辽宁省九年级下学期数学3月月考试卷
九年级下学期数学第一次月考分析

九年级数学(下)第一次月考试卷九年级下学期数学第一次月考分析第二单元物质的变化3月20日我校举行了九年级第一次月考,从此次月考情况来看,数学成绩喜忧各半。
喜的是优秀率较自己前不久举行的单元考试稳中有升,达到预期的目标。
忧的是合格率却较之前次单元考试有较大的滑坡,与预期目标差距较大。
通过这次月考充分暴露出相当部分学生对数学这门课程的学习抓得不紧,甚至有放松要求的迹象,造成成绩大幅度的下降。
答:水分和氧气是使铁容易生锈的原因。
一、月考成绩相关数据25、意大利的科学家伽利略发明了望远镜,天文学家的“第三只眼”是天文望远镜,可以分为光学望远镜和射电望远镜两种。
全级参考总人数:59 人。
数学试卷总分:120 分。
其中 102 分及其以上视为优秀,72 分及其以上视为合格。
答:如水资源缺乏,全球气候变暖,生物品种咖快灭绝,地球臭氧层受到破坏,土地荒漠化等世界性的环境问题。
优秀人数:5 人,优秀率:8.47%。
此项数据与命题预期目标相吻合。
合格人数:28 人,合格率:47.46%。
此项数据较预期减少 23%,差距较大。
最高分数:104 分。
二、数学试卷难度分析12、淡水在自来水厂中除了沉淀和过滤之外,还要加入药物进行灭菌处理,这样才能符合我们使用的标准。
此次数学月考试卷总分共 120 分,其中填空和选择占到 54 分,计算(含简单的解答题)达到 39 分,综合题 27 分。
其中容易题比例达到 70%,稍难题比例在 15% 以上,较难题比例在 5% 左右,难题控制在 10% 以内。
整个试卷难度属于中性偏易。
7、将铁钉的一部分浸入硫酸铜溶液中,有什么现象?过一会儿,取出铁钉,我们又观察到了什么现象?(P36)三、学生作答情况分析通过仔细阅读学生作答,发现达到优秀率的学生对于填空、选择、计算等基础知识掌握很牢固,极少出现丢分的现象。
丢分多出现在最后两道综合题上,主要原因是因为平时对综合题的练习不够,思路无法展开,导致做不出或者是思路出现错误。
辽宁省大连市2024届九年级下学期中考一模数学试卷(含解析)

数学一.选择题(共10小题,共30分)1. 下列有理数中最小的是()A. B. C. 3 D. 0答案:B解析:详解:解:∵,∴最小的数是;故选B.2. 下列几何体中,俯视图是三角形的是()A. B.C. D.答案:B解析:详解:解:A、俯视图圆,故本选项不合题意;B、俯视图是三角形,故本选项符合题意;C、俯视图是有圆心的圆,故本选项不合题意;D、俯视图是圆,故本选项不合题意.故选:B.3. 下列图形既是轴对称图形,又是中心对称图形的是()A. B.C. D.答案:C解析:详解:解:A选项是轴对称图形,不是中心对称图形,不合题意;B选项不是轴对称图形,也不是中心对称图形,不合题意;C选项是轴对称图形,又是中心对称图形,符合题意;D选项不是轴对称图形,也不是中心对称图形,不合题意;故选C.4. 下列计算正确的是( )A. B.C. D.答案:C解析:详解:解:A.与不能合并,故A不符合题意;B.,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故选:C.5. 关于x的一元二次方程(m-1)x²+2x-1=0有两个不相等的实数根,则m的取值范围是()A. m<-1B. m>0C. m<1且m≠0D. m>0且m≠1答案:D解析:详解:解:关于x的一元二次方程(m-1)x²+2x-1=0有两个不相等的实数根,(m-1)≠0,且△>0,即2-4(m-1)(-1)>0,解得m>0,m的取值范围为m>0且m≠1,m>0且m≠1时, 关于x的一元二次方程(m-1)x²+2x-1=0有两个不相等的实数根.故选D.6. 解分式方程分以下四步,其中错误的一步是( )A. 最简公分母是B. 去分母,得C. 解整式方程,得D. 原方程的解为答案:D解析:详解:解:方程两边同时乘以去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:,检验,当时,,∴原方程无解,∴四个选项中只有D选项符合题意,故选:D.7. 下列四个选项中,不符合直线的性质与特征的是()A. 经过第一、三、四象限B. 随的增大而增大C. 与轴交于点D. 与轴交于点答案:C解析:详解:解:∵>0,﹣3<0,∴该直线经过第一、三、四象限,y随x的增大而增大,故A、B选项正确,∵当y=0时,由0=x﹣3得:x=6,∴该直线与x轴交于点(6,0),故C选项错误;∵当x=0时,y=﹣3,∴该直线与y轴交于点(0,﹣3),故D选项正确,故选:C.8. 我国古代数学著作之一《孙子算经》中记载着这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?意思是:今有若干人乘车,若每3人共乘1辆车,最终剩余2辆车;若每2人共乘1辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x辆车,根据题意所列方程正确的是()A. B. C. D.答案:B解析:详解:解:依题意得:,故选:B.9. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若,,则的度数为()A. B. C. D.答案:B解析:详解:解:∵光线平行于主光轴,∴,又,∴,∵,∴,∴,故选:B.10. 如图,已知.按如下步骤作图:①以点为圆心,适当长为半径作弧,分别交和于点;②分别以点为圆心、长为半径作弧,两弧在内交于点;③作射线;④连接.由作图可知的度数为()A. B. C. D.答案:D解析:详解:解:根据作图可知是的角平分线,,又,∴,∵,∴故选:D.二.填空题(共5小题,共15分)11. 计算:________.答案:解析:详解:解:,故答案为:.12. 如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P用坐标表示为________.答案:(6,6)解析:详解:建立平面直角坐标系,如图所示,∴熊猫馆P用坐标表示为(6,6),故答案为:(6,6).13. 有四张完全一样正面分别写有“决”“胜”“中”“考”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字不相同的概率是__________________.答案:##解析:详解:解:根据题意列表如下:决胜中考决决决胜决中决考胜胜决胜胜胜中胜考中中决中胜中中中考考考决考胜考中考考共有16种等可能的结果数,其中两次抽出的卡片上的汉字不相同的有12种情况,所以P(抽取的两张卡片上的汉字不相同).故答案为:.14. 如图,直线与x轴、y轴分别交于A、B两点,以为边在第二象限作正方形,已知双曲线过点D,则_______.答案:解析:详解:解:当时,,即,当时,,解得,,∴,∴,∵正方形,∴,如图,作轴于,∵,∴,∵,,,∴,∴,∴,将代入得,,解得,,故答案为:.15. 如图,在矩形中,,点E是边上的一个动点,将沿折叠,当点A的对应点F落在矩形一边的垂直平分线上时,的长为______.答案:或解析:详解:解:分两种情况:①如图1,过F作交于M,交于N,则直线是边的垂直平分线,∴,∵沿折叠得到,∴,∴,∴,∴,∴,解得:,∴;②如图2,过F作交于P,交于Q,连接,则直线是边的垂直平分线,∴,,又∵,∴,∴等边三角形,,∴,∴设,则,在,即,解得:或(舍去)综上所述:的长为或;故答案为:或.三.解答题(共8小题,共75分)16. (1)计算:.(2)先化简,再求值:,其中.答案:(1);(2),解析:详解:解:(1);(2)当时,原式.17. 某中学为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书本数相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了,科普书的单价与去年相同,为了普及科普知识,书店举办了每买三本科普书就赠一本文学书的优惠活动,这所中学今年计划在优惠活动期间,再购进文学书和科普书共200本,且购买文学书和科普书的总费用不超过1880元,这所中学今年最多能购进多少本文学书?答案:(1)去年购买的文学书单价为8元,科普书单价为12元;(2)110解析:详解:解:(1)设去年购买文学书的单价为x元/本,则购买科普书的单价为(x+4)元/本,根据题意得:解得:x=8,经检验:x=8是原分式方程的解,∴x+4=12.答:去年购买的文学书单价为8元/本,科普书单价为12元/本.(2)今年文学书的单价为8×(1+25%)=10(元/本).设今年购进y本文学书,则购进科普书(200-y)本,根据题意得:,解得:y≤110,∴y的最大值为110.答:今年最多能购进110本文学书.18. 4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:a.设计方案学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生及在初三年级中随机抽取部分女生进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生进行调查分析.b.收集数据:抽取的20名学生每周用于课外阅读时间的数据如下:(单位:min)30 60 81 50 40 110 130 146 80 10060 80 120 140 75 81 10 30 81 92c.整理数据按如下分段整理样本数据:课外阅读时间x0≤x<4040≤x<8080≤x<120120≤x<160(min)等级D C B A人数(人)3a8bd.分析数据绘制如下条形统计图和扇形统计图:请根据以上统计调查结果,回答下列问题:(1)抽取的样本具有代表性的方案是;(填“方案一”“方案二”或“方案三”).(2)a=,b=,c=;(3)请补全条形统计图,并求出B等级所在扇形的圆心角的度数;(4)如果每周阅读时间不低于80分钟为优秀,请估计该校800名学生优秀人数为多少?答案:(1)方案三;(2)5,4,25;(3)图见解析,;(4)480人解析:详解:解:(1)根据抽样的代表性、普遍性和可操作性可得,抽取的样本具有代表性的方案是方案三,故答案为:方案三;(2)由已知数据知a=5,b=4;c%=×100%=25%,∴c=25,故答案为:5,4,25;(3)补全条形统计图如图:B等级所在扇形的圆心角的度数是:360°×40%=144°;(4)估计该校800名学生优秀人数为:800×(40%+20%)=480(人).19. 鲜花是云南的名片,更是云南送给世界的礼物.在日新月异的技术加持下,云南鲜花为各地带去了来自高原的芬芳与绚烂.元旦前夕,某批发商购进两种类型的玫瑰花共100束,其中种类型的玫瑰花价格为每束25元,购买种类型的玫瑰花所需费用(单位:元)与购买数量(单位:束)的函数关系图象如图所示.(1)求与的函数关系式;(2)若购买种类型玫瑰花所需的数量不超过60束,但不少于种类型玫瑰花的数量,试问如何购买能使购买费用最少,并求出最少费用.答案:(1)(2)购买种类型的玫瑰花40束,购买种类型的玫瑰花60束时,购买费用最少,最少费用为元解析:小问1详解:解:由图知:当时,设函数关系式为,把点代入得到,,解得,∴.当时,设与的函数关系式为.它的图象经过点与点.,解这个方程组,得,∴,与的函数关系式为.小问2详解:设购买种类型玫瑰花的数量为束,则A种类型的玫瑰花的数量为束,总费用为元.由题知:且,解得..,随增大而减小.,当时,有最小值为元.此时,A种类型的玫瑰花:(束).答:购买种类型的玫瑰花40束,购买种类型的玫瑰花60束时,购买费用最少,最少费用为元.20. 太阳能路灯具有安全性能高、节能环保、经济实用等特点,已被广泛应用于主、次干道,工厂,旅游景点等场所.如图是太阳能板及支架部分的示意图,是太阳能板,点A与点B是支架部分与太阳能板的连接点,点C是支架部分与灯杆的连接点,点D是灯杆上一点,支架的长为,与灯杆的夹角,支架的长为,与灯杆的夹角,点A,B,C,D,E,F在同一竖直平面内,求点A和点B距地面的高度差.(结果精确到,参考数据:,,,,,)答案:点A和点B距地面的高度差约为;解析:详解:解:如答图,过点A作交的延长线于点G,过点B作交的延长线于点H,在中,,,,∵,∴,∴,在中,,,,∵,∴,∴,∴,答:点A和点B距地面的高度差约为.21. 如图,AB为的直径,点C、点D为上异于A、B的两点,连接CD,过点C作,交DB的延长线于点E,连接AC、AD.(1)若,求证:CE是的切线.(2)若的半径为,,求AC的长.