圆-第10讲圆幂定理圆中比例线段6学
《圆幂定理》课件(15张PPT)

圆幂定理:过一个定点P的任何一条直线 与圆相交,则这点到直线与圆的交点的两 条线段的乘积为定值 OP r .=d (等 于点P到圆心的距离与半径的平方差的绝 对值)
2 2
z.x.x.k
C
PA•PB=PC•PD
统一叙述为:过一点P(无论点P在圆内,还是在圆外) 的两条直线,与圆相交或相切(把切点看成两个重合 的“交点”)于点A、B、C、D,PA•PB=PC•PD 。
zxxk
• 如图,在⊙O中,P是弦AB上一点, OP⊥PC,PC交⊙O于C。 求证:PC2=PA· PB
C A D P O
。
O
1 2
A
几何语言:
PA、PB分别切⊙O于A、B
PA = PB ∠1=∠2
反思:切线长定理为证明线段相等、角相等
提供了新的方法。
圆幂定理
A
• 相交弦定理 圆内的两条相交 弦,被交点分成的两条线段长 的积相等。
O
C
D
P
B
PA· PB=PC· PD
A
P
C O
D
• 如图,CD是弦,AB是直 径,CD⊥AB,垂足为P。 求证:PC2=PA· PB
B
PA· PB=PC· PD
• 切割线定理推论(割线定理) 从圆外一 点引圆的两条割线,这一点到每条割线与圆 的交点的两条线段长的积相等。
运动观点看本质
• • • • 相交弦定理 相交弦定理推论 切割线定理 割线定理
本质一样
圆幂定理
几个定理得统一
相交弦定理 割线定理 切割线定理 切线长定理 A •P B D PA•PB=PC•PD PA²=PC•PD PA=PC
B
学会用半径加减或加减半径
圆(圆幂定理、根轴,托勒密定理、帕斯卡定理、牛顿定理Ⅰ、Ⅱ)

圆(圆幂定理、根轴,托勒密定理、帕斯卡定理、牛顿定理
Ⅰ、Ⅱ)
一、圆幂定理、根轴
1. 圆幂定理:
圆幂定理为以下三个定理的统称,即
相交弦定理(Ⅰ:AP·PB=CP·PD)
割线定理(Ⅱ:PA·PB=PC·PD)
切割线定理(Ⅲ:PA2=PC·PD)
2. 根轴:
到两圆幂相等的点的集合为一条垂直于两圆圆心连线的直线且:若两圆相交则根轴为公共弦所在直线
若两圆相切则根轴为公切线
同心圆无根轴
二、几条重要的定理
1. 托勒密定理
凸四边形 ABCD 中有
AC · BD ≥ AB · CD + AD · BC
等号当且仅当四边形 ABCD 是圆内接四边形时成立
2. 帕斯卡定理
圆内接六边形三组对边所在直线交点共线
3. 牛顿定理Ⅰ
圆外切四边形的对角线交点和以切点为顶点的四边形对角线交点重
合
4. 牛顿定理Ⅱ
圆外切四边形两条对角线中点和该圆圆心,三点共线
本文素材来源网络!。
圆幂定理

圆中的比例线段根轴相交弦定理圆内的两条相交弦被交点分成的两条线段的积相等.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.上述三个定理统称为圆幂定理,它们的发现距今已有两千多年的历史,它们有下面的同一形式:圆幂定理过一定点作两条直线与圆相交,则定点到每条直线与圆的交点的两条线段的积相等,即它们的积为定值.这里切线可以看作割线的特殊情形,切点看作是两个重合的交点.若定点到圆心的距离为d,圆半径为r,则这个定值为|d2-r2|.当定点在圆内时,d2-r2<0,|d2-r2|等于过定点的最小弦的一半的平方;当定点在圆上时,d2-r2=0;当定点在圆外时,d2-r2>0,d2-r2等于从定点向圆所引切线长的平方.特别地,我们把d2-r2称为定点对于圆的幂.一般地我们有如下结论:到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线;如果此二圆相交,那么该轨迹是此二圆的公共弦所在直线.这条直线称为两圆的“根轴”.对于根轴我们有如下结论:三个圆两两的根轴如果不互相平行,那么它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.练习:1.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.2.如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.3.如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O 的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=_____4.