大学物理《电磁学》PPT课件ppt课件

合集下载

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

2 2 B Bx B y 0.1T
Bz tan 0.57 Bx
300
~1012T ~106T ~7×104T ~0.3T ~10-2T ~5×10-5T ~3×10-10T
资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
2.电场与磁场的相对性
S应线是闭 合的,因此它在任 意封闭曲面的一侧 穿入,必在另一侧 全部穿出。
↑载流螺线管的磁感应线 ←载流直导线的磁感应线 比较
1 e E dS
S
0
Q
dV
静电场中高斯定理反映静电场是有源场;
m B dS 0
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F F
I
电流与电流之间的相互作用
I F
F
I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束
S N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
磁感应线的疏密反映磁场的强弱。
B
③性质: •磁感应线是无头无尾的闭合曲线,磁场中任 意两条磁感应线不相交。 •磁感应线与电流线铰链 通过无限小面元dS 的磁感应线数目dm与dS 的 比值称为磁感应线密度。我们规定磁场中某点的磁


2

大学物理电磁学ppt课件

大学物理电磁学ppt课件

17
电磁学复习
基尔霍夫第一方程组(节点的电流方程) C
(Ii ) = 0
i
规定: 流出+,流入―;
通过节点电流的代数和为零。
r1 1
R1
2
R2
I2
r2
基尔霍夫第二方程组(回路的电压方程) I1
R
I
(Ii Ri ) (i ) 0 例 C:I1 I I2 0
i
L Er d
B dS S t
--对导线所围面积积分
28
电磁学复习
自感系数 L I
互感系数 M 12 21
i2
i1
自感磁能
WL

1 2
LI 2
互感磁能 WM = M I1I2
L

L
dI dt
12


M
d i2 dt
普适式(L一定)
长直螺线管: B = nI L = n2V
电磁学复习
第12章 直流电和交流电
12-1 电流 恒定电流 12-2 欧姆定律 焦耳定律 12-3 电源 电动势 12-4 全电路欧姆定律 12-5 基尔霍夫方程组 12-6 电容器的充放电过程 12-7 交流电
知识点:
恒定电路中路段电压和回路中电流的计算
典型例题:基尔霍夫方程组应用举例
典型习题:P74 12-7, 9, 11, 12, 13, 14, 15, 16

充介质
0
C


rC0



0
' '
在⊥E的表面出现极化电荷
E0
Pcos P n Pn

电磁学PPT课件

电磁学PPT课件
电磁学PPT课件
目录
• 电磁学基本概念与原理 • 静电场分析与应用 • 恒定电流与稳恒磁场研究 • 电磁波传播与辐射特性探讨 • 电磁学在日常生活和工业生产中应用实例
01
电磁学基本概念与原理
Chapter
电场与磁场定义及性质
01
电场
由电荷产生的特殊物 理场,描述电荷间的 相互作用。
02
磁场
由运动电荷或电流产 生的特殊物理场,描 述磁极间的相互作用 。
3
方程组中各量的含义及相互关系
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
电磁波产生、传播和接收过程
电磁波的产生
变化的电场和磁场相互激发,形 成电磁波。
电磁波的传播
电磁波在真空或介质中传播,速度 取决于介质的性质。
电磁波的接收
通过天线等接收装置,将电磁波转 换为电信号进行处理。
描述稳恒磁场的方法
介绍描述稳恒磁场的物理量,如磁感应强度、磁通量等,并给出相 应的定义和计算公式。
稳恒磁场的性质
列举稳恒磁场的基本性质,如磁场的叠加性、磁场的无源性等。
洛伦兹力与霍尔效应原理
洛伦兹力的定义和公式
阐述洛伦兹力的概念,即运动电荷在磁场中所受到的力,并给出 相应的计算公式。
霍尔效应的原理
03
电场性质
对电荷有力的作用, 具有能量和动量。
04
磁场性质
对运动电荷或电流有 力的作用,也具有能 量和动量。
库仑定律与高斯定理
01
02
03
库仑定律
描述真空中两个静止点电 荷之间的相互作用力,与 电荷量的乘积成正比,与 距离的平方成反比。