答案:(1)见解析(2)4解析:小问1详解:解:连接OC,∵OC=OA,∴∠OCA=∠OAC,∴∠COB=2∠OAC,∵∠BDC=∠OAC,∠ABD=2∠BDC,∴∠COB=∠ABD,∴OC//DE,∵CE⊥DB,∠CED=90°,∴∠OCE=90°,OC⊥CE,∴CE是⊙O的切线.小问2详解:连接BC,∵∠BDC=∠BAC,∴=,∵AB是⊙O的直径,∴∠BCA=90°,∴,设BC=x,AC=2x,∴AB=,∵⊙O的半径为,∴,∴x=2,∴AC=2x=4.22. 一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米.(1)按如图所示建立的平面直角坐标系,求抛物线的解析式:(2)小明的这次投篮未能命中篮圈中心,请说明理由:(3)假设出手的角度和力度都不变,请直接回答:小明应该向前走或向后退多少米才能命中篮圈中心?答案:(1)(2)小明的这次投篮未能命中篮圈中心,理由见解析(3)小明应该向前走1米才能命中篮圈中心解析:小问1详解:解:由题意可知,抛物线的顶点坐标为,球出手时的坐标为,设抛物线的解析式为,将代入得:,解得:,;小问2详解:解:,当时,,小明的这次投篮未能命中篮圈中心;小问3详解:解:出手的角度和力度都不变,设抛物线的解析式为,将代入得:,,解得:,,向前走7米,因为原来是八米,向前七米,还剩一米呢!应该是球处于上升趋势,故舍去.小明应该向前走1米才能命中篮圈中心.23. 探究性学习(1)问题初探:在数学活动课上,张老师给出如下问题:如图,在中,.点D在外,连接,且.过A作于点E.求证:.①如图,小辉同学从结论的角度出发给出如下解题思路:在上截取,连接,将线段之间的数量关系转化为线段与之间的数量关系.②如图,小龙同学从于点E这个条件出发给出另一种解题思路:过A作交延长线于点G,将线段之间的数量关系转化为线段与之间的数量关系.请你选择一名同学的解题思路,写出证明过程.(2)类比分析:张老师发现之前两名同学都运用了转化思想,将证明三条线段的数量关系转化为证明两条线段的数量关系;为了帮助学生更好地感悟转化思想,张老师提出下面的问题,请你解答.如图,为等边三角形,是等腰直角三角形,其中是边上的中线,连接交与点F.求证:.(3)学以致用:如图,在中,,点D在边上,过B作交延线于点E,延长至点F,连接,使,连接交于点G,若,,求的面积.答案:(1)选择小辉同学的思路,证明见解析;选择小龙同学的思路,证明见解析(2)见解析(3)解析:小问1详解:解:选择小辉同学的思路,证明如下:如图:在上截取,连接.,,又,,.,,.选择小龙同学的思路,证明如下:证明:如图,过A作交延长线于G,∵,,∴.又∵于E,于G,∴,又∵,∴,∴,又∵,∴,∴,∴.小问2详解:证明:如图:在上截取,连接,为等边三角形,,即为等腰直角三角形,∴,,,.又,,.是边上的中线,平分,,∴是等边三角形,.小问3详解:解:如图:过A作于H,,,于E,,,.于,,,,又,,.,又,,.,,..。
辽宁省绥中县第一初级中学2024-2025学年九年级上学期第一次月考数学试卷

2024—2025学年度九年级数学试卷(本试卷共23道题 试卷满分120分 考试时间120分钟)第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中,属于一元二次方程的是( )A .21x y -=B .2210x x -+=C .2240x y -+=D .223x x+= 2.若关于x 的一元二次方程2690kx x -+=有实数根,则k 的取值范围是( )A .1k <B .1k ≤C .1k <且0k ≠D .1k ≤且0k ≠3.已知1x =是一元二次方程()22220m x x m ++-=的一个根,则m 的值为( ) A .1- B .3或1-C .3D .3-或1 4.我国的乒乓球“梦之队”在巴黎奥运赛场上大放异彩,奥运会乒乓球比赛的第一阶段是团体赛,赛制为单循环赛(每两队之间都赛一场),每组安排28场比赛,设每组邀请x 个球队参加比赛,可列方程得( )A .()11282x x +=B .()11282x x -=C .()128x x +=D .()128x x -=5.“立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆180人次,前三个月累计进馆750人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x 依题意可列方程( )A .()21801750x +=B .()()218011801750x x +++=C .()21801750x x ++=D .()()218018011801750x x ++++= 6.关于二次函数2321y x x =--,下列说法正确的是( )A 函数图象开口向下B .y 有最小值,最小值为1-C .当13x >时,y '随x 的增大而增大 D .函数图象与y 轴交于正半轴 7.已知二次函数()242y x m =--+的图象上有三点()12,My ,()22,N y -,()35,P y ,则1y ,2y ,3y 的大小关系为( )A .132y y y >>B 213y y y >>C .231y y y >>,D .123y y y >>8.在同一平面直角坐标系中,一次函数y ax b =+与二次函数y ax b =+的图象可能为( )A .B .C .D .9.如图是根据某拱桥形状建立的直角坐标系,从中得到函数212y x S=-.在正常水位时水面宽30m AB =,当水位上升5m 时,水面宽CD =( )A .8mB .10mC .15mD .20m 10.二次函数2yax bx c =++(0a ≠)的图象如图所示,有下列结论: ①20a b -=; ②若11,2y ⎛⎫- ⎪⎝⎭,25,2y ⎛⎫ ⎪⎝⎭是抛物线上的两点,则21y y >, ③80a c +<; ④对于任意实数m ,都有2a b am bm -≥+;其中正确的个数有( )A .1个B .2个C .3个D .4个第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11当m =_____时,函数()211my m x +=-是二次函数. 12.将抛物线21yx =+先向右平移6个单位长度,再向下平移8个单位长度,平移后的抛物线的解析式为_____13.若二次函数22y x x m =-+的图象与x 轴有交点,则m 的取值范围是_____14.如图所示是抛物线2y ax bx c =++的一部分,则方程20ax bx c ++=的根是_____15.如图,在平面直角坐标系中,抛物线24y ax ax =-(0a >)与x 轴正半轴交于点C 这条抛物线的对称轴与x 轴交于点D ,以CD 为边作菱形ABCD .若菱形ABCD 的顶点A ,B 在这条抛物线上则菱形ABCD 的面积为_____.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(12分)用合适的方法解下列方程.(1)()29216x -=;(2)()()33x x x -=-;(3)2230x x +-=;(公式法)(4)210110x x +-=.(配方法)17.(8分)已知1x ,2x 是关于x 的一元二次方程()222150xm x m -+++=的两实数根. (1)求m 的取值范围,(2)已知等腰ABC △的一边长为7,若1x ,2x 恰好是ABC △另外两边的边长,求ABC △的周长.18.(8分)根据下列条件,分别求出对应的二次函数的关系式.(1)已知抛物线的顶点为()1,3-,且与y 轴交于点()0,1;(2)已知抛物线与x 轴交于点()3,0M -、()5,0且与y 轴交于点()0,15.19.(8分)如图,要建一个矩形仓库ABCD ,一边靠墙(墙长22m ),并在BC 边上开一道2m 宽的门,现在可用的材料为38米长的木板(全部使用完),若设AB 为x 米.(1)BC 的长为_____米(用含x 的代数式表示);(2)若仓库的面积为150平方米,求AB ;(3)仓库的面积能为2300m 吗?若能,求出AB 的长,若不能,说明理由.20.(8分)在2024年巴黎奥运会上,中国射击队员谢瑜以240.9环的优异成绩摘得男子10米气手枪金牌,激励着千千万万的青少年坚定理想、奋力拼搏.奥运冠军谢瑜的家乡在发贵州省毕节市纳雍县,该县盛产辣椒,当地政府采用“公司+合作社+农户”利益链接模式,让群众增收,为乡村振兴注入新动能,某村民2022年种植辣椒100亩,该村民逐年扩大辽规模,到2024年种植面积达到169亩.(1)求该村民这两年种植辣椒亩数的平均增长率.(2)某村民经营辣椒销售店,已知辣椒的平均成本价为4元/千克,经市场调查发现,当辣椒2售价为10元/千克时,每天能售出200千克,售价每降低1元,每天可多售出50千克,该店决定降价促销,当每千克尖椒降价多少元时,销售这种辣椒每天获得的利润最大,最大利润为多少元?21.(9分)如图1,在矩形ABCD 中,8cm AB =,4cm AD =,动点P ,Q 分别以2cm/s ,lcm/s 的速度从点A ,B 同时出发,点P 沿着AD DC CB →→运动到点B 时停止,点Q 沿着BA 运动到点A 时停止.设运动时间为s t .图1 图2 图3(1)当点P 在AD 上运动时,AP =_____cm ,AQ =_____cm .(用含t 的代数式表示)(2)在(1)的条件下,当27cm PAQ S =△时,求t 的值.(3)如图2、图3,点P 沿着DC CB →运动到点B 的过程中,当PAQ △的面积为2lcm 时,求t 的值.22.(9分)某数学小组对数学学习中有关汽车的刹车距离有疑惑,于是他们走进汽车研发中心考察.【知识背景】“道路千万条,安全第一条”.汽车刹车后还要继续向前行驶一段距离才能停止,这段距离称为刹车距离.【探究发现】汽车研发中心设计一款新型汽车,现在模拟汽车在高速公路上以某一速度行驶时,对它的刹车性能进行测试,数学小组收集、整理数据,并绘制函数图象.发现:开始刹车后行驶的距离y (单位:m )与刹车后行驶时间t (单位:s )之间成二次函数关系,函数图象如图所示, 【问题解决】请根据以上信息,完成下列问题:(1)求二次函数的解析式(不要求写出自变量的取值范围);(2)若在汽车前60m 处,有一测速仪,当汽车刹车过程中,经过多少时间,汽车超过测速仪12m ;(3)若汽车司机发现正前方80m 处有一辆抛锚的车停在路面,立刻刹车,问该车在不变道的情况下是否会撞到抛锚的车?试说明理由.23.(13分)如图,抛物线2y xbx c =-++与x 轴交于A ,B 两点,与y 轴交于C 点,直线BC 方程为3y x =-.(1)求抛物线的解析式;(2)点P 为抛物线上一点,若83PBA ABC S S =△△,求点P 的坐标; (3)直线BC 上方的抛物线上有一点Q ,当BCQ △的面积最大时,点Q 的坐标是什么?BCO △的最大面积是多少?。
辽宁省铁岭市开原市2024-2025学年九年级上学期9月月考数学试题(含答案)