如图,过点D作圆的切线切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=________.5如图,半径为2的⊙O 中,∠AOB =90°,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为________.6.如图所示,P A 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,P A =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,则AD ·AE 的值为__________.例1. 在ΔABC 中,已知CM 是∠ACB 的平分线,ΔAMC 的外接圆交BC于N ,若AC =12AB ,求证:BN =2AM .例2 ⊙O 与⊙O '外切于点P ,一条外公切线分别切两圆于点A 、B ,AC 为⊙O 的直径,从C 引⊙O '的切线CT ,切点为T .求证:CT =AB .例3. AD 是Rt △ABC 斜边BC 上的高,∠B 的平分线交AD于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .O AB C M N AP O'O B C T E A N C D BF M 1 2 3 4 5例4. 已知AB 切⊙O 于B ,M 为AB 的中点,过M 作⊙O 的割线MD 交⊙O 于C 、D 两点,连AC 并延长交⊙O 于E ,连AD 交⊙O 于F .求证:EF ∥AB .例5.(I )已知四边形PQRS 是圆内接四边形,∠PSR =90°,过点Q 作PR 、PS 的垂线,垂足分别为点H 、K .(1)求证:Q 、H 、K 、P 四点共圆;(2)求证:QT =TS .(II )如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=CE ·GF .例6. 如图,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.O E F D A B C M A O QP C B G FE D例7. 如图所示,P A 、PB 是⊙O 的两条切线,PEC 是⊙O 的一条割线,D 是AB 与PC 的交点,若PE =2,CD =1,求DE 的长.例8.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.例9 AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .P AA B D E FM 1 2 3 4 O P Q1.13 2.125° 3.14 4.325.355 6.(1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS. (2)证明(1)如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AG⊥FG,∴∠AGE=90°.又∠EAG=∠BAC,∴∠ABC=∠AEG.又∠FDC=∠ABC,∴∠FDC=∠AEG.∴∠FDC+∠CEF=180°.∴C,D,F,E四点共圆.(2)∵GH为⊙O的切线,GCD为割线,∴GH2=GC·GD.由C,D,F,E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF.∴△GCE∽△GFD.∴GCGF=GEGD,即GC·GD=GE·GF.∴CH2=GE·GF.。
和圆有关的比例线段课件

题目4
若圆内接四边形ABCD中,$angle A + angle C = 160^circ$,且$angle A :
angle B : angle C = 3 : 4 : 5$,求$angle D$的度数。
答案及解析
答案
$frac{AB}{AC} = frac{sqrt{3}}{2}$
解析
$frac{AB}{AC} = frac{sqrt{3}}{2}$
详细描述
圆的周长(或称为圆的周界)是围绕圆边界的 长度,其计算公式为C=2πr,其中π是一个数 学常数(约等于3.14159),r是圆的半径。圆 的面积是指圆所占平面的大小,其计算公式为 A=πr²,其中π是一个数学常数(约等于 3.14159),r是圆的半径。
