后方交会测量步骤
全站仪后方交会法步骤和高程测量步骤

全站仪后方交会法步骤和高程测量步骤Revised final draft November 26, 20201、角度测量(angleobservation)(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠AOB,则:1)当精度要求不高时:瞄准A点——置零(0SET)——瞄准B点,记下水平度盘HR的大小。
2)当精度要求高时:——可用测回法(methodofobservationset)。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(HSET)。
2、距离测量(distancemeasurement)PSM、PPM的设置——测距、测坐标、放样前。
1)棱镜常数(PSM)的设置。
一般:PRISM=0(原配棱镜),-30mm(国产棱镜)2)大气改正数(PPM)(乘常数)的设置。
输入测量时的气温(TEMP)、气压(PRESS),或经计算后,输入PPM的值。
(1)功能:可测量平距HD、高差VD和斜距SD(全站仪镜点至棱镜镜点间高差及斜距)(2)方法:照准棱镜点,按“测量”(MEAS)。
3、坐标测量(coordinatemeasurement)(1)功能:可测量目标点的三维坐标(X,Y,H)。
(2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:坐标:若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有:高程:(3)方法:输入测站S(X,Y,H),仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标。
摄影测量空间后方交会

摄影测量空间后方交会以单张影像空间后方交会方法,求解该像的外方位元素一、实验数据与理论基础:1、实验数据:航摄仪内方位元素f=153.24mm,x0=y0=0,以及4对点的影像坐标和相应的地面坐标:影像坐标地面坐标x(mm)y(mm)X(m)Y(m)Z(m)1-86.15-68.9936589.4125273.322195.172-53.4082.2137631.0831324.51728.693-14.78-76.6339100.9724934.982386.50410.4664.4340426.5430319.81757.312、理论基础(1) 空间后方交会是以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时刻的外方位元素Xs,Ys,Zs,φ,ω,κ。
(2) 每一对像方和物方点可列出2个方程,若有3个已知地面坐标的控制点,可列出6个方程,求取外方位元素改正数△Xs,△Ys,△Zs,△φ,△ω,△κ。
二、数学模型和算法公式1、数学模型:后方交会利用的理论模型为共线方程。
共线方程的表达公式为:)()()()()()(333111S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a fx -+-+--+-+--=)()()()()()(333222S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a fy -+-+--+-+--=其中参数分别为:κωϕκϕsin sin sin cos cos 1-=aκωϕκϕsin sin sin sin cos 2--=a ωϕcos sin 3-=aκωsin cos 1=b κωcos cos 2=b ωsin 3-=bκωϕκϕsin sin cos cos sin 1+=c κωϕκϕcos sin cos sin sin 2+-=c ωϕcos cos 3=c旋转矩阵R 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321321321c c c b b b a a a R2、 由于外方位元素共有6个未知数,根据上述公式可知,至少需要3个不在一条直线上的已知地面点坐标就可以求出像片的外方位元素。
第五讲 单片空间后方交会

x12 − f (1 + 2 ) f xy − 1 1 f
2 x2 − f (1 + 2 ) f
−
x1 y1 f
y12 − f (1 + 2 ) f − x2 y2 f
x y − 2 2 f
2 x3 − f (1 + 2 ) f
2 y2 − f (1 + 2 ) f
−
x3 y3 f
xy − 3 3 f
Y B
A
C X
利用航摄像片上三个以上像点坐标和对应像 点坐标和对应地面点坐标,计算像片外方位元 素的工作,称为单张像片的空间后方交会。 进行空间后方交会运算,常用的一个基本公 式是前面提到的共线方程。式中的未知数,是 六个外方位元素。由于一个已知点可列出两个 方程式,如有三个不在一条直线上的已知点, 就可列出六个独立的方程式,解求六个外方位 元素。由于共线条件方程的严密关系式是非线 性函数,不便于计算机迭代计算。为此,要由 严密公式推导出一次项近似公式,即变为线性 函数。