2024—2025学年度上学期随堂练习九年数学(一)北师大一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元二次方程的是( )A .B .C .D .2.下列说法正确的是()A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线相等的平行四边形是矩形D .对角线互相平分的四边形是菱形3.关于的方程的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根4.关于的方程是一元二次方程,则的值是( )A .B .1C .D .05.如图,已知在平面直角坐标系中,四边形是菱形,其中点的坐标是,点的坐标是,点在轴上,则点的坐标是()A .B .C .D .6.如图,矩形中,在轴上.且点的横坐标为,若以点为圆心,对角线的长为半径作弧交轴的正半轴于,则点的坐标为()A .B .C.D .21x y -=223x x+=2240x y -+=2210xx -+=x 2441x x -=-x ()()11110m m x m x ++--+=m 1-1±ABCD B ()6,2D ()0,2A x C ()3,2()3,3()3,4()2,4ABCD BD =AB x A 1-A AC x M M ()2()1,0()1,0()7.如图,菱形的对角线交于点,点为的中点,连接.若,、则的长为( )A .4B .3C.D .8.摩拜共享单车计划2023年第三季度(8,9,10月)连续3个月对成都投放新型摩拜单车,计划8月投放3000台,第三季度共投放12000台,每月按相同的增长率投放,设增长率为,则可列方程( )A .B .C .D .9.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为,求道路的宽度设道路的宽度为,则可列方程( )A .B .C .D .10.如图,正方形中,点为对角线的中点,矩形两边分别交、边于、两点,连接,下列结论正确的有( )个.(1);(2);(3);(4)若,则以为斜边的直角三角形面积的最大值为8.ABCD O M AB OM 6AC =8BD =OM 5232x ()23000112000x +=()()2300013000112000xx +++=()23000112000x -=()()23000300013000112000x x ++++=2468m ()m x ()()30220468x x --=()()20230468x x --=302023020468x x ⨯-⨯-=()()3020468x x --=ABCD O AC OMNP AB BC E F BO BE BF +=14OMNPOEBF S S=矩形四边形222AE FC EF +=4EF =EFA .1个B .2个C .3个D .4个二.填空题(共5小题,满分15分,每小题3分)11.关于的一元二次方程有实数根,则的取值范围是_________.12.如图,在菱形中,,点、分别是线段、上的动点,连接、,若,,则图中阴影部分的面积是_________.13.根据物理学规律,如果把一个物体从地面以的速度竖直上抛(如图所示),那么物体经过离地面的高度(单位:m )为.根据上述规律,该物体落回地面所需要的时间约为_________s (结果保留整数).14.如图,菱形的对角线,相交于点,过点作于点,连接,若,菱形的面积为18,则_________.15.如图,,,,,点为的中点,点在的延长线上,将绕点顺时针旋转度得到,当是直角三角形时,的长为_________.x 210ax x ++=a ABCD 60A ∠=︒E F AB BC DE DF 60EDF ∠=︒2AB =()10m /s s x 210 4.9x x -x ABCD AC BD O D DE AB ⊥E OE 9AC =ABCD OE =Rt Rt ABC DEF △≌△90C F ∠=∠=︒2AC =4BC =D AB E AB DEF △D α()0180α<<DE F '△BDE '△AE '三.解答题(共8小题,满分75分)16.(8分)解方程:(1);(2)17.(8分)已知关于的一元二次方程.(1)求证:该方程总有两个不相等的实数根;(2)若是该方程的一个解,求方程的另一个根.18.(10分)如图,在平面直角坐标系中,三个顶点的坐标分别为,,.(1)画出将向左平移4个单位后得到的图形;(2)画出将绕点按逆时针方向旋转后得到的图形,并直接写出四边形的形状;(3)在平面内有一点,当以,,,为顶点的四边形是平行四边形时,请直接写出点的坐标.19.(8分)如图,在平行四边形中,是上一点(不与点,重合),,过点作,交于点,连接,.2680x x -+=2310x x -+=x ()220x n x n +++=2x =-xOy ABC △()3,2A ()0,1B ()1,1C -ABC △111A B C △ABC △C 180︒22A B C △22A B AB D A B C D D ABCD P AB A B CP CD =P PQ CP ⊥AD Q CQ BPC AQP ∠=∠(1)求证:四边形是矩形;(2)当,时,求的长.20.(9分)如图,在中,,过点的直线,为边上点,过点作交直线与,垂足为,连接,.(1)求证:;(2)当在中点时,四边形是什么特殊四边形?说明理由;21.(10分)三星堆遗址被称为20世纪人类最伟大的考古发现之一,昭示了长江流域与黄河流域一样,同属中华文明的母体,被誉为“长江文明之源”.为更好的传承和宣传三星堆文化,三星堆文创馆一次次打破了自身限定,让文创产品充满创意.已知文创产品“青铜鸟文创水杯”有,两个系列,系列产品比系列产品的售价低5元,100元购买系列产品的数量与150元购买系列产品的数量相等.按定价销售一段时间后发现:系列产品按定价销售,每天可以卖50件,若系列产品每降1元,则每天可以多卖10件.(1)系列产品和系列产品的单价各是多少?(2)为了使系列产品每天的销售额为960元,而且尽可能让顾客得到实惠,求系列产品的实际售价应定为多少元/件?22.(10分)综合实践——用矩形硬纸片制作无盖纸盒.如图1,有一张长30cm ,宽16cm 的长方形硬纸片,裁去角上同样大小的四个小正方形之后,折成图2所示的无盖纸盒.(硬纸片厚度忽略不计)(1)若剪去的正方形的边长为2cm ,则纸盒底面长方形的长为_________cm ,宽为_________cm ;(2)若纸盒的底面积为,请计算剪去的正方形的边长;(3)如图3,小明先在原矩形硬纸片的两个角各剪去一个同样大小的正方形(阴影部分),经过思考他发现,再剪去两个同样大小的矩形后,可将剩余部分折成一个有盖纸盒.若折成的有盖长方体纸盒的表面积为,请计算剪去的正方形的边长.ABCD 3AP =9AD =AQ Rt ABC △90ACB ∠=︒C MN AB ∥D AB D DE BC ⊥MN E F CD BE CE AD =D AB CDBE A B A B A B B B A B B B 2240cm 2412cm23.(12分)在菱形中,,点在对角线上运动(点不与点,点重合),,以点为顶点作菱形;且菱形与菱形的形状、大小完全相同,即,,在菱形绕点旋转的过程中,与边交于点,与边交于点.【特例感知】(1)如图1,当,时,则,,之间满足的数量关系是_________;【类比探究】(2)如图2,菱形的边长为8,,求的值(用含的代数式表示);【拓展应用】(3)在(2)的条件下,连接,,,求的长度.九上数学北师大(一)参考答案与试题解析一.选择题1-5.DCABC . 6-10. CCDAB .二.填空题11. a≤14且a≠0. 12.13. 2. 14.2. 15. 5或35.三.解答题(共8小题,满分75分)16.(8分)(每题4分)解:(1)x 2﹣6x +8=0,因式分解得,(x ﹣2)(x ﹣4)=0,x ﹣2=0,x ﹣4=0,解得,x 1=4,x 2=2;(2)x 2﹣3x +1=0∵a =1,b =﹣3,c =1,∴b 2﹣4ac =(﹣3)2﹣4×1×1=5>0,∴,ABCD ()090B αα∠=︒<≤︒O 'AC O 'A C O Ck AC'=O 'A B C O ''''A B C O ''''ABCD A B AB ''=B B ∠'=∠A B C O ''''O 'O A ''BC E O C ''CD F 90α=︒12k =CE CF BC 60α=︒CE CF +k O B '7O B '=75CF =CE x ==∴,17.(8分)(1)证明:∵在一元二次方程x 2+(n +2)x +n =0中,a =1,b =n +2,c =n ,∴Δ=b 2﹣4ac =(n +2)2﹣4n =n 2+4>0,∴方程总有两个不相等的实数根.(2)解:∵x =﹣2是该方程的一个解,∴(﹣2)2﹣2(n +2)+n =0,解得n =0,∴该方程为x 2+2x =0,解得x 1=﹣2,x 2=0,∴方程的另一个根为x =0.18.(10分)【解答】解:(1)如图,△A 1B 1C 1即为所求.3分(2)如图,△A 2B 2C 即为所求. 5分由旋转得,BC =B 2C ,AC =A 2C ,∴四边形A 2B 2AB 为平行四边形.(3)如图,点D 1,D 2,D 3均满足题意,∴满足题意的点D 的坐标为(2,4)或(4,0)或(﹣2,﹣2).19.(8分)(1)证明:∵∠BPQ =∠BPC +∠CPQ =∠A +∠AQP ,∠BPC =∠AQP ,∴∠CPQ =∠A ,∵PQ ⊥CP ,∴∠A =∠CPQ =90°,∴平行四边形ABCD 是矩形;(2)解:∵四边形ABCD 是矩形,∴∠D =∠CPQ =90°,在Rt △CDQ 和Rt △CPQ 中,,∴Rt △CDQ ≌Rt △CPQ (HL ),∴DQ =PQ ,设AQ =x ,则DQ =PQ =9﹣x ,在Rt △APQ 中,AQ 2+AP 2=PQ 2,∴x 2+32=(9﹣x )2,解得:x =4,∴AQ 的长是4.20.(9分)(1)证明:∵DE ⊥BC ,∴∠DFB =90°,∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE ,1x =2x =CQ CQCD CP=⎧⎨=⎩∵MN ∥AB ,即CE ∥AD ,∴四边形ADEC 是平行四边形,∴CE =AD ;(2)解:四边形BECD 是菱形,理由如下:∵D 为AB 中点,∴AD =BD ,∵CE =AD ,∴BD =CE ,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD=AB =BD ,∴四边形BECD 是菱形;21.(10分)解:(1)设A 系列产品的单价是x 元/件,则B 系列产品的单价是(x +5)元/件,根据题意得:,解得:x =10,经检验,x =10是所列方程的解,且符合题意,∴x +5=10+5=15(元).答:A 系列产品的单价是10元/件,B 系列产品的单价是15元/件;(2)设B 系列产品的实际售价应定为y 元/件,则每天可以卖50+10(15﹣y )=(200﹣10y )件,根据题意得:y (200﹣10y )=960,整理得:y 2﹣20y +96=0,解得:y 1=8,y 2=12,又∵要尽可能让顾客得到实惠,∴y =8.答:B 系列产品的实际售价应定为8元/件.22.(10分)解:(1)26,12;(2)设剪去的正方形的边长为x cm ,根据题意得:(30﹣2x )(16﹣2x )=240,解得:x 1=20(不符合题意,舍去),x 2=3,答:剪去的正方形的边长为3cm ;(3)设剪去的正方形的边长为y cm ,根据题意得:,解得:y 1=﹣17(不符合题意,舍去),y 2=2,答:剪去的正方形的边长为2cm .23.(12分)解:(1)CF +CE =BC ;(2)如图2,过点O ′作O ′G ∥AB ,交BC 于G ,∵四边形ABCD 和四边形A ′B ′C ′O ′是形状、大小完全相同的菱形,且边长为8,α=60°,∴AB =BC =CD =AD =A ′B ′=B ′C ′=C ′O ′=O ′A ′=8,∠B =∠D =∠B ′=∠A ′O ′C ′=60°,121001505x x =+2303016224122yy ⨯--⋅=∴△ABC 、△ACD 均为等边三角形,∴∠BAC =∠ACB =∠ACD =60°,AC =AB =8,∵O ′G ∥AB ,∴∠CO ′G =∠BAC =60°=∠O ′CG ,∴△O ′CG 是等边三角形,∴O ′G =CG =O ′C =k •AC =8k ,∵∠EO ′G +∠CO ′E =∠CO ′E +∠CO ′F ′=60°,∴∠EO ′G =∠CO ′F ,∴△O ′EG ≌△O ′FC (ASA ),∴EG =CF ,∵CE +EG =CG ,∴CE +CF =8k ;(3)连接BD 交AC 于O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠BOC =90°,∴OC=AC =BC =4,∴,当点O ′在线段AO 上时,如图2,过点O ′作O ′H ⊥BC 于H ,则O ′C =OO ′+OC =1+4=5,∴,由(2)知:CE +CF =8k ,∴CE +CF =8×=5,∵CF =,∴CE =5﹣=;当点O ′在线段OC 上时,如图3,则O ′C =OC ﹣OO ′=4﹣1=3,∴,∴CE +CF =8×=3,∴CE =3﹣=;综上所述,CE 的长度为或.1212OB ===1OO '===58O C k AC '==58757518583O C k AC '==38758518585。
辽宁省名校联盟2023-2024学年高三下学期3月联合考试 数学含答案

