无线传感器网络协议

合集下载

物联网中的无线传感器网络协议介绍

物联网中的无线传感器网络协议介绍

物联网中的无线传感器网络协议介绍随着物联网(Internet of Things,IoT)技术的迅速发展,无线传感器网络(Wireless Sensor Network,WSN)作为物联网中的核心组成部分,正在广泛应用于各个领域,如环境监测、智能家居、智能交通等。

无线传感器网络协议则是保障网络通信的基石,它定义了传感器节点之间的通信规则和协议栈,使得节点之间能够高效地传输数据、协同工作并实现物联网的目标。

本文将对物联网中常用的无线传感器网络协议进行介绍。

1. IEEE 802.15.4IEEE 802.15.4是一种低速、低功耗的无线传感器网络协议,是物联网中最基础的协议标准之一。

它定义了物理层和MAC层协议,提供了低复杂性、低功耗、低数据传输速率的网络通信能力。

IEEE 802.15.4协议适用于近距离的传感器节点通信,具有自组织网络的特性,能够实现多节点间的数据采集和通信。

2. ZigBeeZigBee是基于IEEE 802.15.4标准的一种高层次协议,它在物理层和MAC层之上添加了网络层、应用层和安全层等协议。

ZigBee协议具有低功耗、低数据传输速率、低成本和自组织网络等特性,适用于传感器节点数量庞大、网络层次结构复杂的应用场景。

ZigBee协议广泛应用于家庭自动化、智能电表和工业自动化等领域。

3. Z-WaveZ-Wave是一种用于物联网的无线通信协议,专注于家庭自动化领域。

它使用中心控制器架构,支持大量的设备和传感器,并提供了可靠的网络覆盖范围和低功耗的通信模式。

Z-Wave协议采用单向无线通信方式,通过建立一个稳定的网络网状拓扑结构,实现设备间的联动控制。

目前,Z-Wave协议已经成为家居自动化领域的主流无线通信协议。

4. LoRaWANLoRaWAN(Long Range Wide Area Network)是一种低功耗广域网(LPWAN)通信协议,适用于大范围、低速率的无线传感器网络。

无线传感器网络的路由协议设计

无线传感器网络的路由协议设计

无线传感器网络的路由协议设计随着物联网的发展,无线传感器网络(Wireless Sensor Network, WSN)的应用越来越广泛。

作为物联网的一种形态,WSN已经应用于环境监测、智能交通、智能制造等领域,为人们的生产和生活带来了很大的便利。

在WSN中,路由协议的设计是至关重要的。

一、无线传感器网络的基本结构WSN通常由大量的无线节点组成,这些节点会周期性地采集周围的环境数据,并将这些数据传输到网关节点。

在WSN中,有两种类型的节点,分别是传感器节点和网关节点。

传感器节点负责采集环境数据,并将数据通过本地通信模块的方式向周围的节点发送;网关节点则负责将周围节点传来的数据汇总起来,并将数据通过互联网传输到数据中心或者其他目的地。

为了保证网络的性能和可靠性,WSN中的节点通常会有限的资源,如能量、计算容量和存储容量等。

二、路由协议的作用WSN中的节点之间通过无线信号进行通信,因而对传输数据的可靠性要求非常高。

由于节点之间距离远,且节点没有全局网络拓扑信息,传输数据需要经过多个节点才能到达目的地,并且通信链路可能频繁中断。

因此,在WSN中需要使用一种适合无线网络环境的路由协议,来实现节点之间的数据传输。

简单来说,路由协议的作用主要有以下几个:1. 实现数据的传输:路由协议通过计算最优路径,将数据从源节点传输到目的节点。

2. 增强网络的容错性:路由协议可以针对链路中断等异常情况,快速选择可用的路由,从而提高网络的容错性。

3. 延长网络的寿命:路由协议可以优化数据传输路径,从而降低节点的能量消耗,延长整个网络的寿命。

三、常用的路由协议1.LEACH协议LEACH(Low Energy Adaptive Clustering Hierarchy)是一种无线传感器网络的自适应分簇路由协议。

LEACH将传感器节点分为若干个簇,每个簇由一个簇头节点负责,簇头节点负责收集簇内节点的数据,并将其传输给网关节点。

无线传感器网络路由协议

无线传感器网络路由协议

无线传感器网络路由协议无线传感器网络(Wireless Sensor Network,WSN)是由大量低成本、低功耗的传感器节点组成的网络系统,用于感知和收集环境信息。

