钛酸钡电学性能简介PPT课件

合集下载

钛酸钡同步辐射

钛酸钡同步辐射

钛酸钡同步辐射一、钛酸钡的简介钛酸钡(BaTiO3)是一种重要的无机非金属材料,由于其独特的物理和化学性质,被广泛应用于电子、陶瓷、涂料等领域。

钛酸钡具有较高的介电常数、优良的铁电和压电性能,被广泛用于制造陶瓷电容器、压电器件等。

此外,钛酸钡还具有较好的热稳定性、化学稳定性和环境稳定性,因此在高温、高湿、高辐射等恶劣环境下仍能保持良好的性能。

二、同步辐射的原理及应用同步辐射是一种强度高、方向性强、波长范围宽的电磁辐射,由高速运动的带电粒子在磁场中受到洛伦兹力而发生偏转时产生。

同步辐射具有很多独特的性质,如高亮度和准直性、连续可调的波长和能量、脉冲时间结构等,因此被广泛应用于物理、化学、生物医学等领域。

在材料科学领域,同步辐射可以用于研究材料的微观结构和动态行为,为新材料的发现和制备提供有力支持。

三、钛酸钡同步辐射的实验方法钛酸钡同步辐射的实验方法主要包括X射线衍射、X射线吸收精细结构、X射线荧光光谱等。

这些方法可以用来研究钛酸钡的晶体结构、化学键合状态、元素组成和含量等方面的信息。

其中,X射线衍射是最常用的一种方法,通过分析衍射图谱可以得到材料的晶体结构、晶格常数、晶格畸变等信息。

X射线吸收精细结构可以用来研究元素的价态和配位环境,X射线荧光光谱则可以用来测定元素的含量和化学状态。

四、钛酸钡同步辐射的研究进展近年来,随着同步辐射技术的发展,对钛酸钡的研究也取得了很大的进展。

首先,通过同步辐射X射线衍射技术,可以更精确地测定钛酸钡的晶体结构和晶格常数,进一步研究其铁电和压电性能的机制。

其次,利用同步辐射X射线吸收精细结构技术,可以深入了解钛酸钡中元素的价态和配位环境,为研究其热稳定性、化学稳定性和环境稳定性提供有力支持。

最后,通过同步辐射X射线荧光光谱技术,可以快速测定钛酸钡中元素的含量和化学状态,为其在高温、高湿、高辐射等恶劣环境下的应用提供理论依据。

五、未来展望随着科技的不断发展,钛酸钡作为一种重要的无机非金属材料,将在更多领域得到应用。

钛酸钡陶瓷的种类

钛酸钡陶瓷的种类
掺杂改性是通过在钛酸钡陶瓷中加入其他元素,以改变其性能的一种方法。
掺杂元素如锶、钙、镁等,可以改变钛酸钡的介电常数、压电系数、热导率等性能 参数。
通过选择不同的掺杂元素和掺杂量,可以定制钛酸钡陶瓷以满足特定应用的需求。
表面处理
表面处理是为了改善钛酸钡陶 瓷的表面性能,提高其与金属
或其他材料的粘附性。
高介电常数
钛酸钡陶瓷具有很高的介电常数,使其在制造电容器 、电子滤波器等电子元件方面具有优异性能。
压电性
钛酸钡陶瓷具有压电性,即在外力作用下能够产生电 荷,可用于制造传感器和换能器等。
热稳定性
钛酸钡陶瓷具有较好的热稳定性,能够在较高温度下 保持其性能。
钛酸钡陶瓷的应用领域
电子元件
由于其高介电常数和良好的热稳 定性,钛酸钡陶瓷广泛应用于制 造电容器、电子滤波器、电子管 座等电子元件。