辽宁省名校联盟2024年高考模拟卷(调研卷)数学(一)(答案在最后)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.答选择题时,选出每小题答案后,用铅笔把答题纸对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答非选择题时,将答案写在答题纸上.写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()2,1,1,3a b ==- ,则()()3a b a b +⋅-=()A.-24B.-23C.-22D.-212.若函数()223x axf x -+=在区间()1,4内单调递减,则a 的取值范围是()A.(],4∞- B.[]4,16 C.()16,∞+ D.[)16,∞+3.第19届亚运会于2023年9月至10月在杭州举行,来自浙江某大学的4名男生和3名女生通过了志愿者的选拔,若从这7名大学生中选出2人或3人去某场馆担任英语翻译,并且至少要选中1名女生,则不同的挑选方案共有()A.15种B.31种C.46种D.60种4.下图是2022年5月一2023年5月共13个月我国纯电动汽车月度销量及增长情况统计图(单位:万辆),则下列说法错误的是()(注:同比:和上一年同期相比)A.2023年前5个月我国纯电动汽车的销量超过214万辆B.这13个月我国纯电动汽车月度销量的中位数为61.5万辆C.这13个月我国纯电动汽车月度销量的众数为52.2万辆D.和上一年同期相比,我国纯电动汽车月度销量有增有减5.已知F 为椭圆222:1(0)x C y a a +=>的右焦点,过原点的直线与C 相交于,A B 两点,且AF x ⊥轴,若35BF AF =,则C 的长轴长为()A.3B.3C. D.36.过圆22:(1)1C x y ++=上的,A B 两点分别作圆C的切线,若两切线的交点M 恰好在直线:20l x y +-=上,则MC AB ⋅的最小值为()A.2B.3C.7.已知数列{}n a 满足112nn aa n ++=+,则“数列{}n a 是等差数列”的充要条件可以是()A.21a = B.252a =C.22a = D.23a =8.已知,αβ满足πππ2π,44αβ- ,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-= ⎪⎝⎭()A.2B.2C.4D.4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知z 满足()5i1i 2iz z -=+-,则()A.4i z =-+B.复平面内z对应的点在第一象限C.17zz =D.z 的实部与虚部之积为-410.已知函数()π2cos 2(0)6f x x ωω⎛⎫=++> ⎪⎝⎭在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递减,且在区间[]0,π上有且仅有一个零点,则ω的值可以为()A.23B.56C.1112 D.131211.中国古建筑闻名于世,源远流长.如图①所示的五脊殿是中国传统建筑中的一种屋顶形式,该屋顶的结构示意图是如图②所示的五面体EFBCDA ,在图②中,四边形ABCD 为矩形,EF∥AB ,33,2,AB EF AD ADE === 与BCF 是全等的等边三角形,则()A.五面体EFBCDA 的体积为3B.五面体EFBCDA 的表面积为6+C.AE 与平面ABCD 所成角为45D.当五面体EFBCDA 的各顶点都在球O 的球面上时,球O 的表面积为27π2三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{,{2}M xy N x x ===∈>-N ∣∣,则M =__________,M N ⋂=__________.13.已知圆台的上、下底面的面积分别为4π,36π,侧面积为64π,则该圆台的高为__________.14.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点1F 作斜率为a b 的直线与C 的右支交于点P ,且点M 满足22212F M F P F F =+ ,且21F M FP ⊥,则C 的离心率是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()()22ln 21(0)f x x a x ax a =--->.(1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线l 的方程;(2)讨论()f x 的极值.16.(15分)如图,在三棱柱111ABC ABC -中,1AA ⊥平面1,,2,4,ABC AB AC AB AC AA D ⊥===是线段1BB 上的一个动点,,E F 分别是线段,BC AC 的中点,记平面DEF 与平面111ABC 的交线为l .(1)求证:EF ∥l ;(2)当二面角D EF C --的大小为120 时,求BD .17.(15分)近年来,某大学为响应国家号召,大力推行全民健身运动,向全校学生开放了,A B 两个健身中心,要求全校学生每周都必须利用课外时间去健身中心进行适当的体育锻炼.(1)该校学生甲、乙、丙三人某周均从,A B 两个健身中心中选择其中一个进行健身,若甲、乙、丙该周选择A 健身中心健身的概率分别为112,,233,求这三人中这一周恰好有一人选择A 健身中心健身的概率;(2)该校学生丁每周六、日均去健身中心进行体育锻炼,且这两天中每天只选择两个健身中心的其中一个,其中周六选择A 健身中心的概率为12.若丁周六选择A 健身中心,则周日仍选择A 健身中心的概率为14;若周六选择B 健身中心,则周日选择A 健身中心的概率为23.求丁周日选择B 健身中心健身的概率;(3)现用健身指数[]()0,10k k ∈来衡量各学生在一个月的健身运动后的健身效果,并规定k 值低于1分的学生为健身效果不佳的学生,经统计发现从全校学生中随机抽取一人,其k 值低于1分的概率为0.02.现从全校学生中随机抽取一人,如果抽取到的学生不是健身效果不佳的学生,则继续抽取下一个,直至抽取到一位健身效果不佳的学生为止,但抽取的总次数不超过n .若抽取次数的期望值不超过23,求n 的最大值.参考数据:2930310.980.557,0.980.545,0.980.535≈≈≈.18.(17分)已知平面上一动点P 到定点1,02F ⎛⎫ ⎪⎝⎭的距离比到定直线2023x =-的距离小40452,记动点P 的轨迹为曲线C .(1)求C 的方程;(2)点()2,1,,AM N 为C 上的两个动点,若,,M N B 恰好为平行四边形MANB 的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形MANB 的面积为S ,求证:869S .19.(17分)给定正整数2n ,设集合(){}{}12,,,,0,1,1,2,,n k Mt t t t k n αα==∈= ∣.对于集合M 中的任意元素()12,,,n x x x β= 和()12,,,n y y y γ= ,记1122n n x y x y x y βγ⋅=+++ .设A M ⊆,且集合(){}12,,,,1,2,,i i i i in A t t t i n αα=== ∣,对于A 中任意元素,i j αα,若,,1,,i j p i j a a i j =⎧⋅=⎨≠⎩,则称A 具有性质(),T n p .(1)若集合A 具有性质()2,1T ,试写出A 的表达式;(2)判断集合()()(){}1,1,0,1,0,1,0,1,1A =是否具有性质()3,2T ?若具有,求3,1iji j a a =⋅∑的值;若不具有,请说明理由;(3)是否存在具有性质()4,Tp 的集合A ?若存在,请找出来;若不存在,请说明理由.数学(一)一、选择题1.B 【解析】()()32,13,9(1a b +=+-=- ,10),()3,2a b -=-,所以(3)()a b a b +⋅- ()()1,103,223=-⋅-=-.故选B 项.2.A 【解析】因为()223xaxf x -+=在区间(1,4)内单调递减,所以函数22y x ax =-+在区间()1,4内单调递减,所以14a,解得a 4.故选A 项.3.C 【解析】至少要选中一名女生的对立事件是选中的全为男生,故所求挑选方案的种数为22337474C C C C 46-+-=.故选C项.4.B 【解析】2023年前5个月我国纯电动汽车的销量为28.737.64947.152.2214.6++++=万辆214>万辆,A 项正确;将这13个月纯电动汽车的月度销量由小到大依次排列为28.7,34.7,37.6,45.7,47.1,47.6,49,52.2,52.2,53.9,54.1,61.5,62.4,则中位数为其中第7个数据,即49万辆,B 项错误;这些数据中只有52.2出现2次,其他数据均只出现1次,故众数为52.2万辆,C 项正确;2023年1月的同比增长率为负数,故和上一年同期相比,我国纯电动汽车月度销量有增有减,D 项正确.故选B 项.5.B 【解析】设(),0Fc ,如图,记F '为C 的左焦点,连接AF ',则由椭圆的对称性可知AF BF '=,由35BF AF =,设3,5AF m BF m ==,则5AF m '=.又AF x ⊥轴,所以42FF m c =='=,即2c m =,所以22282,14,AF AF m a a c m ⎧+===='⎨-⎩解得,3,6a m ⎧=⎪⎪⎨⎪=⎪⎩所以C的长轴长为23a =.故选B 项.6.D【解析】因为圆C 的方程为22(1)1x y ++=,所以圆心()1,0C -,半径1r =.因为,MA MB 是圆C的两条切线,所以,MA AC MB BC ⊥⊥,由圆的知识可知,,,A M B C 四点共圆,且,AB MC MA MB ⊥=,所以14422MAC MC AB S MA AC MA ⋅==⨯⨯⨯= ,又MA =,所以当MC 最小,即MC l ⊥时,MC AB ⋅取得最小值,此时2MC ==,所以minmin ()2||MC AB MA ⋅===.故选D 项.7.B 【解析】由112n n a a n ++=+,得122n n a a n ++=+①,当2n 时,12n n a a n -+=②,由①-②得112n n a a +--=,即{}n a 的奇数项和偶数项均为公差为2的等差数列,所以()()22221112122,2122k k a a k k a a a k k a -=+-=+-=+-=+-,若{}n a 为等差数列,则其公差显然为1,即211a a -=.又12224a a +=⨯=,所以1235,22a a ==,此时221112,222k k a k a k -=+=-,即12n a n =+,所以{}n a 为等差数列,即“数列{}n a 是等差数列”的充要条件可以是252a =.故选B 项.8.D 【解析】因为5962sin25ββ+=-,所以()53(2)2sin 250ββ-+--=,由53π32cos 52αα⎛⎫-+= ⎪⎝⎭,可得53π3π32sin 5022αα⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,故2β-和3π2α-是方程532sin 50x x +-=的两个实数根.因为[]πππ,2π,,44αβ⎡⎤∈∈-⎢⎥⎣⎦,所以3π2α-和2β-的取值范围都是ππ,22⎡⎤-⎢⎥⎣⎦,因为函数53,2sin y x y x ==在区间ππ,22⎡⎤-⎢⎥⎣⎦上均单调递增,所以函数532sin y x x =+在区间ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,故方程532sin 50x x +-=在区间ππ,22⎡⎤-⎢⎥⎣⎦上只有一个根,所以3π22αβ-=-,所以3π22αβ+=,所以24π993αβ+=,所以24πππππππ62sin sin sin cos cos sin 9943434344αβ⎛⎫⎛⎫+-=-=-=⎪ ⎪⎝⎭⎝⎭.故选D 项.二、选择题9.ACD【解析】设()i,z x y x y =+∈R ,则由已知得()()()5i 2ii 1i i 5x y x y +--=++,即()()i 12i x y x y x y --+=-++,所以1,2,x y x x y y -=-⎧⎨--=+⎩解得4,1,x y =-⎧⎨=⎩所以4i z =-+,则4i z =--,故A 项正确,B 项错误;()()4i 4i 17,zz z =-+--=的实部为-4,虚部为1,所以z 的实部与虚部之积为-4,故C ,D 项正确.故选ACD 项.10.BC【解析】因为0πx ,所以ππππ666x ωω++ .