无线传感器网络的路由协议起着关键作用,它决定了数据在网络中的传输路径和方式,影响着整个网络的性能、能耗以及生存时间。

1. LEACH(Low-Energy Adaptive Clustering Hierarchy)是一种经典的层次化路由协议。

它将网络中的节点划分为若干个簇(Cluster),每个簇有一个簇首节点(Cluster Head)。

簇首节点负责收集和聚合簇内节点的数据,并将聚合后的数据传输给基站节点,从而减少了网络中节点之间的通信量,节省了能耗。

2. AODV(Ad Hoc On-Demand Distance Vector)是一种平面路由协议,适用于无线传感器网络中节点数量较少且网络拓扑较稳定的情况。

AODV协议通过维护路由表来选择最短路径,当节点需要发送数据时,它会向周围节点发起路由请求,并根据收到的响应建立起路由路径。

3. GPSR(Greedy Perimeter Stateless Routing)是一种基于地理位置的路由协议。

它通过利用节点的地理位置信息来进行路由选择,具有低能耗和高效的特点。

GPSR协议将整个网络划分为若干个区域,每个节点知道自己的位置以及周围节点的位置,当需要发送数据时,节点会选择最近的邻居节点来进行转发,直到达到目的节点。

除了以上几种常见的路由协议,还有很多其他的无线传感器网络路由协议,如HEED(Hybrid Energy-Efficient Distributed clustering)、PEGASIS(Power-Efficient Gathering in Sensor Information Systems)等,它们各自具备不同的优势和适用场景。

总之,无线传感器网络的路由协议在保证数据传输可靠性和网络能耗方面起着重要的作用。

无线传感器网络网络层和路由协议

无线传感器网络网络层和路由协议

无线传感器网络网络层和路由协议无线传感器网络(Wireless Sensor Networks,简称WSN)是由多个分布式无线传感器节点组成的网络系统,用于对环境进行监测、采集和传输数据。

在WSN中,网络层和路由协议起到了关键作用,负责实现传感器节点之间的数据传输和网络通信。

一、网络层的功能网络层是无线传感器网络的核心组成部分,它提供一种机制来确保数据在网络中的可靠传输。

网络层的主要功能如下:1.数据分组:网络层负责将应用层产生的数据分成多个独立的数据包,并为每个数据包分配一个唯一的标识符。

2.网络编址:网络层为每个传感器节点分配唯一的标识符,以便其他节点可以识别和定位特定的节点。

3.数据路由:网络层通过选择最佳的数据传输路径以实现数据的有效传输。

这种路由选择可能是基于节点之间的距离、能量消耗和网络拓扑。

4.拥塞控制:网络层负责监测和调整网络中数据传输的速率,以避免网络拥塞和资源浪费。

二、常见的路由协议1. 平面分布式网络(Flat Distributed Network):在这种网络中,每个传感器节点具有相同的地位和角色,节点之间通过广播的方式进行通信。

这种路由协议适用于节点分布均匀的小型网络,但随着网络规模的增大,广播的开销会大大增加。

2. 分级网络(Hierarchical Network):在分级网络中,网络节点被分为若干个级别的集群,并指定一些节点作为聚集器和中心节点。

这些聚集器负责收集、聚合和传输其他节点的数据。

这种路由协议可以减少节点之间的通信开销和能量消耗,提高网络的生命周期。

3. 基于链路状态的路由协议(Link-State Routing Protocol):这种路由协议基于网络中节点之间的链路状态信息来构建拓扑图,并计算最短路径。

每个节点需要维护邻居节点的链路状态信息,并通过广播将信息传递给其他节点。

这种路由协议适用于节点之间的链路状态变化频繁和网络拓扑改变较多的情况。

4. 基于距离向量的路由协议(Distance Vector Routing Protocol):这种路由协议基于节点之间的距离信息来决定数据的传输路径。

无线传感器网络通信协议

无线传感器网络通信协议

CATALOGUE目录•无线传感器网络概述•无线传感器网络通信协议基础•典型的无线传感器网络通信协议•无线传感器网络通信协议的性能评价与优化•无线传感器网络通信协议的未来发展趋势无线传感器网络概述无线传感器网络定义•定义:无线传感器网络(Wireless Sensor Network,WSN)是由一组自主、分布式、无线连接的传感器节点组成的网络,用于监测和记录环境参数,并将数据传输到中心节点进行处理和分析。