(5) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式,逐 ) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式, 点计算像点坐标的近似值 ( x), ( y ) 并计算 lx , l y a ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) x=−f 1 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) a ( X − X S ) + b2 (Y − YS ) + c2 ( Z − Z S ) y=−f 2 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) (6) 组成误差方程式。 ) 组成误差方程式。 7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (8) 解算法方程,迭代求得未知数的改正数。 ) 解算法方程,迭代求得未知数的改正数。
摄影测量学空间后方交会实验报告

摄影测量学实验报告实验一、单像空间后方交会学院:建测学院班级:测绘082姓名:肖澎学号: 15一.实验目的1.深入了解单像空间后方交会的计算过程;2.加强空间后方交会基本公式和误差方程式,法线方程式的记忆;3.通过上机调试程序加强动手能力的培养。
二.实验原理以单幅影像为基础,从该影像所覆盖地面范围内若干控制点和相应点的像坐标量测值出发,根据共线条件方程,求解该影像在航空摄影时刻的相片外方位元素。
三.实验内容1.程序图框图2.实验数据(1)已知航摄仪内方位元素f=153.24mm,Xo=Yo=0。
限差0.1秒(2)已知4对点的影像坐标和地面坐标:3.实验程序using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace ConsoleApplication3{class Program{static void Main(){//输入比例尺,主距,参与平参点的个数Console.WriteLine("请输入比例尺分母m:\r");string m1 = Console.ReadLine();double m = (double)Convert.ToSingle(m1);Console.WriteLine("请输入主距f:\r");string f1 = Console.ReadLine();double f = (double)Convert.ToSingle(f1);Console.WriteLine("请输入参与平差控制点的个数n:\r");string n1 = Console.ReadLine();int n = (int)Convert.ToSingle(n1);//像点坐标的输入代码double[] arr1 = new double[2 * n];//1.像点x坐标的输入for (int i = 0; i < n; i++){Console.WriteLine("请输入已进行系统误差改正的像点坐标的x{0}值:\r", i+1);string u = Console.ReadLine();for (int j = 0; j < n; j += 2){arr1[j] = (double)Convert.ToSingle(u);}}//2.像点y坐标的输入for (int i = 0; i < n; i++){Console.WriteLine("请输入已进行系统误差改正的像点坐标的y{0}值:\r", i+1);string v = Console.ReadLine();for (int j = 1; j < n; j += 2){arr1[j] = (double)Convert.ToSingle(v);}}//控制点的坐标输入代码double[,] arr2 = new double[n, 3];//1.控制点X坐标的输入for (int j = 0; j < n; j++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的X{0}值:\r", j+1);string u = Console.ReadLine();arr2[j , 0] = (double)Convert.ToSingle(u);}//2.控制点Y坐标的输入for (int k = 0; k < n; k++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的Y{0}值:\r", k+1);string v = Console.ReadLine();arr2[k , 1] = (double)Convert.ToSingle(v);}//3.控制点Z坐标的输入for (int p =0; p < n; p++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的Z{0}值:\r", p+1);string w = Console.ReadLine();arr2[p , 2] = (double)Convert.ToSingle(w);}//确定外方位元素的初始值//1.确定Xs的初始值:double Xs0 = 0;double sumx = 0;for (int j = 0; j < n; j++){double h = arr2[j, 0];sumx += h;}Xs0 = sumx / n;//2.确定Ys的初始值:double Ys0 = 0;double sumy = 0;for (int j = 0; j < n; j++){double h = arr2[j, 1];sumy += h;}Ys0 = sumy / n;//3.