因为()f x 在区间[]0,π上有且仅有一个零点,所以πcos 16x ω⎛⎫+=- ⎪⎝⎭在区间[]0,π上有且仅有一个实数根,所以πππ3π6ω+< ,解得51766ω< .因为ππ63x - ,所以πππππ66636x ωωω-+++ ,因为()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递减,所以πππ36ω⎛⎫-- ⎪⎝⎭ ,即2ω ,且根据余弦函数的单调性可知ππ066ω⎰-+ ,解得01ω< .综上,ω的取πππ36ω+ ,值范围是5,16⎡⎤⎢⎥⎣⎦.故选BC 项.11.ACD 【解析】如图①,可将该五面体分割成四棱锥E AGJD -,直三棱柱EGJ FHI -,四棱锥F HBCI -三部分,由对称性可知四棱锥E AGJD -与四棱锥F HBCI -的体积相等,易求得EG EGJ==的边GJ 上的高h ==EFBCDA 的体积1111221221,A 32323VAG GJ h GJ h GH =⨯⨯⨯⨯+⨯⨯⨯=⨯⨯⨯+⨯=项正确.五面体EFBCDA 的表面积()22112sin602223(1222S AD AD AB EF AB EG =⨯⨯+⨯+⨯⨯+⨯=⨯+⨯++ 3)6=+,B 项错误.设AE 与平面ABCD 所成角为θ,则sin 2h AE θ==,又θ为锐角,所以45θ= ,C 项正确.如图②,连接,AC BD 交于点1O ,因为四边形ABCD 为矩形,所以1O 为矩形ABCD 外接圆的圆心,连接1O O ,则1OO ⊥平面ABCD ,分别取,,EF AD BC 的中点,,M P Q ,根据几何体EFBCDA 的对称性可知,直线1O O 交EF 于点M .连接P Q ,则P Q ∥AB ,且1O 为P Q 的中点,因为EF ∥AB ,所以P Q∥EF ,连接,E P F Q ,在ADE 与BCF中,易知EP FQ ===,梯形EFQP 为等腰梯形,所以1M O PQ ⊥,且1MO =.设1O O m =,球O 的半径为R ,连接,O E O A ,当点O 在线段1OM 上时,由球的性质可知222R OE OA ==,易得12O A ==,则2222113)22m m ⎛⎫⎛⎫-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时无解;当点O 在线段1M O的延长线上时,由球的性质可知2222131)22m m ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得4m =.所以22278R OE ==,所以球O 的表面积227π4π2S R ==,D 项正确.故选ACD 项.三、填空题12.{}120,1,22x x ⎧⎫-⎨⎬⎩⎭【解析】由题意得{}21232022M xx x x x ⎧⎫=-++=-⎨⎬⎩⎭∣ ,所以{}0,1,2M N ⋂=.13.【解析】由题意得圆台的上、下底面的半径分别为2,6,设圆台的母线长为l ,高为h ,则该圆台的侧面积()π2664πS l =⨯+⨯=侧,解得8l =,所以h ==14.53【解析】如图,直线1FP 的斜率为ab.由22212F M F P F F =+ ,得点M 为1PF 的中点,又21F M FP ⊥ ,所以2F M 是线段1FP 的垂直平分线,所以2122PF FF c ==,过点O 作1O N PF ⊥于点N ,由已知得1tan aNF O b∠=,所以1cos b NF O c ∠==,所以111sin cos tan b a aNF O NF O NF O c b c∠∠∠=⋅=⋅=,所以11sin ON a NF O OF c ∠==,即ON a =,所以1NF b ==,又ON ∥2M F ,所以121ONF F M F ∽,所以1122MF NF b ==,所以14PF b =,由双曲线的定义可得12422PF PF b c a -=-=,即2b c a =+,所以224()b c a =+,可得()2224()c a c a -=+,整理得223250c ac a --=,即23250e e --=,解得53e =或1e =-(舍去),又题中直线与C 的右支有交点,所以b a a b >,即22b a >,所以222c a a ->,即222c a >,所以222c a>,即e >所以C 的离心率为53.四、解答题15.解:(1)当1a =时,()22ln f x x x =-,所以()22ln24f =-,因为()22f x x x=-',所以()2143f =-=-',所以l 的方程为()2ln243(y x --=--2),即32ln 220x y +--=.(2)()f x 的定义域为()0,∞+,()()()()2112212x ax f x a ax x x'+-=---=-.因为0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,当1,x a ∞⎛⎫∈+⎪⎝⎭时,()0f x '<,故()f x 在区间10,a ⎛⎫ ⎪⎝⎭内单调递增,在区间1,a ∞⎛⎫+ ⎪⎝⎭内单调递减,所以当1x a =时,()f x 取得极大值为1112ln 2f a a a ⎛⎫=+- ⎪⎝⎭,无极小值.16.(1)证明:因为,E F 分别是线段,BC AC 的中点,所以EF∥AB .在三棱柱111ABC ABC -中,四边形11A ABB 为平行四边形,所以11AB ∥AB ,则EF ∥11AB ,因为EF ⊄平面11111,ABC AB ⊂平面111ABC ,所以EF ∥平面111ABC .因为EF ⊂平面DEF ,平面DEF ⋂平面111ABC l =,所以EF ∥l .(2)解:解法一:在直三棱柱111ABC ABC -中,1AA ⊥平面ABC ,所以11,A A A B A A AC ⊥⊥,又AC AB ⊥,所以1,,AB AC AA 两两垂直.以A 为坐标原点,分别以1,,AB AC AA 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系.设,04BD t t =< ,则(0,0,0),(2,0,0),(0,2,0),(2,0,),(1,1,0),(0,1,0)A B C D t E F 所以()()1,0,0,2,1,EF DF t =-=-- .设平面DEF 的法向量为(),,n x y z = ,则0,0,n EF n DF ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20,x x y tz -=⎧⎨-+-=⎩令1z =,得()0,,1n t = .平面CEF 的一个法向量为1(0,0AA = ,4),则111cos1202n AA n AA ⋅===⋅ ,解得t =或t =(舍去).综上,当二面角D EF C --的大小为120 时,BD .解法二:作DG ∥AB ,交1AA 于点G ,连接GF .因为AB ∥EF ,所以DG ∥EF ,所以,,,D G F E 四点共面,所以平面DEF ⋂平面11ACC A GF =.因为11,,AB AC AB AA AA AC A ⊥⊥⋂=,所以AB ⊥平面11ACC A ,所以EF ⊥平面11ACC A ,所以,EF FC EF FG ⊥⊥,所以GFC ∠为二面角D EF C --的平面角.若120GFC ∠= ,则在Rt AGF 中,60GFA ∠= ,又1AF =,所以AG =又BD AG =,所以BD .17.解:(1)由题意得这三人中这一周恰好有一人选择A 健身中心健身的概率12P =⨯1211211271111113323323318⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(2)记事件C :丁周六选择A 健身中心,事件D :丁周日选择B 健身中心,则11321()(),()1,()124433P C P C P D C P D C ===-==-=∣∣由全概率公式得131113()()()()(242324P D P C P D C P C P D C =+=⨯+⨯=∣∣.故丁周日选择B 健身中心健身的概率为1324.(3)设从全校学生中随机抽取1人,抽取到的学生是健身效果不佳的学生的概率为p ,则0.02p =,设抽取次数为X ,则X 的分布列为X123 1n -n Pp ()1p p -2(1)p p - 2(1)n p p --1(1)n p --故()()()2212(1)3(1)1(1n EX p p p p p p p n -=+-⨯+-⨯++-⨯-+- p )1n n -⨯,又()()()()23111(1)2(1)3(1)1(1)n n p E X p p p p p p p p n p n --=-+-⨯+-⨯++-⨯-+-⨯ ,两式相减得()()2211(1)(1)(1)n n pE X p p p p p p p p p --=+-+-++-+- ,所以()()()2211(1)1(1)10.9811(1)(1)(1)110.02n n nn n p p E X p p p p p p -------=+-+-++-+-===-- ,而()10.980.02n E X -=在*n ∈N 时单调递增,结合2930310.980.557,0.980.545,0.98≈≈≈0.535,可知当29n =时,()22.15EX ≈;当30n =时,()22.75E X ≈;当31n =时,()E X ≈23.25.若抽取次数的期望值不超过23,则n 的最大值为30.18.(1)解:解法一:设(),Px y ,易知2023x >-,404520232x =+-,化简得22y x =,所以C 的方程为22y x =.解法二:因为点P 到定点1,02F ⎛⎫⎪⎝⎭的距离比到定直线2023x =-的距离小40452,所以点P 到定点1,02F ⎛⎫⎪⎝⎭的距离与到定直线12x =-的距离相等,由抛物线的定义可知,点P 的轨迹是以定点1,02F ⎛⎫ ⎪⎝⎭为焦点,定直线12x =-为准线的抛物线,所以C 的方程为22y x =.(2)证明:设()()1122,,,M x y N x y ,直线MN 的斜率为()0k k ≠,线段MN 的中点为Q ,因为平行四边形MANB 对角线的交点在第一、三象限的角平分线上,所以线段MN 的中点Q 在直线y x =上,设()(),0Q m m m ≠,所以2112222,2,y x y x ⎧=⎨=⎩所以()()()1212122y y y y x x -+=-,又1212122,,y y y y m k x x -+==-所以1km =,即1k m=.设直线MN 的方程为()1y m x m m -=-,即20x m y m m -+-=,联立220,2,x my m m y x ⎧-+-=⎨=⎩整理得222220y m y m m -+-=,所以2Δ840m m =->,解得02m <<,212122,22y y m y y m m +==-,则12MN y y =-=.=又点A 到直线MN的距离为d =,所以2AMN S S MN d ==⋅==.()222m m -+,记t 因为02m <<,所以(]0,1t ∈,所以()(]232224,0,1S t tt t t =-=-+∈.令()(]324,0,1f t t t t =-+∈,则()264f t t =-+',令()0f t '=,可得3t =,当3t ⎛⎫∈ ⎪ ⎪⎝⎭时,()()0,f t f t '>在区间(0,3⎫⎪⎪⎭内单调递增,当,13t ⎛⎤∈ ⎥ ⎝⎦时,()f t '<()0,f t 在区间,13⎛⎤ ⎥ ⎝⎦上单调递减,所以当3t =,即13m =±时,()f t 取得最大值,即max 39S f ⎫==⎪⎪⎝⎭,所以9S .19.解:(1)由题意可知()2,1T表示集合A 有2个元素,且1,p =所以()(){}1,0,0,1A =.(2)对于{(1,1,0),(1,0,1),(0,1,1)}A =,则()()1,1,01,1,01102⋅=++=,同理(1,0,1)(1,0,1)(0,1,1)(0,1,1)2⋅=⋅=,而()()1,1,01,0,11001⋅=++=,同理(1,1,0)(0,1,1)(1,0,1)(0,1,1)1⋅=⋅=,所以A 具有性质()3,2T .且3,12221119i j i j a a =∑⋅=+++++=.(3)假设存在集合A 具有性质()4,T p ,易知集合A 中有4个元素且{0,1,2,3,4}p ∈.①若0p =,则(){}0,0,0,0A =,不符合4个元素,舍去;②若1p =,则()(){1,0,0,0,0,1,0,0A ⊆,()()0,0,1,0,0,0,0,1},又()()1,0,0,00,1,0,00⋅=,所以不满足,舍去;③若2p =,则{(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)}A ⊆,又()()()1,1,0,00,0,1,11,0,1,0⋅=⋅()()()0,1,0,11,0,0,10,1,1,00=⋅=,所以这3组每组至多只能有一个包含于A ,所以A 至多只有3个元素,矛盾,舍去;④若3p =,则()(){1,1,1,0,1,1,0,1A ⊆,()()1,0,1,1,0,1,1,1},又()()1,1,1,01,1,0,12⋅=,所以不满足,舍去;⑤若4p =,则(){}1,1,1,1A =,只有一个元素,舍去.。