传感器节点具有自主性,能够独立完成数据采集和传输任务,同时具备分布式处理能力,能够实现节点间的协同工作。

自主性和分布式采用无线通信技术,实现节点间的数据传输和通信,降低了网络布线的成本和复杂性。

无线连接传感器节点通常具有有限的计算、存储和能量资源,需要在资源受限的情况下实现高效的数据采集和传输。

资源受限无线传感器网络的特点用于监测环境参数,如温度、湿度、气压、光照等,广泛应用于农业、林业、气象等领域。

环境监测监测工业生产过程中的参数,如温度、压力、流量等,实现工业自动化控制和优化。

工业控制用于智能家居系统中的环境参数监测和设备控制,提高家居生活的舒适性和智能化程度。

智能家居监测人体生理参数,如体温、心率、血压等,实现远程医疗和健康管理。

医疗健康无线传感器网络的应用场景议基础通信协议是一种规定设备间如何进行数据交互的规则和标准。

定义在无线传感器网络中,通信协议确保了各个传感器节点能够准确、高效地交换信息,是实现协同工作和数据收集的基础。

重要性通信协议的定义与重要性用于媒体访问控制,决定无线信道的使用方式,如何分配通信资源等。

MAC协议路由协议数据融合协议确定数据在传感器节点间的传输路径,以保证数据的可靠传输和能量的高效利用。

用于减少数据冗余,提高信息的质量,同时降低能量消耗。

030201无线传感器网络通信协议的分类能量高效可扩展性可靠性安全性无线传感器网络通信协议的设计目标01020304由于传感器节点通常能量受限,因此协议需要优化能量消耗,延长网络寿命。

无线传感器网络的路由协议

无线传感器网络的路由协议
无线传感器网络 的路由协议
路由协议概述
无线传感器网络的路由协议主要任务是确保数据由 源节点准确高效地传输到目的节点,即寻找数据的 最优路径以及沿最优路径发送数据。
能耗:WSN中,路由协议的制定受能耗的限制。 ◆邻居发现过程:邻居节点间交换信息会消耗能量,交换数据越 大,能耗越大。 ◆处理过程:数据传输过程的计算和通信会消耗能量,通信的能 耗大于计算。
能量感知路由
能量多径路由
主要过程
路径建立 建立从源节点 到目的节点的多 条路径 计算出各条路 径的选择概率
数据传输
对于接收到的 每组数据,节点 根据概率从所有 下一跳节点中选 择一个节点
路由维护
周期性从目的 节点到源节点进 行洪泛查询以维 护路径的有效性 和活跃性
能量感知路由
能量多径路由
路径建立具体过程
缺点
➢节点硬件需要支持射频功率自适应调整; ➢无法保证簇头节点能遍及整个网络; ➢分簇与簇头选举 要公平
分层路由协议
PEGASIS协议
◆PEGASIS协议是对于LEACH的一种改进,节点间不再组成簇,而 是组成链 ◆PEGASIS协议基本原理:
1.假定传感器节点是同构和相对静止的 2.节点通过发送能量递减的测试信号,确定相邻节点的位置 3.进而了解网络的全局信息 4.节点选择其最近的邻居作为链上的下一跳 5.节点只需维护自己上一跳和下一跳的邻居信息
分层路由协议
LEACH协议
网络按照周期工作,每个周期分为两个阶段:
◆簇头建立阶段: 节点运行算法,确定本次自己是否成为簇头(选簇); 簇头节点广播自己成为簇头的事实; 其他非簇头节点按照信号强弱选择应该加入的簇头,并通知该
簇头节点; 簇头节点按照TDMA的调度,给依附于他的节点分配时隙;

无线传感器网络的路由协议

无线传感器网络的路由协议

无线传感器网络的路由协议无线传感器网络(Wireless Sensor Network,简称WSN)是由大量分布式无线传感器节点组成的网络,用于感知环境、采集数据并传输给终端节点。

由于传感器节点资源有限,传统的路由协议在WSN中不适用。

因此,研究人员开展了大量的工作,提出了许多适用于WSN的路由协议。

以下是WSN常见的路由协议:基于平面的路由协议将传感器节点所处的平面划分为不同的区域,利用区域之间的连接关系进行数据传输。

其中一种经典的基于平面的路由协议是LEACH(Low Energy Adaptive Clustering Hierarchy),它基于分簇的思想将传感器节点分为不同的簇,每个簇有一个簇首节点负责数据聚合和传输。

基于层次的路由协议是WSN中常见的一种路由方式,它将节点组织成多个层次。

每个层次中的节点具有不同的功能和职责。

经典的基于层次的路由协议包括TEEN(Threshold-sensitive Energy Efficient Sensor Network)和PEGASIS(Power-Efficient Gathering in Sensor Information Systems)。