确定Zs的初始值:double Zs0 = 0;double sumz = 0;for (int j = 0; j <= n - 1; j++){double h = arr2[j, 2];sumz += h;}Zs0 = sumz / n;doubleΦ0 = 0;doubleΨ0 = 0;double K0 = 0;Console.WriteLine("Xs0,Ys0,Zs0,Φ0,Ψ0,K0的值分别是:{0},{1},{2},{3},{4},{5}", Xs0, Ys0, Zs0, 0, 0, 0);//用三个角元素的初始值按(3-4-5)计算各方向余弦值,组成旋转矩阵,此时的旋转矩阵为单位矩阵I:double[,] arr3 = new double[3, 3];for (int i = 0; i < 3; i++)arr3[i, i] = 1;}double a1 = arr3[0, 0]; double a2 = arr3[0, 1]; double a3 = arr3[0, 2];double b1 = arr3[1, 0]; double b2 = arr3[1, 1]; double b3 = arr3[1, 2];double c1 = arr3[2, 0]; double c2 = arr3[2, 1]; double c3 = arr3[2, 2];/*利用线元素的初始值和控制点的地面坐标,代入共线方程(3-5-2),* 逐点计算像点坐标的近似值*///1.定义存放像点近似值的数组double[] arr4 = new double[2 * n];//----------近似值矩阵//2.逐点像点坐标计算近似值//a.计算像点的x坐标近似值(x)for (int i = 0; i < 2 * n; i += 2){for (int j = 0; j < n; j++){arr4[i] = -f * (a1 * (arr2[j, 0] - Xs0) + b1 * (arr2[j, 1] - Ys0) + c1 * (arr2[j, 2] - Zs0)) / (a3 * (arr2[j, 0] - Xs0) + b3 * (arr2[j, 1] - Ys0) + c3 * (arr2[j, 2] - Zs0)); }}//b.计算像点的y坐标近似值(y)for (int i = 1; i < 2 * n; i += 2){for (int j = 0; j < n; j++){arr4[i] = -f * (a2 * (arr2[j, 0] - Xs0) + b2 * (arr2[j, 1] - Ys0) + c2 * (arr2[j, 2] - Zs0)) / (a3 * (arr2[j, 0] - Xs0) + b3 * (arr2[j, 1] - Ys0) + c3 * (arr2[j, 2] - Zs0)); }}//逐点计算误差方程式的系数和常数项,组成误差方程:double[,] arr5 = new double[2 * n, 6]; //------------系数矩阵(A)//1.计算dXs的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 0] = -1 / m; //-f/H == -1/m}//2.计算dYs的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 1] = -1 / m; //-f/H == -1/m}//3.a.计算误差方程式Vx中dZs的系数for (int i = 0; i < 2 * n; i += 2)arr5[i, 2] = -arr1[i] / m * f;}//3.b.计算误差方程式Vy中dZs的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 2] = -arr1[i] / m * f;}//4.a.计算误差方程式Vx中dΦ的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 3] = -f * (1 + arr1[i] * arr1[i] / f * f);}//4.a.计算误差方程式Vy中dΦ的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 3] = -arr1[i - 1] * arr1[i] / f;}//5.a.计算误差方程式Vx中dΨ的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 4] = -arr1[i] * arr1[i + 1] / f;}//5.b.计算误差方程式Vy中dΨ的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 4] = -f * (1 + arr1[i] * arr1[i] / f * f);}//6.a.计算误差方程式Vx中dk的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 5] = arr1[i + 1];}//6.b.