 21 *n N ∈为通项公式的数列{}nb 为等差数列。
3、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
4、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
例3:等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{a n }中也为常数的项是( )A .S 7B .S 8C .S 13D .S 15解析:设a 2+a 4+a 15=p (常数),∴3a 1+18d =p ,解a 7=13p . ∴S 13=13×(a 1+a 13)2=13a 7=133p . 答案:C例4.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( ) A .48 B .49 C .50 D .51解析:∵a 2+a 5=2a 1+5d =4,则由a 1=13得d =23,令a n =33=13+(n -1)×23,可解得n =50.故选C.答案:C如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = ;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ ;例5:设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.解析:S 9=9a 5=-9,∴a 5=-1,S 16=8(a 5+a 12)=-72.答案:-72例6:已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21解析:∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0,∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 所以使得S n >0的n 的最大值为19,故选B.答案:B如(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n = ;(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T .5、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )6.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(4)若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.练一练:等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。
(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k =+。
练一练:项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数.(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n nA f nB =,则2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. 练一练:设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n ,那么=n n b a ___________;(7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
法一:由不等式组⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。
上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?练一练:等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值;例7.(1)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) A.d <0 B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值 (2)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.260解析:(1)答案:C ;由S 5<S 6得a 1+a 2+a 3+…+a 5<a 1+a 2+…+a 5+a 6,∴a 6>0,又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,由S 7>S 8,得a 8<0,而C 选项S 9>S 5,即a 6+a 7+a 8+a 9>0⇒2(a 7+a 8)>0,由题设a 7=0,a 8<0,显然C 选项是错误的。
(2)答案:C 解法一:由题意得方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+1002)12(22302)1(11d m m ma d m m ma , 视m 为已知数,解得212)2(10,40mm a m d +==, ∴210402)13(3)2(1032)13(3322113=-++=-+=mm m m m m d m ma ma S m 。
解法二:设前m 项的和为b 1,第m +1到2m 项之和为b 2,第2m +1到3m 项之和为b 3,则b 1,b 2,b 3也成等差数列。
于是b 1=30,b 2=100-30=70,公差d =70-30=40。
∴b 3=b 2+d =70+40=110∴前3m 项之和S 3m =b 1+b 2+b 3=210.解法三:取m =1,则a 1=S 1=30,a 2=S 2-S 1=70,从而d =a 2-a 1=40。
于是a 3=a 2+d =70+40=110.∴S 3=a 1+a 2+a 3=210。
课后练习一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。
1.若a ≠b,数列a,x 1,x 2 ,b 和数列a,y 1 ,y 2 ,b 都是等差数列,则=--1212y y x x ( ) A .43 B .32 C .1 D .34 2.在等差数列{}n a 中,公差d =1,174a a +=8,则20642a a a a ++++ = ( ) A .40 B .45 C .50 D .553.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为 ( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-4.在等差数列||,0,0}{10111110a a a a a n >><且中,则在S n 中最大的负数为 ( )A .S 17B .S 18C .S 19D .S 205.已知等差数列的首项为31,若此数列从第16项开始小于1,则此数列的公差d 的取值范围是 ( )A .(-∞,-2)B .[-715, -2] C .(-2, +∞) D .(—715 ,-2) 6.在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为 ( ) A .18 B17. C .16 D .157.等差数列}{n a 中,110052515021,2700,200a a a a a a a 则=+++=+++ 等于( )A .-20.5B .-21.5C .-1221D .-20 8.已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为 ( )A .)1(32+-n nB .)34(2-n nC .23n -D .321n 9.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146所有项的和为234,则它的第七项等于 ( )A .22B .21C .19D .1810.等差数列{}n a 中,n a 2110m m m a a a -+-+=≠0,若m>1且2110m m m a a a -+-+=,2138m S -=,则m的值是 ( )A . 10B . 19C .20D .38二、填空题:请把答案填在题中横线上。