基于多跳的路由协议允许节点通过中转节点将数据传输到目的节点,从而延长网络的传输范围。

常见的基于多跳的路由协议包括SPIN(Sensor Protocols for Information via Negotiation)和Directed Diffusion。

SPIN协议利用分布式算法对节点进行数据交换和传输,Directed Diffusion协议则通过沿着数据梯度传播的方式进行数据传输。

由于传感器节点能量有限,基于能量的路由协议非常重要。

这些协议通过考虑节点能量状态来决定数据传输路径,以延长网络的生命周期。

例如,E-SEP(Energy-Efficient Stable Election Protocol)、GEDIR (Gateway-Efficient, Deterministic and Energy-Aware Routing)和ENERGY-LL(Energy-Efficient, Low Latency Routing)都是基于能量的路由协议。

无线传感器网络中的网络协议与算法

无线传感器网络中的网络协议与算法

无线传感器网络中的网络协议与算法随着无线传感器技术的不断发展,无线传感器网络已经成为了一种重要的信息感知和处理手段,广泛应用于环境监测、农业、医疗等领域。

无线传感器网络具有低成本、易部署、低功耗、动态自组织等特点,但是由于资源受限、信道难以保证、传输不可靠等问题,网络协议与算法成为无线传感器网络中的一大挑战。

网络协议是无线传感器网络中保证数据可靠传输和节点协同工作的基础。

无线传感器网络主要有三个层级的协议。

应用层协议主要负责网络应用的具体实现,包括数据格式、数据传输方式等。

传感器网络一般实现的应用有环境监测、目标跟踪、智能物联等。

传输层协议主要负责数据的分发和重传,保证数据可靠传输。

无线传感器网络中的传输层协议一般采用UDP协议,通过节点间的路由实现数据的可靠传递。

网络层协议主要负责数据包的路由和节点间的通信。

无线传感器网络中常用的网络层协议有LEACH、SCRIBE、GAF等。

LEACH协议是一种经典的层次式聚类协议,通过定期选举簇头节点,实现节点对簇头节点的数据传输。

该协议具有低能耗、均衡能量消耗、抗拓扑变化等优点。

SCRIBE协议是一种基于发布/订阅模式的协议,节点通过订阅需要的数据,实现数据的传输。

该协议具有高效、灵活的特点,适合实时数据的传输。

GAF协议是一种基于图论的协议,通过构建节点图来实现全局最小化能耗的节点选择和数据传输。

该协议目前较为成熟,能够有效的应对网络连接性差、节点失效、信息更新等问题。

除了协议之外,无线传感器网络中还大量使用了一些传统的算法,如最短路径算法、链路质量估计算法等。

同时也出现了一些适用于无线传感器网络的新型算法。

PDR算法是一种用于链路质量估计的算法,通过对离线数据的分析,实现对链路质量的精准量化,提高路由算法的准确性。

Ant Colony算法是一种模拟蚂蚁的算法,通过随机搜索和信息素释放机制,在无中心控制的情况下,实现最优解的求解。

该算法可以有效的应对节点失效、网络动态变化等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TA
图 1-3 TMAC基本数据交换
TMAC协议-关键技术2


A
早睡问题
节点在邻居准备向其发送数据时进入了睡眠状态
Contend RTS CTS DATA ACK
B
C
Contend
Contend
D
Active TA
Sleep RTS?
图 1-4 早睡问题
TMAC协议-关键技术3


A
早睡问题解决办法
首先无线感器网络与我们的日常的网络是有很大区别的,最关键的体 现在于传感器本身依赖于电池,而不是固定的电源,这就决定了节约能 量开销,延长网络的使用寿命成为了无线传感网络所关心的最主要的问 题。另外无线传感器网络区别于其他的无线网络的一个很大的特性就是 所有传感器都是对等的,拥有共同的任务,因而公平性往往不是传感器 网络所要考虑的问题。那么基于以上这些思想,人们提出了各种不同的 MAC层的协议。下面,我们就来关注这些协议。
内容提要
1.
概述
2.
3.
背景知识
协议设计的重点
4.
5. 6.
各种MAC协议
结论和开放的问题 我的想法和问题
内容提要
1.
概述
2.
3.
背景知识
协议设计的重点
4.
5. 6.
各种MAC协议
结论和开放的问题 我的想法和问题
概述
我的ppt主要是面向那些没有太多相关知识的2b青年。在科普介绍的同 时,也欢迎各位文艺青年提出批评。
发送时主动抢占,CSMA方式(载波侦听多路访问) CSMA/CA主要使用两种方法来避免碰撞: 送出资料前,侦听媒体状态,等沒有人使用媒体,维持一段時间后,再等待一段 随机的时间后依然沒有人使用,才送出资料。由于每个裝置采用的随机时间不同, 所以可以减少碰撞的机会。 送出资料前,先送一段小小的请求传送封包(RTS : Request to Send)給目标 端,等待目标端回应封包后,才开始传送 按需分配
TMAC协议-基本思想
SMAC协议调度占空比固定,不能很好的适应网 络流量的变化 动态调整调度周期中的活跃时间长度 在TA时间内没有发生激活事件则进入睡眠
normal active time sleep time TMAC TA TA TA
图 1-2 TMAC基本机制
TMAC协议-关键技术1
B
Contend
C
Contend RTS
D
RTS CTS TA DATA ACK
图 1- 6接收RTS节点优先
PMAC协议-基本思想
SMAC调度占空比固定,TMAC早睡问题