2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省中考适应性测试(一)数学试卷(本试卷共23小题满分120分考试时长120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效参考公式:抛物线顶点坐标为第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A. B. C. D.2.下列几何体中,俯视图是三角形的是( )A.B . C. D.3.在标准大气压下,液态氧、液态氮、酒精、水四中液体的沸点如下表:液体液态氧液态氮酒精水沸点78100其中沸点最低的液体为( )A.液态氧 B.液态氮C.酒精D.水4.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中是中心对称图形的是( )A. B. C.D.5.下列运算正确的是()A. B.C.D.6.下列命题是真命题的是( )A.相等的角是对顶角 B.若,则D.同旁内角互补,两直线平行()20y ax bx c a =++≠24,24b ac b aa ⎛⎫-- ⎪⎝⎭50.35810⨯335.810⨯53.5810⨯43.5810⨯/℃183-196-()235y y =222(2)4xy x y -=2222x x x ⋅=623x x x ÷=||||a b =a b =2=-7.在平面直角坐标系中,线段是由线段经过平移得到的,点的对应点为,点B 的坐标为,则点的坐标为( )A. B. C. D.8.为了丰富校园生活,培养学生特长,学校开展了特色课程.小明与小华从感兴趣的“花样跳绳”,“天文地理”,“艺术插花”,“象棋博弈”4门课程中随机选择一门学习.小明与小华恰好选中同一门课程的概率为( )A.B.C.D.9.如图,直线,直线依次交,,于点A ,B ,C ,直线依次交,,于点D ,E ,F ,若,,则的长为( )A.8B.6C.4D.310.已知等腰三角形的周长是8,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A. B. C. D.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:_____________.12.如图,菱形中,交于O ,于E ,连接,若,则的度数为_____________.A B ''AB (2,1)A -(3,4)A '(1,3)B --B '(4,3)-(4,3)-(4,0)(6,6)--116141312123////l l l AC 1l 2l 3l DF 1l 2l 3l 35AB AC =6DE =EF 29y -=ABCD AC BD CE AB ⊥OE 110DAB ∠=︒OEC ∠︒13.如果关于x 的方程有两个相等的实数根,则___________.14.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能,如“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,.若“矩”的边,边,则树高为______.图1图215.如图,拋物线交x 轴正半轴于点A ,交y 轴于点B ,线段轴交拋物线于点C ,,则的面积是__________.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)(5分)计算:(2)(5分)解方程:.17.(8分)某学校为打造书香校园,计划购进甲、乙两种课外书.购买1本甲种书和2本乙种书共需125元;购买2本甲种书和5本乙种书共需300元.(1)求甲、乙两种书的单价;(2)学校决定购买甲、乙两种书共50本,且两种书的总费用不超过2000元,那么该校最多可以购买多少本乙种书?18.(8分)为了解甲、乙两校九年级学生英语人机对话的学习情况,每个学校随机抽取20个学生进行测试,测试后对学生的成绩进行了整理和分析.信息一:220x x m ++=m =AFE 1.5m AB = 6.2m BD =30cm EF a ==60cm AF b ==CD m 233(0)y ax ax a =-+<BD y ⊥25DC BD =ACD △()()23433-⨯+-+2820x x -+=绘制成了如下两幅统计图.(数据分组为:A 组:,B 组:,C 组:,D 组:)甲校成绩的频数分布直方图乙校成绩的扇形统计图信息二:甲校学生的测试成绩在C 组的是:80,82.5,82.5,85,85.5,89,89.5,82.5,85.信息三:甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数众数甲校83.2a 82.5乙校80.68180根据以上信息,回答下列问题:(1)扇形统计图中C 组所在的圆心角度数为_______,乙校学生的测试成绩位于D 组的人数为_______人,表格中_________,在此次测试中,甲校小明和乙校小华的成绩均为82分,则两位同学谁在各自学校测试成绩中的排名更靠前?并说明理由;(2)假设甲校学生共有400人参加此次测试,估计甲校成绩超过86分的人数.19.(8分)星海广场是亚洲最大的城市广场,某店专门销售某种品牌的星海广场纪念品,成本为30元/件,每天销售y 件与销售单价x 元(x 为整数)之间的一次函数关系如图所示,其中.(1)求y 与x 之间的函数表达式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?20.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图1是政府给贫困户新建的房屋,如图2是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,为了测量房屋的高度,在地面上C 点测得6070x ≤<7080x ≤<8090x ≤<90100x ≤≤︒a =3060x <≤AB屋顶A 的仰角为,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走到达点D 时,又测得屋檐E 点的仰角为,房屋的顶层横梁,,交于点G (点C ,D ,B 在同一水平线上).图1图2(1)求屋顶到横梁的距离(结果精确到);(2)求房屋的高(结果精确到).(参考数据,,)21.(8分)如图1,为的直径,C 为外一点.图1图2(1)尺规作图:作直线与相切,切点D 在弧上(保留作图痕迹,不写作法);(2)如图2,为的直径,直线与相切于点D,连接、、,若,,的长.22.(12分)如图,在中,,点D 在边上(不与点C 重合),将绕点D 旋转,得到,其中点C 的对应点为点E ,点A 的对应点为点F .图1图2图3(1)如图1,点D 与点B 重合,将绕点D 逆时针方向旋转,当点E 落在边上时,与的交点为G ,求证:;30︒8m 63.5︒12m EF =//EF CB AB EF AG 0.1m AB 1m sin 63.50.89︒≈cos 63.50.45︒≈tan 63.5 2.00︒≈ 1.73≈AB O e O e CD O e AmB AB O e CD O e AD BD AC 45C ∠=︒4sin 5ADC ∠=AC =BD ABC △AB AC =BC ADC △FDE △ADC △AC EF AB AG EG =(2)如图2,点D 是边上任一点(不与点A 、B 重合),将绕点D 逆时针方向旋转,当点E 落在边上时,连接,求证:;(3)若,D 为中点.①将绕点D 逆时针方向旋转,点E 落在边上,连接并延长与的延长线交于点P ,求的长;②将绕点D 顺时针方向旋转,当经过点C 时,连接并延长与的延长线交于点Q ,请直接写出的长.23.(13分)定义,在平面直角坐标系中,对于任意两点,,若点满足,,那么称点T 是点A ,B 的“伴A 融合点”,例如:,,当点满足,时,则点是点A ,B 的“伴A 融合点”.(1)已知点,,点T 是点A ,B 的“伴A 融合点”,则点T 的坐标为___________;(2)已知点,,,请说明其中一个点是另两个点的伴哪个点的“融合点”?(3)已知点是直线上在第一象限内的一动点,是抛物线上一动点,点是点Q ,P 的“伴Q 融合点”,试求出T 中y 关于x 的函数表达式(表达式中含a ),并判断所有点中是否存在最高点?若存在,求出最高点的坐标;若不存在,说明理由;(4),为(3)中y 关于x 的函数表达式所对应的图像上两点,若点M ,N 之间的图象(包括点M ,N )的最高点与最低点纵坐标的差为,求a 的值.AB ADC △AC BF //BF AC AB =2BC =BC ADC △AC AF CB PF ADC △EF AF BC QF (,)A a b (,)B m n (,)T x y a mx a+=b ny b +=(1,2)A -(3,4)B (,)T x y 1321x -+==--2432y +==(2,3)T -(2,4)A -(2,8)B -(2,6)C -(1,2)D --(1,2)E -(,)Q a b y x =(,)P m n 22y x =-(,)T x y (,)T x y ()11,M y -()21,N a y -26a2024年辽宁省中考适应性测试数学(一)答案及评分标准一、选择题:1.D ;2.B ;3.B ;4.A ;5.B ;6.D ;7.C ;8.B ;9.C ;10.D.二、填空题:11.;12.35;13.1;14. 4.6;15. 3.15.解析:在中,当时,,.轴交抛物线于点C ,,令,,.,,,,,.三、解答题:16.解:(1)原式4分;5分(2),,,,6分8分,.10分17.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意得,,2分解得,,3分答:甲种书的单价是25元,乙种书的单价是50元;4分(2)设该校购买m 本乙种书,则购买本甲种书,根据题意得,,6分解得,,7分答:该校最多可以购买30本乙种书.8分18.解:(1)144,4,,3分小明的成绩为82分,在甲校中位数85.25分以下,而小华的成绩82分,在乙校中位数81分以上,因此小华的成绩排名在前.5分()()33y y +-233y ax ax =-+0x =3y =(0,3)B ∴BD y ⊥ 3C B y y ∴==2333ax ax -+=10x ∴=23x =(3,3)C ∴3BC ∴=25DC BD = 2(3)5DC DC ∴=+2DC ∴=12332ACDS ∴=⨯⨯=△1293=-++-+=1a = 8b =-2c =224(8)412560b ac ∴-=--⨯⨯=>4x ∴==14x ∴=+24x =-212525300x y x y +=⎧⎨+=⎩2550x y =⎧⎨=⎩(50)m -()2550502000m m -+≤30m ≤85.25a =(2)(人),7分答:估计甲校400学生中成绩超过86分的大约有180人.8分19.解:(1)设y 与x 的函数表达式为,直线经过点,,,2分解得:.3分y 与x 之间的函数表达式为;4分(2)设每天利润为w 元,则,,6分,抛物线开口向下,,当时,7分.8分答:当销售单价为50元时,每天获取的利润最大,最大利润是4000元.20.