计算误差方程式Vy中dk的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 5] = -arr1[i - 1];}//定义外方位元素组成的数组double[] arr6 = new double[6];//--------------------外方位元素改正数矩阵(X)//定义常数项元素组成的数组double[] arr7 = new double[2 * n];//-----------------常数矩阵(L)//计算lx的值for (int i = 0; i < 2 * n; i += 2)arr7[i] = arr1[i] - arr4[i]; //将近似值矩阵的元素代入}//计算ly的值for (int i = 1; i <= 2 * (n - 1); i += 2){arr7[i] = arr1[i] - arr4[i]; //将近似值矩阵的元素代入}/* 对于所有像点的坐标观测值,一般认为是等精度量测,所以权阵P为单位阵.所以X=(ATA)-1ATL *///1.计算ATdouble[,] arr5T = new double[6, 2 * n];for (int i = 0; i < 6; i++){for (int j = 0; j < 2 * n; j++){arr5T[i, j] = arr5[j, i];}}//A的转置与A的乘积,存放在arr5AA中double[,] arr5AA = new double[6, 6];for (int i = 0; i < 6; i++){for (int j = 0; j < 6; j++){arr5AA[i, j] = 0;for (int l = 0; l < 2 * n; l++){arr5AA[i, j] += arr5T[i, l] * arr5[l, j];}}}nijuzhen(arr5AA);//arr5AA经过求逆后变成原矩阵的逆矩阵//arr5AA * arr5T存在arr5AARATdouble[,] arr5AARAT = new double[6, 2 * n];for (int i = 0; i < 6; i++){for (int j = 0; j < 2 * n; j++){arr5AARAT[i, j] = 0;for (int p = 0; p < 6; p++){arr5AARAT[i, j] += arr5AA[i, p] * arr5T[p, j];}}}//计算arr5AARAT x L,存在arrX中double[] arrX = new double[6];for (int i = 0; i < 6; i++){for (int j = 0; j < 1; j++){arrX[i] = 0;for (int vv = 0; vv < 6; vv++){arrX[i] += arr5AARAT[i, vv] * arr7[vv];}}}//计算外方位元素值double Xs, Ys, Zs, Φ, Ψ, K;Xs = Xs0 + arrX[0];Ys = Ys0 + arrX[1];Zs = Zs0 + arrX[2];Φ = Φ0 + arrX[3];Ψ = Ψ0 + arrX[4];K = K0 + arrX[5];for (int i = 0; i <= 2; i++){Xs += arrX[0];Ys += arrX[1];Zs += arrX[2];Φ += arrX[3];Ψ += arrX[4];K += arrX[5];}Console.WriteLine("Xs,Ys,Zs,Φ,Ψ,K的值分别是:{0},{1},{2},{3},{4},{5}", Xs0, Ys0, Zs0, Φ, Ψ, K);Console.Read();}//求arr5AA的逆矩public static double[,] nijuzhen(double[,] a) {double[,] B = new double[6, 6];int i, j, k;int row = 0;int col = 0;double max, temp;int[] p = new int[6];for (i = 0; i < 6; i++){p[i] = i;B[i, i] = 1;}for (k = 0; k < 6; k++){//找主元max = 0; row = col = i;for (i = k; i < 6; i++){for (j = k; j < 6; j++){temp = Math.Abs(a[i, j]);if (max < temp){max = temp;row = i;col = j;}}}//交换行列,将主元调整到k行k列上if (row != k){for (j = 0; j < 6; j++){temp = a[row, j];a[row, j] = a[k, j];a[k, j] = temp;temp = B[row, j];B[row, j] = B[k, j];B[k, j] = temp;i = p[row]; p[row] = p[k]; p[k] = i; }if (col != k){for (i = 0; i < 6; i++){temp = a[i, col];a[i, col] = a[i, k];a[i, k] = temp;}}//处理for (j = k + 1; j < 6; j++){a[k, j] /= a[k, k];}for (j = 0; j < 6; j++){B[k, j] /= a[k, k];a[k, k] = 1;}for (j = k + 1; j < 6; j++){for (i = 0; j < k; i++){a[i, j] -= a[i, k] * a[k, j];}for (i = k + 1; i < 6; i++){a[i, j] -= a[i, k] * a[k, j];}}for (j = 0; j < 6; j++){for (i = 0; i < k; i++){B[i, j] -= a[i, k] * B[k, j];}for (i = k + 1; i < 6; i++){B[i, j] -= a[i, k] * B[k, j];}for (i = 0; i < 6; i++) {a[i, k] = 0;a[k, k] = 1;}}//恢复行列次序for (j = 0; j < 6; j++){for (i = 0; i < 6; i++) {a[p[i], j] = B[i, j]; }}for (i = 0; i < 6; i++){for (j = 0; j < 6; j++) {a[i, j] = a[i, j];}}return a;}4.实验结果四.实验总结此次实验让我深入了解单像空间后方交会的计算过程,加强了对空间后方交会基本公式和误差方程式,法线方程式的记忆。
全站仪后方交会法步骤和高程测量步骤说课材料

全站仪后方交会法步骤和高程测量步骤1、角度测量(angle observation)(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠ AOB ,则:1)当精度要求不高时:瞄准 A 点——置零( 0 SET )——瞄准 B 点,记下水平度盘 HR 的大小。
2)当精度要求高时:——可用测回法( method of observation set )。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”( H SET )。
2、距离测量( distance measurement )PSM 、PPM 的设置——测距、测坐标、放样前。
1)棱镜常数(PSM )的设置。
一般: PRISM=0 (原配棱镜),-30mm (国产棱镜)2)大气改正数( PPM )(乘常数)的设置。
输入测量时的气温( TEMP )、气压( PRESS ),或经计算后,输入 PPM 的值。
(1)功能:可测量平距 HD 、高差 VD 和斜距 SD (全站仪镜点至棱镜镜点间高差及斜距)(2)方法:照准棱镜点,按“测量”( MEAS )。
3、坐标测量( coordinate measurement )(1)功能:可测量目标点的三维坐标( X , Y , H )。
(2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。
若输入:方位角,测站坐标(,);测得:水平角和平距。
则有:方位角:坐标:若输入:测站 S 高程,测得:仪器高 i ,棱镜高 v ,平距,竖直角,则有:高程:(3)方法:输入测站 S ( X , Y ,H ),仪器高 i ,棱镜高 v ——瞄准后视点 B ,将水平度盘读数设置为——瞄准目标棱镜点 T ,按“测量”,即可显示点 T 的三维坐标。
交会测量(前方、后方、侧方交会测量)

前方交会法1.前方交会法定义自两已知坐标之三角点上,观测一欲测点之水平角,以推算其坐标位置,称之前方交会法。
图-1,前方交会法。
图-2,前方交会点。
图-1 前方交会法图-2 前方交会点2.前方交会点此种补点(前方交会点),通常为无法设置仪器之测点,如塔尖、避雷针、烟囱等等。
3.前方交会法适用场合:A.具两已知三角点。
B.三点(两已知点及欲测点)间可以通视。
C.两已知点可以架设仪器,但欲测点不方便架设仪器。
D.有数个欲测点待测定时。
图-3,为数个欲测点图-3 数个欲测点4.前方交会法施作步骤:A.经纬仪分别整置于A、B 两三角点上。
B.照准P 点,分别测得α、β两水平角。
C.以计算方法,求P 点坐标。
图-4,为量测角度。
图-4 量测角度5.已知、量测、计算之数据:A.已知:xA、yA、xB、yB。
B.量测:α、β。
C.计算:xP、yP。
图-5,为前方交会法相关角度位置图-5 前方交会法相关角度位置6.限制:α、β、γ三内角均必须介于30°~120°之间。
图-6 ,为角度限制。
图-6 为角度限制7.计算法前方交会法计算方法有三种:A.三角形法; B.角度法; C.方位角法8.三角形法19()()3891802890--++=---= βφφαφφABBP AB AP ()()()()()689cos sin cos 589sin cos sin 48922222---=-==---=-==---+-=∆+∆= ABAB AB AB AB AB A B AB A B A B y y AB ABy y x x AB ABx x y y x x AB y x AB φθφφθφ()()789sin sin sin sin sin sin --+===βαβγβγβAB AB AP ABAP γβαABP AB AB y y y -=∆ABNB.求方位角ψAP 、ψBP :C.求各邊邊長:①AB 邊長:有三種方法可求得②AP 邊長:()[](βαβαγγβα+=+-==++sin 180sin sin 180γβαsin sin sin AB AP BP ==20()()1289cos 1189sin --+=--+= BPB P BP B P BP y y BP x x φφ()()889sin sin sin sin sin sin --+===βααγαγαAB AB BP ABBP ()()1089cos 989sin --+=--+= APA P AP A P AP y y AP x x φφAPAP l φcos A Py yPBy y BPy y l y BP x x l x yy y x x x BP BP BP B P BP BP B P B P -=∆==-=∆=-=∆+=∆+=φφφφcos cos sin sin ③BP 邊長:D.