制备工艺
高纯度钛酸钡陶瓷的制备工艺较为 复杂,需要经过多次提纯、合成和 烧结等步骤,以确保最终产品的纯 度和性能。
应用领域
高纯度钛酸钡陶瓷广泛应用于电子 、通讯、航空航天等领域,作为功 能陶瓷和结构陶瓷的重要原料。
多孔钛酸钡陶瓷
孔隙结构
应用领域
多孔钛酸钡陶瓷具有发达的孔隙结构 ,孔径大小可调,孔隙率较高。
传感器
利用其压电性,钛酸钡陶瓷可以 用于制造压力传感器、加速度传 感器等传感器件。
通讯领域
在通讯领域,钛酸钡陶瓷可用于 制造高频通讯器件,如手机、无 线电通讯设备中的元件。
02
钛酸钡陶瓷的种类
高纯度钛酸钡陶瓷
纯度要求
高纯度钛酸钡陶瓷的原料纯度要 求极高,通常需要达到99.9%以 上,以确保陶瓷的性能和稳定性
感谢观看

钛酸钡和钛酸铋

钛酸钡和钛酸铋

钛酸钡(BaTiO3)和钛酸铋(Bi2TiO5)都是常见的铁电材料,它们在电子陶瓷、PTC热敏电阻、电容器等领域有着广泛的应用。

这两种材料都具有铁电性和压电性,但它们的性能和应用有所差异。

1. 钛酸钡(BaTiO3):
- 铁电性能:钛酸钡是一种典型的铁电材料,具有良好的介电性能和铁电性能。

- 应用:由于其优异的介电性能,钛酸钡被广泛应用于多层陶瓷电容器(MLCCs)、热敏电阻、压电陶瓷等领域。

- 稳定性:钛酸钡在高温下的稳定性相对较好,这使得它在高温环境下的应用中具有优势。

2. 钛酸铋(Bi2TiO5):
- 铁电性能:钛酸铋也是一种铁电材料,但相比钛酸钡,它的铁电性能较低。

- 应用:钛酸铋通常用于制备层状结构材料,如复合氧化物,这些材料在高温环境下的电性能更为稳定。

- 稳定性:钛酸铋在高温下的稳定性较差,因此在高温应用中可能需要与其他材料结合使用。

钛酸钡和钛酸铋都是重要的铁电材料,它们在电子元器件和陶瓷材料中扮演着重要角色。

钛酸钡 伪立方相-概述说明以及解释

钛酸钡 伪立方相-概述说明以及解释

钛酸钡伪立方相-概述说明以及解释1.引言1.1 概述钛酸钡(Barium Titanate,简称BT)是一种重要的功能陶瓷材料,具有优异的电学性能和热学性能。

它的最重要的特点是具有伪立方相结构,该结构在科学研究和工程应用中具有广泛的应用。

伪立方相不仅具有高度有序的结构,同时也表现出了一些非线性电学性质,使其在电子器件、传感器、电容器和储能设备等领域中有着重要的应用价值。

随着科学技术的不断发展,人们对钛酸钡伪立方相的研究也越来越深入。

在过去的几十年中,钛酸钡伪立方相的物理性质和结构特点已经被广泛研究,并取得了许多重要的进展。

这些研究结果不仅丰富了我们对钛酸钡伪立方相的认识,同时也为进一步发展和应用该材料提供了有力的支持。

本文将从钛酸钡的物理性质、结构特点和应用领域三个方面对其进行综合介绍和分析。

首先,我们将介绍钛酸钡的物理性质,包括其晶体结构和化学组成等方面的基本信息。

其次,我们将详细讨论钛酸钡伪立方相的结构特点,包括晶格参数、晶体结构和晶体缺陷等方面的内容。

最后,我们将探讨钛酸钡伪立方相在电子器件、传感器和储能设备等领域中的应用前景,并对其发展方向进行展望。

通过对钛酸钡伪立方相的研究和应用领域的探讨,我们可以更全面地了解该材料的特点和潜力。

同时,我们也希望通过本文的撰写,能够为科学研究人员和工程技术人员提供有益的信息和参考,促进该领域的进一步发展和创新。

1.2 文章结构文章结构部分的内容如下:本文主要分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的。

在概述中,将介绍钛酸钡伪立方相的基本背景和相关研究现状。

文章结构部分将详细说明本文的整体架构和各个章节的内容组织。

目的部分将阐明本文的研究目标和意义。

正文部分将分为钛酸钡的物理性质、结构特点和应用领域三个小节。

在物理性质小节中,将介绍钛酸钡的化学成分、晶体结构、晶格参数等基本物理性质。