解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,,,,,在中,,,,,2分.3分答:屋顶到横梁的距离约为3.5米;(2)如图,过E 作于H ,设米,在中,,,,,4分2740018020+⨯=y kx b =+ y kx b =+(40,300)(55,150)4030055150k b k b +=⎧∴⎨+=⎩10700k b =-⎧⎨=⎩∴10700y x =-+(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000x x x -+-=--+100-< ∴3060x <≤ ∴50x =4000w =最大 AB //EF BC AG EF ∴⊥11126m 22EG FG EF ===⨯=30AEG ACB ∠=∠=︒Rt AGE △90AGE ∠=︒30AEG ∠=︒6EG =tan AG AEG EG ∠=tan 6tan 306AG EG AEG ∴=∠==︒⨯2 1.73 3.46 3.5m ≈⨯=≈AG EH CB ⊥EH x =Rt EDH △90EHD ∠=︒63.5EDH ∠=︒tan EH EDH DH ∠=tan tan 63.52EH x xDH EDH ∴==≈︒∠在中,,,,,5分,,解得:(米),7分四边形为矩形,(米),(米).8分答:房屋的高约为10米.21.解:(1)如图1,直线即为所求作;2分说明:连接,分别以点C ,点O 为圆心,大于为半径作弧,两弧分别交于点M ,N ,作直线交于点E ,以E 为圆心,长为半径作弧,交弧与点D ,作直线.图1图2(2)如图2,过点A 作于点E ,则,连接,为的切线,是的半径,,,3分为的直径,,4分,即,,,,5分,,,6分,,,,,,,7分在中,根据勾股定理,.8分22.解:(1)证明:,,,.1分旋转得到,,,.,,,Rt ECH △90EHC ∠=︒30ECH ∠=︒tan EH ECH CH ∠=tan tan 30EH xCH ECH ∴===∠︒8CH DH CD -== 82x-=1.730.58x x -= 6.5x ≈ EHBG 6.5EH BG ∴==3.46 6.59.9610AB AG BG ∴=+=+=≈AB CD CO 12CO MN CO EO AmB CD AE CD ⊥90AEC AED ∠=∠=︒OD CD O e OD O e CD OD ∴⊥90ODC ∴∠=︒AB O e 90ADB ∴∠=︒ADO ODB ADO ADC ∴∠+∠=∠+∠ODB ADC ∠=∠OD OB = ODB B ∴∠=∠B ADC ∴∠=∠45C ∠=︒ sin sin 45AE C AC ∴==︒=AC =4AE ∴=4sin 5ADC ∠=45AE AD ∴=5AD ∴=B ADC ∠=∠ 90ADB ∠=︒4sin 5AD B AB ∴==254AB ∴=Rt ABD △154BD ===AB AC = ABC C ∴∠=∠180A ABC C ∠+∠+∠=︒2180A C ∴∠+∠=︒ABC △FBE △C BEF ∴∠=∠BC BE =BEC C ∴∠=∠BEC BEF C ∴∠=∠=∠180BEC BEF AEF ∠+∠+∠=︒ 2180AEF C ∴∠+∠=︒,;2分(2)同理(1)得,.,旋转得到,,.3分,即..4分,,.,;5分(3)①,,D 为中点,,,,在中,根据勾股定理得.6分如图1,连接,.旋转得到,,.,,..,,,.7分,,,根据勾股定理得8分旋转得到,,,又,,,.,,即.9分由(2)得,,四边形为矩形,,,,,10分A AEF ∴∠=∠AG EG ∴=GAE GEA ∠=∠AG EG =AB AC = ADC △FDE △AC FE ∴=AB FE ∴=AB AG FE EG ∴-=-BG FG =GFB GBF ∴∠=∠2180AGE GAE ∠+∠=︒ 2180BGF GBF ∠+∠=︒AGE BGF ∠=∠GAE GBF ∴∠=∠//BF AC ∴AB AC ==2BC =BC AD BC ∴⊥90ADC ∴∠=︒112BD CD BC ===Rt ADC △2AD ===BE BF ADC △FDE △DC DE ∴=DA DF =BD DE ∴=C DEC ∴∠=∠DBE DEB ∠=∠180DBE DEB DEC C ∠+∠+∠+∠=︒ 22180DEB DEC ∴∠+∠=︒90DEB DEC ∴∠+∠=︒90BEC ∴∠=︒BE AC ∴⊥1122ABC S BC AD AC BE =⋅=⋅ △22∴⨯=BE ∴=AE ===ADC △FDE △90FDE ADC ∴∠=∠=︒ADF EDC ∴∠=∠DF DA = 1802ADFDAF DFA ︒-∠∴∠=∠=1802EDCC ︒-∠∠= C DAF ∴∠=∠90C DAC ∠+∠=︒ 90DAF DAC ∴∠+∠=︒90PAC ∠=︒//BF AC 90AFB ∴∠=︒∴AFBE BF AE ∴==AF BE ==//BF AC PFB PAC ∴△∽△PF BFPA AC∴==PF ∴=图1图212分解析:绕点D 顺时针旋转得到,,,,,,.又,..,,,即,又,,,即.,.,,,.即.四边形为矩形,同理①:.,.,,,.ADC △FDE △DE DC ∴=DEC DCE ∠=∠DA DF=DAF DFA ∴∠=∠ACD DEC ∠=∠DEC DCE ACD ∴∠=∠=∠90ADC FDE∠=∠=︒ ADF CDE ∴∠=∠AFD DCE ACD ∴∠=∠=∠DAC DFE ∠=∠ 90ACD DAC ∠+∠=︒ 90AFD DFE ∴∠+∠=︒90AFE ∠=︒BAD DAC ∠=∠ DAF DFA ∠=∠90BAD DAF ∴∠+∠=︒90BAF ∠=︒BD ED = DBE DEB ∴∠=∠1802BDE BED ︒-∠∴∠=1802EDC DEC -∠︒∠=180BDE EDC ∠+∠=︒18018022BDE EDC BED DEC ︒-∠-∠︒∴∠+∠=+360()3601809022BDE EDC -︒︒︒∠+∠-===︒90BEF ∠=︒∴ABEF 1122ABC S BC A AD B BE ⨯=⨯=△4∴=BE ∴=EC ===EF AB ==FC ∴=-=AF BE ==//FC AB QFC QAB ∴△∽△..23.解:(1),,;1分(2),,,,3分又,点D 是点C ,E 的“伴E 融合点”;4分(3)是直线上在第一象限内的一动点,,,,点是抛物线上一动点,,.点是点Q ,P 的“伴Q 融合点”,,,5分,,,6分,,,抛物线开口向下,有最大值1.的最高点的坐标为;7分(4),,.抛物线的开口向下,对称轴为直线,最高点为.①当时,,即时,点M 、N 在抛物线对称轴左侧,y 随x 的增大而增大,,点M 、N 之间的图象的最高点为N ,最低点为M .,FC FQ AB AQ ∴==FQ ∴=2(2)02x +-==4814y -+==--(0,1)T ∴-(1,2)E - (2,6)C -1211-+=-- 2(6)22+-=-(1,2)D -- ∴(,)Q a b y x =b a ∴=0a >(,)Q a a ∴(,)P m n 22y x =-22n m ∴=-()2,2P m m ∴- (,)T x y a m x a +∴=22a m y a -=ax a m ∴=+m ax a ∴=-2222()11m ax a y a a-=-=-22222(4111)ax ax x a a =-=+-+--()()222212221112y a x x a a x x a ∴=--+-=--+-+-222(1)2122(1)1a x a a a x =--++-=--+0a > 20a ∴-<∴(,)T x y ∴(1,1)22(1)1y a x =--+ 0a >20a -<1x =(1,1)11a -≤2a ≤02a <≤11a ->- ∴2222(11)12(11)16a a a a ⎡⎤∴---+----+=⎣⎦,,,,(舍),,;9分②若,即时,若,则,.当时,最高点为,最低点为..,.都不符合题意,舍去;11分③若,则最高点为,最低点为.,.,..13分综上,a 的值为1.222(2)1816a a a a --++-=222(2)86a a a a --+=0a > 22(2)86a a ∴--+=10a ∴=21a =1a ∴=11a ->2a >12y y =111(1)a --=--4a ∴=24a <≤(1,1)()11,M y -2212(11)16a a ⎡⎤∴----+=⎣⎦10a =243a =4a >(1,1)()21,N a y -2212(11)16a a a ⎡⎤∴----+=⎣⎦2740a a -+=1a =2a =a ∴=。
辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷

辽宁省铁岭市2024—2025学年上学期第二次月考九年级数学试卷一、单选题1.下列关于x 的方程有实数根的是()A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=02.下列运动属于旋转的是()A .滚动过程中的篮球的滚动B .钟摆的摆动C .一个图形沿某直线对折过程D .气球升空的运动3.如图,在平面直角坐标系中,(4,2)D -,将Rt OCD △绕点O 逆时针旋转90︒到OAB △位置,则点B 坐标为()A .(2,4)B .(4,2)C .(4,2)--D .(2,4)-4.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A .B .C .D .5.如图,将△ABC 绕点C 顺时针方向旋转40°得△A’CB’,若AC ⊥A’B’,则∠BAC 等于()A .50°B .60°C .70°D .80°6.如图,已知抛物线2y ax c =+与直线y kx m =+交于()()123,,1,A y B y -,则关于x 的不等式2ax c kx m +≥+的解集是()A .3x ≤-或1x ≥B .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤7.若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=()A .2016B .2015C .2014D .20128.如图是一个在建隧道的横截面,它的形状是以点O 为圆心的圆的一部分,O M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,且8=CD m ,8m EM =,则O 的半径为()m .A .5B .6.5C .7.5D .89.如图,AD 是半圆O 的直径,点B 、C 在半圆上,且 AB BC CD==,点P 在 CD 上,若130PCB ∠=︒,则PBC ∠等于()A .25︒B .20︒C .30︒D .35︒10.如图,AB 是O 的直径,点C 为圆上一点,AC =D 是弧AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则BC 的长为()A .5B .4C .3D .2二、填空题11.已知点(,2)A m 与点(3,)B n -关于原点对称,则m n -的值为.12.已知1x =是方程²30x mx -+=的一个解,则另一个解为.x =13.如图,四边形ACBD 内接于O ,连接AB ,CD ,AB 是O 的直径,若28ADC ∠=︒,则BAC ∠的度数为.14.定义:关于x 的函数2y ax bx =+与2y bx ax =+(其中a b ≠)叫做互为交换函数,如225y x x =-与252y x x =-+是互为交换函数,如果函数22y mx x =+与它的交换函数图象顶点关于x 轴对称,那么m =.15.如图,在矩形ABCD 中,8AB =,5BC =,点M 是AB 边的中点,点N 是AD 边上任意一点,将线段MN 绕点M 顺时针旋转90︒,点N 旋转到点N ',则MBN '△周长的最小值为.三、解答题16.解方程:(1)用配方法解方程:2650x x ++=(2)用因式分解法解方程:()3224x x x -=-17.利用你所学的平移与旋转知识作答.(1)如图1,是某产品的标志图案,要在所给的图形图2中,把A ,B ,C 三个菱形通过一种或几种变换,均可以变为与图1一样的图案.你所用的变换方法是______.①将菱形B 绕点O 旋转60︒;②将菱形B 绕点O 旋转120︒;③将菱形B 绕点O 旋转180︒.(在以上的变换方法中,选择一种正确的填到横线上.).(2)如图,在平面直角坐标系中,已知点()0,2A 、()2,2B 、()1,1C .