02
和圆有关的比例线段
弦、直径和半径的比例关系
题目2
若圆内接四边形ABCD中,$angle A : angle B : angle C = 2 : 3 : 4$,且$angle B = 100^circ$,求$angle D$的度数。
进阶练习题
题目3
已知圆O的半径为3,点A、B、C、D在圆上 ,且$angle AOB = 90^circ$,$angle BOC = 120^circ$,求$frac{AB}{BC}$的值 。
旋转
将圆绕圆心旋转一定的角 度。
缩放
将圆沿x轴或y轴方向放大 或缩小一定的比例。
圆和其他几何图形的关系
圆和直线的关系:相 交、相切、相离。
圆和三角形的关系: 内切、外切、相交。
圆和圆的关系:相交 、相切、相离。
05
练习题和答案
基础练习题
题目1
已知圆O的半径为5,点A、B、C在圆上,且$angle AOB = 120^circ$,$angle BOC = 135^circ$,求 $frac{AB}{AC}$的值。
圆幂定理浙教版八年级上册

圆幂定理浙教版八年级上册圆幂定理是几何学中一个重要的定理,出现在我国初中数学教材的八年级上册。
它涉及到圆、线段、角度等几何元素,为我们解决实际问题提供了有力的工具。
下面,我们将详细介绍圆幂定理的相关内容。
一、圆幂定理的定义及意义圆幂定理是指:在同一个圆中,相交弦(非直径)的长度乘以其所对的圆心角的正弦值,等于两弦端点与圆心构成的直角三角形的面积的两倍。
用数学公式表示为:AC × sinA = 2 × △ABC的面积。
这个定理在实际应用中具有很大的价值,可以帮助我们快速计算几何图形的面积、周长等参数。
二、圆幂定理的应用1.求解弦心距:已知弦长和弦所对的圆心角,可以利用圆幂定理求解弦心距。
2.求解三角形面积:已知三角形的一条边和对应的角度,可以利用圆幂定理求解三角形面积。
3.求解圆的半径:在已知弦长和弦所对的圆心角的情况下,可以利用圆幂定理求解圆的半径。
4.求解扇形面积:已知扇形的半径和圆心角,可以利用圆幂定理求解扇形面积。
三、圆幂定理的证明证明圆幂定理的方法有很多,这里我们以向量法为例进行证明。
设圆心为O,弦AB的两端点分别为A、B,圆心角为AOB,弦心距为OC。
根据向量加法、减法及数乘运算,我们可以得到以下关系:1.OA × OB = OC × OA + OC × OB2.OC × OA = △AOC的面积× 23.OC × OB = △BOC的面积× 2将上述三个式子相加,可以得到:OA × OB +OC × OA + OC × OB = 2 × (△AOC的面积+ △BOC的面积)根据向量数量积的性质,我们知道:OA × OB = △AOB的面积× R(R为圆的半径)将上式代入前面的等式,可以得到:△AOB的面积× R + OC × OA + OC × OB = 2 × (△AOC的面积+△BOC的面积)整理后,我们可以得到圆幂定理的公式:AC × sinA = 2 × △ABC的面积四、总结与拓展圆幂定理是几何学中的一个基本定理,掌握它有助于我们更好地解决实际问题。
数学圆幂定理

数学圆幂定理圆幂定理,是平面几何中的一个重要定理,它描述了一个点到一个圆或两个圆的幂的关系。
圆幂定理有多种形式和推广,是解决几何问题的有力工具。
圆幂定理的基本形式是:如果一条直线同时切割两个圆,那么这条直线上的任意一点到两个圆的切线段的乘积是一个常数,这个常数叫做这个点到两个圆的幂。
数学上,可以用公式表示为:$$PA \cdot PB = PC \cdot PD$$其中,$P$是直线上的任意一点,$A$和$B$是直线分别与第一个圆的两个交点,$C$和$D$是直线分别与第二个圆的两个交点,如下图所示:!圆幂定理的基本形式圆幂定理的一个特殊情况是:如果一条直线同时切割一个圆,那么这条直线上的任意一点到圆的切线段的平方是一个常数,这个常数叫做这个点到这个圆的幂。
数学上,可以用公式表示为:$$PA^2 = PB^2$$其中,$P$是直线上的任意一点,$A$和$B$是直线与圆的两个切点,如下图所示:!圆幂定理的特殊情况圆幂定理的一个推广是:如果一条直线同时切割两个圆,那么这条直线上的任意一点到两个圆的切线段的比值是一个常数,这个常数叫做这个点到两个圆的幂比。