电磁学全套ppt课件

电磁学全套ppt课件
感生电动势
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流

电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。

大学物理:电磁学PPT

大学物理:电磁学PPT

N F4
O
F2 B
en
M,N F1
O,P B
F2
en
l1 l1 M F1 sin F2 sin Il2 B l1 sin ISB sin 2 2 M IS B m B 线圈有N匝时 m NIS
2 电流元的磁场
dB
P *
I

Idl
0 Idl dB er 2 4 r
——毕奥-萨伐尔定律
r
3
磁场的叠加原理
B Bi
i
B dB
例 1: 判断下列各点磁感强度的方向和大小.
1 8 2Βιβλιοθήκη dB 0 1、 5 点 :
7
Idl
R
6 5 4
例 5:
一半径为R,均匀带电Q的薄球壳。 求球壳内外任意点的电场强 度。
0 r R 如图,过P点做球面S1 E dS E dS 0 E 0
S1 S1
r
P
+ + +
+
S +1
O
如图,过P点做球面S2 rR E dS E dS Q / 0
rB
(electric potential )
点电荷电场 中的电势:
V
Q 40 r
电势的叠加 原理:
V Vi
i
点电荷电场中常取 无穷远处为电势零点
点电荷的电场线和等势面:
两平行带电平板的电场线和等势面:
+ + + + + + + + + + + +

大学物理电磁学总结(精华)ppt课件(2024)

大学物理电磁学总结(精华)ppt课件(2024)

34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流

电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制

大学物理电磁学PPT课件

大学物理电磁学PPT课件

磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作用于
运动电荷 B
产生
三、磁感应强度(Magnetic Induction)
1. 磁感应强度 B 的定义:
对比静电场场强的定义 F q0 E
将一实验电荷射入磁场,运动电荷在磁场中 会受到磁力作用。
实验表明
① Fm v
② Fm q0v sin