引入模式信息,节点能够通过模式信息提前获知 邻居的下一步活动,调度都根据模式信息来进行
awake
SMAC
awake
sleep
未来请求发送(Future request-to-send, FRTS)
Contend RTS CTS DATA ACK
B
C
Contend
Contend
D
Active FRTS TA
Active RTS
图 1-5 FRTS帧交换
TMAC协议-关键技术4


A
早睡问题解决办法
满缓冲区优先
Contend
SMAC协议-关键技术1
周期性睡眠和监听


一个周期内有睡眠和监听两种状态
节点之间协同,保持监听同步 同步调度,形成虚拟簇 降低功耗,增加延迟
Listen
Sleep
Listen
Sleep Time
图 1-1 周期性监听和睡眠
SMAC协议-关键技术2,3
自适应监听
在一次通信过程中,通信节点的邻居在此次 通信结束后唤醒并保持监听一段时间。如果节 点在这段时间接收到RTS帧,则可以立即接收 数据,而不需要等到下一个监听周期,从而减 少了两个节点间的数据传输延迟。
消息传递


将长的信息包分成若干个短的DATA段
突发式传输
SMAC协议的优缺点
优点
通过睡眠机制减少了空闲侦听的能量损耗,实现 简单,交换交换时间表减少了同步所需要的开销。
缺点
广播数据包并没有使用RTS-CTS,这样就增大 的冲突碰撞的可能性,自适应可能会导致空闲侦听 和窃听(overhearing),睡眠和监听的周期是预先定 义的,并且固定的,这样在复杂多变的网络负载条 件下,这种策略的效率会大大降低。



周期性监听同步
延用SMAC协议思想,周期性广播SYNC帧
固定周期调度后全监听周期,发现邻居


RTS操作和TA的选择
发送RTS未收到CTS,应再发送一次 TA >竞争信道时间 +RTS发送时间 +CTS准备时间
A
Contend RTS CTS DATA ACK
B
C
Contend
Contend
内容提要
1.
概述
2.
3.
背景知识
协议设计的重点
4.
5. 6.
各种MAC协议
结论和开放的问题 我的想法和问题
背景知识


科普
能量损失的原因
冲突 overhearing


控制报文的开销
空闲侦听 overmitting


传输的方式
broadcast local gossip convergecast
TMAC
sleep TA time frame TA TA



优点
网络流量和规模变化自适应 网络拓扑变化自适应

算法较简单


典型协议
SMAC、TMAC、PMAC、WiseMAC、Sift
SMAC协议-前提条件和基本思想



前提条件
数据量少,可进行数据的处理和融合
节点协作完成共同的任务 网络可以容忍一定程度的通信延迟


基本思想
周期性睡眠和监听 ;协商一致的睡眠调度机制(虚拟簇) 自适应的侦听机制,减少信息的传输延迟 消息分割和突发传递机制来减少控制信息的开销和消息 的传递延迟
无线传感器网络MAC协议



网络特征
传感器节点能量受限
传感器节点失效概率大 传感器节点计算处理能力有限 通信带宽有限 以数据为中心

高密度、大规模随机分布
对MAC协议的设计提出了新的挑战!
内容提要
1.
概述
2.
3.
背景知识
协议设计的重点
4.
5. 6.
各种MAC题
协议设计的重点


能量效率
空闲监听 冲突

控制开销 串扰

可扩展性 和适应性 网络效率


算法复杂度
与其它层协议的协同
目前普遍认为重要性依次递减!
内容提要
1.
概述
2.
3.
背景知识
协议设计的重点
4.
5. 6.
各种MAC协议
结论和开放性的问题 我的想法和问题
竞争型MAC协议


基本思想
相关文档
最新文档