数学上,可以用公式表示为:$$\frac{PA}{PC} = \frac{PB}{PD}$$其中,$P$是直线上的任意一点,$A$和$B$是直线分别与第一个圆的两个切点,$C$和$D$是直线分别与第二个圆的两个切点,如下图所示:!圆幂定理的推广圆幂定理的一个应用是:如果一个三角形的外接圆和内切圆相切于一点,那么这个点到三角形的三条边的垂线段的乘积是一个常数,这个常数叫做这个三角形的幂积。
数学上,可以用公式表示为:$$PH \cdot PK \cdot PL = rR^2$$其中,$P$是外接圆和内切圆的切点,$H$,$K$,$L$是$P$到三角形的三条边的垂足,$r$是内切圆的半径,$R$是外接圆的半径,如下图所示:!圆幂定理的应用圆幂定理是一个简单而深刻的定理,它揭示了点和圆之间的一种基本的几何关系,它可以用来解决很多关于圆和三角形的几何问题,也可以推导出很多其他的几何定理,是平面几何中的一个重要的基础知识。
圆幂定理

圆幂定理圆幂定理是对、及(切割线定理推论)以及它们推论统一归纳的结果。
=PO^2-R^2(该结论为)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切定理:从圆外一点引圆的和割线,是这点到割线与圆交点的两条线段长的。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由的推论,得∠A=∠D,∠C=∠B。
∴△PAC∽△PDB∴PA/PD=PC/PB∴PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD证明:(令A在P、B之间,C在P、D之间)∵ABCD为∴∠CAB+∠CDB=180°又∠CAB+∠PAC=180°∴∠PAC=∠CDB∵∠APC公共∴△APC∽△DPB∴PA/PD=PC/PB∴PA·PB=PC·PD切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。
圆幂定理(教案).doc

圆幂定理(教案)教学内容 圆幂定理,圆中的比例线段教学目标 1、帮助学生理清圆中比例线段的基本思考路劲;2、培养学生的线段比的转化能力.教学过程一、知识点梳理处理圆中的比例线段问题,通常用到圆幂定理,相交线定理、切割线定理和割线定理统称圆幂定理.1. 相交线定理如果圆内两条弦AB 和CD 相交于P ,那么PD PC PB PA ⋅=⋅.2. 割线定理,如果从圆外一点P 向圆引割线PAB 和PCD ,那么PD PC PB PA ⋅=⋅.3. 切割线定理如果从圆外一点P 向圆引割线PAB 和切线PC ,那么2PC PB PA =⋅.实际上可以把切割线定理看着割线定理的极限情况,于是上述可以合并为: 如果交点为P 的两条相交直线与圆O 相交于A 、B 与C 、D 那么就有 PD PC PB PA ⋅=⋅二、例题讲解例1 (2003年昆明市中考题)已知,如图,⊙O 及⊙O 外一点C,CA 切⊙O •于点A,CB 切⊙O 于点B,且∠ACB=90°,过点B 作⊙O 的割线交⊙O 于点D,交AC •的延长线于点P,AC=3,PC=4.求⊙O 的弦BD 的长.解: ∵CA 切⊙O 于点A,CB 切⊙O 于点B,∴AC=BC=3,∵∠BCP=90°,PC=4,∴∵PA 2=PB ·PD,PA=7,PB=5,∴5PD=72,∴PD=495(或PD=9.8). ∴DB=PD-PB=495-5=245(或4.8)点评 本题利用切割线定理,使问题得解.例2 (2003年四川省中考题)已知,如图,以正方形ABCD 的AB 边为直径,•在正方形内部作半圆,圆心为O,DF 切半圆于点E,交AB 的延长线于点F,BF=4.求:(1)cos ∠F 的值; (2)BE 的长.解析 (1)连结OE ∵DF 切半圆O 于点E,OE 为半径,∴OE ⊥EF,即∠OEF=90°. ∵ABCD 是正方形,∴AB=AD,∠DAF=90°.∴∠OEF=∠DAF.又∵∠F 为公共角,∴△OEF ∽△DAF. ∴12EF OE OF AF OA DF ===,即AF=2EF. ∵DF 切半圆O 于点E,FBA 为半圆O 的割线,∴由切割线定理有 EF 2=FB ·FA=BF ·2EF. ∴EF=2BF.∵BF=4. ∴EF=2×4=8,AF=2×8=16. ∴AB=AF-BF=16-4=12,FO=12AB+BF=12×12+4=10. ∴在Rt △OEF 中,cos ∠F=84105EF FO == (2)连结AE,∵DF 切半圆O 于点E, ∴∠EAF=∠BEF.