结构特点小节将重点探讨钛酸钡伪立方相的特殊结构特征及其对材料性能的影响。

钛酸锶钡(BST)材料及其应用

钛酸锶钡(BST)材料及其应用

钛酸锶钡(BST)材料及其应用摘要钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。

本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。

1 BST的组成与结构钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。

1.1 钛酸钡简介钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一,被约2000)、非线誉为“电子陶瓷工业的支柱”。

钛酸钡的电容率大(常温下介电常数r性强(可调性高),但严重依赖于温度和频率。

钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。

在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。

钛酸钡材料综述

钛酸钡材料综述

钛酸钡材料综述1.引言钛酸钡铁电陶瓷是20世纪中叶发展起来的一种性能卓越的介电材料,即便其发展时间较短,但其具有卓越的压电性能、介电性能及热释电性等,使其一跃成为功能陶瓷领域内极为重要的组成部分,并且其作为电子陶瓷元器件的基础材料,推动了电子工业的发展。

近些年,全球电子工业发展迅速,其高性能、高精度、小型化的特点对主要原料提出了更高的要求,这无形中也对钛酸钡铁电陶瓷的发展也提出了较高要求[1]。

在实际生产中,要求钛酸钡铁电陶瓷粉体超细、超纯,并对主要原料掺杂改性技术方面不断完善。

2.钛酸钡铁电陶瓷的主要制备技术钛酸钡铁电陶瓷材料的常用制备方法有固相合成法、液相合成法两大类。

针对每个大类的合成方法下面还包含了诸多支路,其具体操作各具特色。

传统固相合成法是一种常用的合成方法,但是由于该方法年代久远,因此所制备的产物粉体纯净度较低,且回收颗粒物体积大、化学活性较差,所以当前工业上使用该方法生产钛酸钡粉效果较差。

尤其是在电子产业中,对元件性能要求高,需要可靠、固态化、多功能性、多层化等高要求的元件。

面对此趋势,经过改进后的液相合成法可以达到较好的效果,液相合成法包括凝胶法、化学沉淀法、水热合成法等。

由于这些方法合成温度要求低且其各组分是在分子水平合成的,所以该方法制备出来得纯钛酸钡粉产物具有结晶性好、组成均匀、粒径可控、无团聚、纯度极高等优势,可充分发挥元器件的电子性能。

以钛酸四丁酯Ti(OC4H9)4(98.0%)、硝酸钡Ba(N03):(99.5%)和草酸H2C204(99.5%)为初始原料,在微波温度为80℃,微波时间为10 min,煅烧温度为700℃和煅烧时间为1 h的条件下制备一定量晶粒尺寸在30—50 nm的BaTiO,纳米粉放入研钵中,用浓度5%作为粘合剂的PVA溶液制造颗粒,再用80~120目的筛子对颗粒进行筛选。

每次称取0.35 g左右的样品放入模具中,在10 MPa 的压力下对粉体进行干压成型,最后对瓷坯进行排胶、烧结等后续处理。

钛酸钡

钛酸钡

钛酸钡A 制取方法在TiO2—Ba0体系中,通过控制不同的钛钡比可制取偏钛酸钡(BaTiO3)、正钛酸钡(Ba2TiO4)、二钛酸钡(BaTi2O5)和多钛酸钡(BaTi3O7、BaTi4O9等),其中以偏钛酸钡最有应用价值。

制取偏钛酸钡的方法很多,可归纳为固相法和液相法两类。

固相法一般是以TiO2和BaCO3按摩尔比1:1混合,并可适当压制成形,放入1300℃左右氧化气氛炉中焙烧,其反应式为:TiO2十BaCO3=BaTiO3十CO2↑ (2—196)反应产物经破碎磨细为产品。