求P 座標x P 、y P :①由A 點求P 點②由B 點求P 點9.角度法A.由上法直接代入:將(9-8-2)式與(9-8-7)式代入(9-8-9)式中,可得:yy y x x x A P A P ∆+=∆+=APy y l y AP x x l x AP AP AP AP AP AP -=∆=-=∆=φφcos sin21()()()1389sin sin sin sin ---++=+= αφβαβφAB A APA P AB x AP x x ()αφαφαφsin cos cos sin sin AB AB AB -=-()()()1489cos sin sin cos ---++=+= αφβαβφAB A APA P AB y AP y y ()αααφsin cos sin ABy y AB x x AB A B AB ---=-()()()()()1589sin sin sin sin sin cos --+--+-+= βαβαβαβαA B A B A P y y x x x x ()()()()()1789cot cot cot sin cos sin 1689tan tan tan sin cos sin 1cot cot 1tan tan sin cos sin cos cos sin sin cos sin --+=+--+=++=+=+=+ αβαβαβαββαβαβααββαβαβαβαβαβα或將(9-8-2)式與(9-8-7)式代入(9-8-9)式中,可得:B.化簡x P :由和差化積公式:將(9-8-5)式與(9-8-6)式代入,可得:再之代入(9-8-13)式中,可得:由和差化積公式:化簡下式,可得:()βαβαβαcos cos cos sin sin +=+22()2289cot cot cot cot --++-+=βααβBA B A P x x y y y ()()()()ABPB PA APBA BP A B A P APA B A P y y y y y y x x φφφφφφφcos sin cos sin tan ---+=-+=()()()()2089tan tan tan tan tan tan tan tan tan tan tan tan tan --+--+=+--+-+= βαβαβαβαβαβαβA B B A P A B A B A P y y x x x y y x x x x ()()()()()1989cot cot sin sin sin 1889tan tan tan tan sin sin sin tan 1tan 1sin sin sin cos cos sin sin sin sin --+=+--+=++=+=+ βαβαβαβαβαβαβααββαβαβαβαβα或()()()2189cot cot cot cot cot cot 1cot cot cot --+-++=+--+-+= βααββαβααBA B A P A B A B A P y y x x x y y x x x x 同理,化簡下式,可得:將(9-8-16)式與(9-8-18)式代入(9-8-15)式中,可得:或將(9-8-17)式與(9-8-19)式代入(9-8-15)式中,可得:C.化簡y P :(推演過程省略)D.角度法所得公式(9-18-21)式與(9-18-22)式,適於計算機使用,唯應注意:左A ,右B ;左α,右β。
简述单像空间后方交会的程序设计步骤

简述单像空间后方交会的程序设计步骤
单像空间后方交会是一种用于测量摄影点在三维空间中位置的方法。
以下是简述的程序设计步骤:
1.读取摄影测量数据:首先,从摄影测量设备(如相机)中读取图像和相关的内参数据,包括相机的焦距、像点大小等。
2.图像处理:对读取的图像进行预处理。
可能需要进行去畸变操作,校正图像的畸变。
3.特征提取:从图像中提取关键点或特征点。
这些特征点可以是角点、边缘、斑点等。
提取出的特征点用于后方交会计算。
4.求解相机位姿:使用特征点的像素坐标和已知内参数,通过解非线性方程组的方法,计算相机在三维空间中的位姿(即相机的位置和方向)。
5.求解三维点坐标:对于每个特征点,使用单像模型,将像素坐标投影到相机坐标系中。
然后,通过解线性方程组的方法,计算特征点在三维空间中的坐标。
6.误差检测与优化:计算测量误差,并进行误差检测。
可以使用一些优化算法,如最小二乘法,来优化相机位姿和三维点坐标。
7.输出测量结果:将计算得到的三维点坐标输出,可以是数字格式或者可视化结果。
以上是单像空间后方交会的基本程序设计步骤。
每个步骤可能会有不同的具体实现,根据具体的应用场景和需求进行设计和调整。
拓普康全站仪后方交会测量操作入门方案

4. 进入后视定向界面 (二)由测站设置界面进入
用触笔点击[测量],出现如下下拉菜单:
拓普康(中国)技术中心 86-10-67802799
点击[测站设置],弹出后视定向的设置页面
拓普康(中国)技术中心 86-10-67802799
在后视测量界面 用触笔点击该按
钮。
拓普康(中国)技术中心 86-10-67802799