∵∠F 为公共角, ∴△BEF ∽△EAF, 81162BE EF EA AF ===.设BE=k,则AE=2k.∵AB 为半圆O 的直径,∴∠AEB=90°.在Rt △AEB 中,由勾股定理,得AE 2+BE 2=AB 2,即(2k)2+k 2=122.∵k>0,∴k=125,∴BE=125点评:本题利用三角形相似,切割线定理,勾股定理等将已知和未知的关系联系起来,•从而使问题得以解决.例3 (2001年TI 杯全国初中数学竞赛)如图,已知点P 是⊙O 外一点,PS,•PT 是⊙O 的两条切线,过点P 作⊙O 的割线PAB,交⊙O 于A 、B 两点,与ST 交于点C. 求证: 1111()2PC PA PB=+. 证明 连PO 交ST 于点D,则PD ⊥ST,连SO,作OE ⊥PB,垂足为E,则E 为AB 中点.于是,PE=2PA PB +. ∵C 、E 、O 、D 四点共圆, ∴PC ·PE=PD ·PO.又∵Rt △SPD ∽Rt △OPS. ∴PS OP PD PS =,即PS 2=PD ·PO. 而由切割线定理知,PS 2=PA ·PB,则PC ·2PA PB +=PA ·PB. 即1111()2PC PA PB=+. 点评:本例利用切线长定理、垂径定理、切割线定理构造图形来解题.例4 (2002年山西太原市初中数学竞赛)如图,AB 为⊙O 的直径,C 为⊙O •上一点,延长BC 至点D,使CD=BC,CE ⊥AD,垂足为点E,BE 交⊙O 于点F,AF 交CE 于点P.求证:PE=PC.证明 延长DA 交⊙O 于点K,连结BK,OC.∵AB 是⊙O 的直径, ∴BK ⊥DA.又∵CE ⊥AD,∴CE ∥BK,故∠1=∠2,又∵A 、K 、B 、F 四点共圆,有∠2=∠3, ∴∠1=∠3.∴△PEF ∽△PAE, 因此,有PE 2=PA ·PF.又∵为△ABD 的中位线,∴OC ∥AD.则CE ⊥OC.可知CE 为⊙O 的切线,故PC 2=PF ·PA,∴PE 2=PC 2,即PE=PC.点评:几何图形中有直径这一条件,常添加辅助线,构成直径上的圆周角是直角,•使其构成直角三角形.三、课后作业1、如图,已知AB 是⊙O 的直径,P 是⊙O 外一点,PD ⊥AB 于D,交⊙O 于E.PA 交⊙O 于C,BC 交PD 于F.求证:DE 2=DF ·DP.2、如图,△ABC 是⊙O 的内接三角形,∠BAC 的平分线交BC 于D,交⊙O 于E.求证:AB ·AC=AD 2+BD ·DC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆幕定理是初中平面几何中重要定理之一,在有关计算和证明中应用非常多,尤其是在证明圆中线段 比例式(或等积式)时,能有效地考査学生综合运用相似形和圆的有关知识分析.解决问题的能力,因而 成为全国各省市中考及数学竞赛命题的一个热点,切实加强这方面知识的复习与训练,全面掌握这类问题 的证明思路和方法,对每一个同学都非常重要.
此外,证明圆中线段比例式(或等积式)的基本思路有(1)利用平行线分线段成比例定理;(2)利用相 似三角形给出证明;(3)利用圆幕定理给出证明;(4)利用面积或三角函数给出证明.
一、 基础知识
1、 相交弦定理
如果圆内两条弦AB 和CD 相交于点P,那么PA ・PB=PC ・PD (如下图1);
2、 割线定理
如果从圆外一点P 向圆引割线PAB 和PCD,那么PA ・PB=PC ・PD (如下图2);
3、 切割线定理
如果从圆外一点P 向圆引割线PAB 和切线PC,那么PA • PB=PC2 (如下图3);
上述三个定理统称为圆基定理•实际上,可以把切割线定理看作是割线定理的极限情形,于是上述三 个结论可以合并为:如果交点为P 的两条宜线与圆O 相交于A 、B 与C 、D,那么就有PA ・PB=PC ・PD, 这里P 、A. B 共线及P. C\ D 共线;
二 例题
例 1 (★)已知,如图 AB 是OO 的弦,P 是 AB 上一点,AB=10cm, PA=4cm, OP=5cm,求:OO 的半径•
例2 (★)如图,已知OOi 和002相交于CD 两点.其外公切线AB 分别切OO K OO2于点AB,求证: 直线CD 平分线段AB.