作为电子陶瓷材料使用的偏钛酸钡,在其生产中不希望有其他几种钛酸钡生成,所以原料的配比必须准确和混合均匀,这是该法的难点之一。

固相法产品因受原料纯度和制备过程的污染,一般纯度较低,活性较差,且较难磨细成超细粉。

液相法是以精制的四氯化钛和氯化钡为原料,使它们与草酸反应生成草酸盐Ba(TiO)(C2O4)2·4H2O沉淀,经焙烧获得偏钛酸钡。

液相法可获得高纯度、高活性和超细的产品,产品中钛钡比可达到很精确的程度。

我国已能用这种方法生产质量较好的适合于功能陶瓷使用的钛酸钡,但有待进一步改进工艺设备以提高产品质量的稳定性。

B 性质偏钛酸钡有四种不同的晶型,各具有不同的性质。

高于122℃稳定的是立方晶型,它不是一种强性电解质。

122℃是偏钛酸钡的居里点。

5~l 20℃下稳定的是正方晶型,它是一种强性电解质。

+5~-90℃下稳定的是斜方晶型,它也是一种强性电解质。

低于-90℃下稳定的是斜方六面体,它会发生极化。

偏钛酸钡是白色晶体,密度6.08 g/cm3,熔点1618℃,不溶于水,在热浓酸中分解。

偏钛酸钡可与其同素异形体、铬锆酸盐、铪酸盐等形成连续固溶体,这些固溶体具有强性电解质性质。

C 应用由于偏钛酸钡具有极高的介电常数、耐压和绝缘性能优异,是制造陶瓷电容器和其他功能陶瓷的重要原料。

用偏钛酸钡制造的电子陶瓷元件已在无线电、电视和通信设备中大量使用,使设备的性能提高和小型化,成为高频电路元件中不可缺少的材料。

BaTiO

BaTiO

Bi蒸汽提升PTCR同时,抑制晶粒 长大
常规掺杂
Bi2O3蒸汽掺杂
B 2 O i3 2 B B • iaV B '' a3 O O
Bi蒸汽掺杂抑制晶粒长大
Mn和Bi蒸汽的协同作用
1010
109
108
Resistance /
107 106 105
104
103
102
101
100 0
Y-BST Y-BST+Bi O vapor
利用移峰效应可将铁电陶瓷在居里温度处出现的介电常数的峰值移到室温附近, 这有利于制造大容量、小体积的陶瓷电容器。
也可利用移峰效应改善陶瓷材料的电容温度系数:为了在工作情况下(室温附近 )材料的介电常数与温度关系曲线尽可能平缓,即要求居里点远离室温。如掺入 PbTiO3可使BaTiO3居里点升高。
压峰效应
其他蒸汽掺杂
108
J. Q. Qi, Z. L. Gui, L. T. Li and Y. J. Wu, “Positive
107
temperature coefficient resuistance effect in Ba1-
xSrxTiO3 ceramics modified with Bi2O3 and PbO by
0.10
Temperature / 0C
104 0.12
Qi Jianquan, Chen Wanping, Zhang Zhongtai and Tang Zilong, Acceptor compensation in (Sb,Y)-doped semiconducting Ba 1-x SrxTiO3, J. Mater. Sci., Vol.32, p713-717, 1997
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钛酸钡的结构与性能
2021
钛酸钡的物理性质
化学式:BaTiO3 分子量:233.1922 外观:白色粉末或透明晶体 溶解性:难溶于水,可溶于浓硫酸、盐酸及氢氟酸 熔点:1618℃
2021
钛酸钡陶瓷主要特性