①若将ABC V 先向左平移3个单位长度,再向下平移1个单位长度,得到111A B C △,请画出111A B C △,并写出点1C 的坐标为______;②若将ABC V 绕点O 按顺时针方向旋转180︒后得到222A B C △,直接写出点2C 的坐标为______;③若将ABC V 绕点P 按顺时针方向旋转90︒后得到333A B C △,则点P 的坐标是______.18.如图,在O 中,4OA =, CDBD =,直径AB CD ⊥于点E ,连接OC ,OD .(1)求COD ∠的度数;(2)求CD 的长度.19.某公司电商平台,在2022年十一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.x407090y1809030W 360045002100(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价为a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润.20.如图,AB 是O 的直径,点C 、M 在O 上,且OM BC ∥,连接AC 分别与OM ,BM 相交于点E ,F .(1)求证:点M 为弧AC 的中点;(2)若2ME =,4AE =,求BC 的长.21.等边ABC V 的边长为4,D 为BC 的中点,ABD △绕点B 顺时针旋转得到FBE ,点A 的对应点为F ,点D 的对应点为E ,连接EC ,EC BF ∥.(1)求BEC ∠的度数;(2)求EC 的长度.22.综合与实践已知:90MBN ∠=︒,在BM 和BN 上截取BA BC =,将线段AB 边绕点A 逆时针旋转α()0180α︒<<︒得到线段AD ,点E 在射线BD 上,连接CE ,45BEC ∠=︒.【特例感知】(1)如图1,若旋转角90α=︒,则BD 与CE 的数量关系是______;【类比迁移】(2)如图2,试探究在旋转的过程中BD 与CE 的数量关系是否发生改变?若不变,请求BD 与CE 的数量关系;若改变,请说明理由;【拓展应用】(3)如图3,在四边形ABCD 中,5AD AB BC ===,90ABC ∠=︒,点E 在直线BD 上,45BEC ∠=︒,CE =,请直接写出CDE 的面积.23.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线(即直线y c =)称为这条抛物线的横向分割线.(1)抛物线243y x x =++的横向分割线与这条抛物线的交点坐标为______.(2)抛物线21142y x mx n =-++与x 轴交于点−2,0和()(),02B x x >-,与y 轴交于点C .它的横向分割线与该抛物线另一个交点为D ,请用含m 的式子表示点C 和点D 的坐标.(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分线段OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②是否存在点P ,使2PF OE =?若存在,直接写出m 的值;若不存在,请说明理由.。
辽宁省沈阳市第一二六中学2022学年九年级下学期3月月考数学试题(含答案与解析)

A.
B.
C.
D.
【7题答案】
【答案】A
【解析】
【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在同一条数轴上表示出每一个不等式的解集即可.
【详解】解: ,
解①得:x≥2,
解②得:x>-1,
在同一条数轴上表示出每一个不等式的解集为:
B. 早上的太阳从东方升起是必然事件
C. 若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.4,则乙组数据较稳定
D. 调查某种灯泡的使用寿命,采用普查的方式
【8题答案】
【答案】B
【解析】
【分析】分别利用必然事件的定义、概率的意义、抽样调查的意义以及方差的意义分别分析得出答案.
【详解】解:A、某同学连续10次抛掷质量均匀的硬币,4次正面向上,因此正面向上的频率是40%;故此选项不符合题;
沈阳市一二六中学2022学年下学期3月月考试卷
九年级数学
(本试题共4页,满分120分,考试时间100分钟)
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将个人信息填写在答题卡和试卷规定的位置上。
2.选择题需用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。答案不能写在试卷上。
(2)请直接写出扇形统计图中A所对应的圆心角度数______;
(3)根据抽样调查 结果请你估计该校九年级的1000名学生中对生活垃圾分类“非常了解”的学生有多少名?
(4)若“非常了解”的4人中有两名男生两名女生,现从中随机选取两人向全校学生作“生活垃圾分类,从我做起”的宣讲,请直接写出恰好抽到两名女生的概率为______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省九年级下学期数学3月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)(2016·永州) ﹣的相反数的倒数是()
A . 1
B . ﹣1
C . 2016
D . ﹣2016
2. (2分) (2019九上·孝南月考) 下列图形中,可以看作是中心对称图形的是()
A .
B .
C .
D .
3. (2分)(2013·玉林) 已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()
A . 5
B . 6
C . 7
D . 8
4. (2分) (2019九下·昆明模拟) 刘主任乘公共汽车从昆明到相距千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快千米/时,回来时路上所花时间比去时节省了小时,设公共汽车的平均速度为千米时,则下面列出的方程中正确的是()
A .
B .
C .
D .
5. (2分) (2019八上·陕西月考) 如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()
A . 3
B . 4
C . 5
D . 6
6. (2分) (2017九上·岑溪期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的是()
A . c<0
B . a+b+c<0
C . 2a﹣b=0
D . b2﹣4ac=0
7. (2分)已知圆锥的底面的半径为3cm,母线长为5cm,则它的侧面积为()
A . 15πcm2
B . 16πcm2
C . 19πcm2
D . 24πcm2
8. (2分)若方程有两个实数根,则k的取值范围是()
A . ≥1
B . ≤1
C . >1
D . <1
9. (2分)(2019·大埔模拟) 如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()
A . 45°
B . 55°
C . 65°
D . 75°
10. (2分) (2018七下·历城期中) 将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为()
A . 45°
B . 60°
C . 75°
D . 85°
二、填空题 (共7题;共12分)
11. (1分) (2020七下·滨湖期中) 甲型流感病毒的直径大约是0.000000081米,用科学记数法可表示为________米.
12. (1分)(2011·淮安) 一元二次方程x2﹣4=0的解x=________.
13. (5分)(2017·上城模拟) 写出一个解为x≥1的一元一次不等式________.
14. (1分) (2020八下·溧阳期末) 若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD 满足的条件为.________
15. (1分) (2019九上·慈溪期中) 抛物线y=(m﹣1)x2+2x+ m图象与坐标轴有且只有2个交点,则m =________.
16. (2分)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是________.
17. (1分)三角形两边长为8和6,第三边长是一元二次方程x2﹣8x+12=0的根,则该三角形的周长和面积分别是________.
三、解答题 (共8题;共49分)
18. (5分)(2017·涿州模拟) 计算下列各题
(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣ |;
(2)解方程:x2﹣1=2(x+1).
19. (5分)(2019·醴陵模拟) 先化简,再求值:÷(a﹣1﹣),其中a=﹣2.
20. (10分)(2020·湖州模拟) 央视举办的《中国诗词大会》受到广大学生群体广泛关注.某校的诗歌朗诵社团就《中国诗词大会》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中说给信息解答下列问题:
(1)本次被调查对象共有________人,扇形统计图中被调查者“非常喜欢”等级所对应圆心角的度数为
________;
(2)将条形统计图补充完整,并标明数据;
(3)若选“不太喜欢”的人中有两名女生,其余是男生,从原“不太喜欢”的人中挑选两名学生了解不太喜欢的原因,请用画树状图或列表法求所选取的这两名学生恰好是一男一女的概率.
21. (2分)(2020·建邺模拟) 如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,过点 D作DE⊥AC,垂足为E.
(1)求证:DE是⊙O的切线.
(2)若⊙O的半径为2,∠A=60°,求DE的长.
22. (5分) (2018九上·阜宁期末) 大海中某小岛周围10 范围内有暗礁,一海轮在该岛的南偏西方向的某处,由西向东行驶了后到达该岛的南偏西方向的另一处,如果该海轮继续向东行驶,会有触礁的危险吗?(≈1.732).
23. (10分)(2017·永新模拟) 如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时又以0.8m/s的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0.8m/s的速度往下跑,而乙到达底端后则在原地等候甲.图2中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(m)与所用时间x(s)之间的部分函数关系,结合图象解答下列问题:
(1)求点B的坐标;
(2)求AB所在直线的函数表达式;
(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?
24. (10分)(2018·咸宁) 如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O 于点D,过点D作DE∥AC交BC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=25,BC= ,求DE的长.
25. (2分)(2020·莆田模拟) 如图,是圆外一点,是圆一点,交圆于点,
.
(1)求证:是圆的切线;
(2)已知,,求点到直线的距离.
参考答案一、单选题 (共10题;共20分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、
考点:
解析:
答案:10-1、
考点:
解析:
二、填空题 (共7题;共12分)
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
三、解答题 (共8题;共49分)答案:18-1、
答案:18-2、
考点:
解析:
答案:19-1、
考点:
解析:
答案:20-1、答案:20-2、
答案:20-3、考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、考点:
解析:
答案:23-1、答案:23-2、
答案:23-3、考点:
解析:
答案:24-1、
答案:24-2、考点:
解析:
答案:25-1、
答案:25-2
、
考点:
解析:
第21 页共21 页。