例3 (★)如图,E 是圆内弦AB. CD 的交点,直线EF 〃CB,交AD 的延长线于F, FG 切圆于G,连
第十讲
扇定理, 中比例线段
结EG,求证:ZFEG=ZFGE.
例4 (★★)如图,PA切OO于A, PBC是OO的割线,M是PA的中点,MC交QO于N, PN的延长线交OO于D,连结BD,求证:PA/7BD;
例5 (★★)如图,已知B是线段AC上任一点,在AC同侧分别以AB、AC为直径作两个半圆4〃出、
A H C ,若CD切半圆如于点D, EBXAC, B为垂足,且交半圆MC于E, M是DE的中点,求证:
CM 丄DE.
例6 (★★)如图,a21 ABC中,AB>AC,如果/ABC的内切圆把BC边上的中线AD三等分,求证: BC=2AC;
例7 (★)图中,AB是OO的直径.宜线MN切OO于点C, AD丄MN于D, AD交OO于E, AB的延
长线交MN于点P,求证:AC2=AE • AP;
例8(*)如图,Z1ABC中,ZA的平分线AD交BC于D, 0OJ±点A,且和BC切于点D,和AB. AC分别相交于E、F, AD与EF相交于G,求证:BD - EG=BE - EA;
例9 (★★)如图,已知BC是圆中一条弦,EF切圆于A, AD丄BC于D, BE丄EF于E, CF丄EF于F, 求证:AD2=BE • CF;
例10 (★, 2002年东城区中考)如图,P是OO的直径AB延长线上一点,割线PCD交OO于C. D两点,弦DF 丄AB于H, CF交AB于点E,求证:PA • PB=PO • PE;
例11 (★)如图,已知PA. PB是0O的切线,切点为A. B, PCD是割线,求证:
AC • BD=AD • BC
例12(資)如图,BC是圆的直径,O是圆心,P是BC延长线上一点,PA切半圆于点A, AD丄BC于点D,求证:PD • PO=PC • PB
例14 (★★,托勒密定理)求证:在圆的内接四边形ABCD中,AB・CD+BC・ AD=AC・BD
例15 (★★★, 96年全国初中数学联赛)设凸四边形ABCD的对角线AC和BD交于点M,过M作AD
的平行线分别交AB. CD 于E. F,交BC 的延长线于点O, P 是以O 为圆心.以OM 长为半径的圆上一 点,求证:ZOPF=ZOEP ;
A £ B
三、 练习题
1. (★)如图,PA 为OO 的切线,A 为切点,PBC 是过点O 的割线,PA = 10cm, PB=5cm,求OO 的半径•
2. (★)过OO 外一点P 作OO 的两条切线PA. PB,连结OP 与AB 交于D,与OO 交于C,过C 作
AP 的垂线,垂足为 E,若 PA = 10cm, PC=5cm,则 CE= __________ ;
3. (★★) AB. AC 分别是OO 的切线与割线,若ZC=45° , ZBDA=60° , CD= >?6 ,求切线AB 的 长;
4. (★★)如图A 、B 、C. D 四点在同一个圆周上,且BC=CD=4, AE=6,线段BE 和DE 的长都是 正整数,则BD 的长等于 _________ :
P
5. (★★)在平行四边形ABCD中,过A、B. C三点的圆交AD于点E,且与CD相切,若AB=4,
BE=5,贝ljDE= _________ ;
6. (★★,2003年全国)已知AB是OO的直径,BC是0O的切线,OC平行于弦AD,过点D作DE丄AB
于点E,连结AC与DE交于点P,求证:EP=PD;
7. (★★★, 2001年全国)已知P是OO外一点,PS. PT是OO的两条切线,过点P作OO的割线PAB,交OO于AB两点,与ST交于点C,求证:+
1 C Z 1 A ltj。