①铁电性 ②介电性 ③热释电性 ④压电性
2021
钛酸钡晶体结构
2021
不同温度下钛酸钡的晶胞形状
2021
钛酸钡的压电性
压电性是固体具有由施加应力产生额外电荷的性能。如果晶体无 对称中心,则这种外加压力将使电荷分布有变化,产生偶极矩,产 生压电效应。钙钛矿型晶胞结构钛酸钡陶瓷材料是目前应用最为广 泛的压电陶瓷,主要用于制造换能器(水声、电声、超声)、陶瓷滤 波器、电光器件、陶瓷变压器以及高压发生器等。
2021
钛酸钡的介电性能
由非自发极化状态→自发极化状态,或由一个自发极化相转变→另 一个自发极化相时,钛酸钡介电性能发生显著变化
①不同温度下,晶格参数有规律地变化
2021
②钛酸钡单晶的介电常数ε与温度T的关系
2021
钛酸钡介电性能的应用
钛酸钡功能材料是介电体,有较高的介电常数,有很强的存 储电荷的能力。利用钛酸钡材料的这一性质可制备电容器 。如多层陶瓷电容器、埋入式电容器等。
2021
谢谢观看
2021
2021
• 热运动能量减少,某些热运动能量较低的钛离子, 就不足以克服钛离子位移后 Ti-O 间形成的内电场作 用,而向着某个氧离子(如c轴方向的氧离子靠近) ,产生自发位移,产生自发极化 • 如果周围晶胞中钛离子的热运动能量较低,这种自 发位移就会波及到周围晶胞中所有的钛离子,使它们 同时沿着同一方向发生位移,这种极化波及相邻的晶 格,形成一个自发极化的小区域,即电畴
2021
钛酸钡的热释电性
由于温度的变化,钛酸钡晶体会出现结构上的电荷中心相对位移, 使它们的自发极化强度发生变化,从而在晶体两端产生异号的束缚电 荷,这种现象称为热释电效应。在钛酸盐材料中,钛酸钡是最早发现 的具有热释电性的材料。 近年来被广泛用于制造红外传感器,与光 子传感器相比,它不会发生任何类型的辐射、传感效果好,在红外 探测方面开始表现出快效应、高灵敏、宽光谱等优点。
2021
钛酸钡晶体电畴结构
四方钛酸钡晶体电畴结构示意图
2021
偏光显微镜观察的电畴
晶片的不同区域在不同位置消光,那么就表示这些不同的 区域包含有不同极轴方向的畴。
2021
电滞回线是电畴 在外电场作用下 运动的宏观描述
2021
钛酸钡铁电性的应用
钛酸钡具有铁电性,常用作信息存储、光记忆、图 像显示、全息照相器件、制造介质放大器、脉冲发生 器、稳压器、频率调制、开关等。
2021
钛酸钡自发极化的微观机理
在居里温度(120℃)以上:
立方晶格常数:
a = 0.40 nm

r(Ba2+)= 1.43 Å
r(O2-)=1.32 Å
r(Ti4+)= 0.64 Å
• 钛-氧离子间距为2.005 Å r(Ti4+)+ r(O2-)=1.96 Å ,晶格 中的氧八面体的空隙比钛离子大,允许钛离子向6个O2-中的任何一 个移动
2021
多层陶瓷电容器是一种重要的电子元器件。它具有高电容密度从而 使得芯片小型化,广泛应用于信息、军工、移动通讯等行业。钛酸 钡是目前主流的制备多层陶瓷电容器的介质材料,被誉为“电子陶 瓷工业的支柱”。
2021
埋入式电容器的电介质材料要求具有高的介电常数、低的介 电损耗、好的加工性能和低廉的价格。钛酸钡是很合适的 材料。
• 在120℃以上,Ti4+的热运动较大,足以破坏Ti4+位移后所形成的 内电场对Ti4+的定向位移效应;平均来说,八面体中央的Ti4+向周围 六个O2-靠近的几率相同,并不会稳定地偏向某一个O2-,故不会形成 自发极化
2021
在居里点120 ℃以下,钛酸钡中的钛离子从原来的平衡位置沿(001 )方向位移,变成四角晶系结构
相关文档
最新文档