选中[选项]菜单项,
拓普康(中国)技术中心 86-10-67802799
进入后方交会设置界面,如图所示设置好各个选项, 交会类型:三维; 启用[估算尺度比]选项; 启用[使用计算的比例因子]选项;
注:尺度比就是拓 普康全站仪以前的 术语“比例因子”, 为了和GPS统一, 现在称为“尺度 比”。
4. 进入后方交会界面(两种方式) (一)由菜单直接进入
在主菜单点击[测量],弹出下拉菜单,如下图所示:
点击[后方交会],
拓普康(中国)技术中心 86-10-67802799
输入测站点点号,棱镜高HR和仪器高HI, 点击〔继续〕进入后视定向界面
拓普康(中国)技术中心 86-10-67802799
拓普康(中国)技术中心 86-10-67802799
3. 输入进行后方交会的已知点的坐标
用触笔点击[编辑],出现如下下拉菜单: 点击[点],进入如下界面,进行 已知点的输入
拓普康(中国)技术中心 86-10-67802799
点击[增加],输入已知点(注意要选中控制点) 点击[确定],一个新的已知点输 入完成
弹出如下所示的下拉菜单:
选择[后方交会]菜单项,进入后视定向界面
拓普康(中国)技术中心 86-10-67802799
6. 进行后方交会设置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.后方交会测量
后方交会通过对多个已知点的测量定出测站点的坐
标。
输入值或观测值
输出值
Ni.Ei.Zi:已知点的坐标值No.Eo.Zo:测站点的坐标值
Hi :水平角观测值
Vi :垂直角观测值
Di :距离观测值
已知点(P1)
已知点(P2)
测站点(P0)
已知点(P4) 已知点(P3)
BTS-800 通过观测2-10 已知点便可计算出测站点的坐标。
当观测的已知点超过 2 个,计算N、E 坐标时将采用最小二乘法进行平差,并给出平差结果的不确定度。
而Z 坐标则通过计算平均值求取。
因此,观测的已知点越多,计算所得的坐标精度也就越高。
后方交会测量也可在菜单模式下选取“后方交会”来进行。
使用“后方交会”,已知点输入应按顺时针顺序输入,否则计算结果可能不准确。
49
18.1 测量两已知点求取测站坐标
操作过程操作键
1.在测量模式第三页下按【后交】进入
显示
后方交会测量功能,显示已知点坐标
输入屏幕。
在菜单模式下选取“3.后方交会”也
可以进入后方交会测量
2.输入已知点1 的坐标,每输入一行数据
按【】,输入完成后,照准已知点 1 棱镜,按【测量】进行测量。
3.测量完成后,显示测量结果,并要求输
入已知点棱镜高。
【后交】
【测量】
【输入测量已知点1】
N﹤m﹥:
E﹤m﹥:
Z﹤m﹥:
【后方交会】
S: 557.259m
ZA: 97°31′05″
HAR: 351°15′06″
连续测量模式需按【停止】停止测量。
4.按【确定】,进入已知点2 坐标输入及测
量。
重复2-3 完成已知点2 的输入及测量。
【确定】
50
S 557.259m
ZA: 97°31′05″HAR: 351°15′06″棱镜高<m>: 【输入测量已知点2】N﹤m﹥:
E﹤m﹥:
Z﹤m﹥:
5.当输入并测量了两个已知点后,屏幕显
示已知点列表。
按【】【】移动光标选取已知点。
按【加点】增加已知点。
按【重测】重新观测光标所指示的已
知点。
按【计算】计算交会点坐标。
按【取舍】舍弃光标所指示的已知点,
该已知点不参与计算,再按一次则可
恢复选取。
5.按【计算】进行交会点坐标计算,并显
示计算结果。
按【记录】将计算结果储存至内存中。
按【确定】将交会点坐标置为测站坐【计算】标。
3.按【确定】设置测站,并提示方位角
定向。
照准已知点1,按【确定】设置坐标
方位角,返回测量模式下。
【后方交会】
01:PT-01
【交会点坐标】
N0 100.003m E0 99.998m Z0 0.001m
【后方交会/定向】已知点1 方位角:HAR:131°17′46″
【确定】
如按【取消】,则不设置坐标方位角,
直接返回测量模式下。
照准已知点1?
51
18.2 测量多个已知点求取测站坐标
操作过程操作键
1.按照“18.1 测量两已知点求取测站坐
显示
标”,输入并测量了两个已知点后,屏幕显示出已知点列表。
2.按【加点】,输入并测量其他已知点(按
顺时针顺序)。
3.按照“18.1 测量两已知点求取测站坐
标”中步骤2-3 中的介绍,完成所有已知
点的输入及测量。
3.按【计算】求取交会点坐标。
按【确定】设置测站坐标并退至测量
模式。
6.按【误差】屏幕显示最小二乘法平差计
算结果的不确定度。
按【ESC】返回交会点坐标显示。
52
【加点】
【计算】
【误差】
【后方交会】01:PT-01
【输入测量已知点3】N﹤m﹥:
E﹤m﹥:
Z﹤m﹥: 【后方交
会】
03:PT-03
04:PT-04
【交会点坐
标】
N0 100.001m
E0 99.999m
Z0 0.000m
【标准差】
δN 1.8mm
δE 2.6mm
后方交会测量步骤
后方交会测量注意事项
当测站点与已知点位于同一圆周上时,测站点的坐标在某些情况下是无法确定的。
当已知点位于同一圆周上时,可采取如下措施:
a) 将测站点尽可能地设在由已知点构成的三角形的圆周上
b) 增加一不位于圆周上的已知点
c) 至少对其中一个已知点进行距离测量。
当已知点间的距离一定,测站与已知点间的距离越远则所构成的夹角就越小,已知
点就容易位于同一圆周上。
若已知点间的夹角过小将无法计算出测站点的坐标。