2
时Fm达到最大值
Fm
q0
v
θ=0 时Fm= 0,
人们最早认识磁现象是从天然磁铁开(称 天然磁铁为永恒磁铁)。
对其基本现象的认识归纳如下:
(1) 同号的磁极有相互排斥力,异号的磁极有相 互吸引力
(磁铁间相互作用力称为磁力)
(2)磁铁分割成小段,小段仍有两极(磁荷假说)
(3) 铁棒可以被磁化
磁铁间的相互作用
N
S
N
S
二、磁力、磁性的起源
在1820年以前,人们对互作用。而把磁与电分割 开来,看作彼此无关。
I F
F I
磁场对运动电荷的作用
电子束
+
磁场对运动电荷的作用
电子束 S
N
+
我们得把问题引向一个更深的层次 思想深邃的科学家自问:磁铁究竟是什么?如 果磁场是由电荷运动激发的,那么来自一块磁铁的 磁场是否也可能是由于电流的的效果呢? 安培用通电螺线管很好地模拟了一个磁针:
I
I
从这个实验看来,一块磁铁, 如同一个永恒的环形电流。
美国斯坦福大学的一个研究小组在实验室中安置 了一个超导铌线圈,守株待兔似的企图捕捉宇宙射线 中可能存在的磁单极子从中穿过。1982 年的一天,该 小组突然宣布,他们记录到一个事件,经测定与狄拉 克预言的磁单极子穿过该线圈将会引起的磁通量的跳 变完全吻合,因而找到了一个磁单极子存在的证据!
这天正是西方情人节
这篇仅用 4 页纸写成的极其简洁的实验报告,向 科学界宣布了电流的磁效应,轰动整个欧洲。这一天 作为划时代的日子载入史册。
《电磁学》 就此诞生!
奥斯特的发现立即引起法 国数学家物理学家安培 (A.M.Ampere)的注意
他的想法是:
如果电流激发的磁场能作用于磁 性物质,那么它也应能作用于电流!
安培
丹麦物理学家奥斯特─一 位康德哲学思想的信奉者,就 坚信:客观世界的各种力具有 统一性。并开始对电与磁的统 一性进行研究。
奥斯特(Hans Christan Oersted, 1777-1851) 丹麦物理学家,发现 了电流对磁针的作用, 从而导致了19世纪中 叶电磁理论的统一和 发展。
科学的真正突破,就在于打破思维定势的束缚, 创建新的科学概念。
他在短短的几个星期内对电流的磁效应作了系
列的研究。发现不仅电流对磁针有作用,而且两个 电流之间彼此也有作用。安培提出分子电流 (molecular current)的假设。
安 培 演 示 电 流 相 互 作 用 的 装 置 ( 复 制 品 )
电流与电流之间的相互作用
I
F
IF
电流与电流之间的相互作用
I I
安培还注意到,地球也如同一个大磁铁,它的 南北极指向就如同地球上有自东向西绕行的电流。
安培分子环流假说 天然磁性的产生也是由于磁体内部有电流流动。 分子电流
n
I
N
S
等效环形电流 电荷的运动是一切磁现象的根源。
解释磁现象 : (1).天然磁铁的磁性(分子流) (2).磁化现象(分子磁矩的转向)
所谓磁单极子,就是只有N 极或只有S 极的最 小磁性物质单元。
N
S
NS
NS
NS
从安培的假说能够解释为什么不存在磁单极子 ( 单独的N极或S 极 ) ,这正是分子环流的结果。
但是,量子力学的创始人之一狄拉克从相对论 性量子理论出发,预言磁单极子是应该存在的,并 且由此可以解释电荷的量子化。
这种电荷与磁荷的内在联系,从对称性的角度看 来是十分诱人的。近年来,许多科学家都在致力于对 磁单极子的探索。但是这种探索将是十分困难的,据 “大统一”理论,磁单极子应该在宇宙演化的极早期 (~10-35s)的超高能状态(~1023eV、~1027K)下 产生,随着宇宙的膨胀、温度降低而急剧相变,至今 若还有残存的话,也是极为稀少了。
1820年 4月某天晚上,奥斯特在讲课的过程中突 然来了灵感,就在快要下课时,奥斯特说,让我把导 线与磁针平行放置来试试看
于是他毫不犹豫地在大庭广众面前接上了电源。
他发现:闭合电键的瞬刻,通电导线附近的磁针 微微跳动了一下!这个奥斯特日夜盼望的现象对停课 的人毫无影响!但奥斯特却激动无比,他立刻中止讲 座回到实验室,苦苦进行了三个月的连续实验研究, 终于在 1820年7 月21日发表了题为《关于磁针上电流 碰撞的实验》的论文。
人们认识到磁性的根源 :
电荷的运动 。
现代物理已经充分把握,原子核外的电子绕核 高速运动,同时电子还有自旋运动。核外电子的这 些运动整体上表现为分子环流,这便是物质磁性的 基本起源。
不过,安培的分子环流说至今还只能是一个假 说。有三个疑点到现在还未查明:
①磁单极子(magnetic monopole)
一位专栏作家幽默地评论道:
正当全世界都在为人们成双成对庆贺 的时候,物理学家却为他们找到了孤独的 磁单极子而欢呼雀跃!
斯坦福大学的这个探测结果只是一个不能重现 的孤立事件,在没有其它实验室认同的情况下,是 不能作为对磁单极子的认定结论的。
所有磁现象可归结为

A的

磁场
运动电荷
A
+
B的
作 用 于 磁场
将Fm= 0 时的速度方向定义为 B 的方向
Fm (v, B)
定义 B Fm
q0v sin
SI单位:T(特斯拉)
Fm
B q0
v
工程单位常用高斯(G) 1T 104 G
磁感应强度是反映磁场性质的物理量, 与引入到磁场的运动电荷无关。
运动电荷受到的磁场力为
Fm q0vB sin
写成矢量式
Fm qv B ─罗仑兹力
Fm


Fm
例题1 :
15-1 磁场 磁感应强度
一、磁的基本现象
1.磁现象的初期认识
我国是世界上最早发现和应用磁现象的国家之 一,早在公元前300百年就发现磁铁吸引铁的现象。 在十一世纪我国已制造出指南针(司南) (compass)。《山海经》中有“山中有磁石者,必 有赤金。”《水经注》记载,秦始皇的阿房宫有 “北阙门”用磁石做成的,以防刺客。
相关文档
最新文档