第1章概率论基础4
概率论基础基础(复旦版)李贤平概论

符号 Ω Φ ω∈Ω {ω} A⊂ Ω A ⊂B A=B A∪B A∩B Ā A-B A∩B=φ
测度论含义 全集 空集 集合的元素 单点集 一个集合 A A的元素在B中 B 集合A与B相等 A与B的所有元素 A与B的共同元素 A的补集 在A中而不在B中的元素 A与B无公共元素
概率论含义 样本空间,必然事件 不可能事件 样本点 基本事件 一个事件 A A发生导致B发生 B 事件A与B相等 A与B至少有一个发生 A与B同时发生 A的对立事件 A发生而B不发生 A与B互斥
显然 φ ⊂A⊂Ω ⊂Ω ⊂ 且 ⊂ 相等 A=B : A⊂B且B⊂A
2. 和事件 事件A和 至少有一个发生 A∪B :事件 和B至少有一个发生 ∪ 事件 A 显然, ∪ 显然 A∪φ =A A∪Ω=Ω ∪ Ω B
3. 积事件 事件 与 同时发生 A∩B : 事件A与B同时发生 简写AB 简写 A 显然, 显然 A∩φ=φ A∩Ω=A Ω B
例 抛硬币 试验者 Buffon Pearson Kerrich 掷的次数 4040 24000 10000 正面次数 2048 12012 5067 正面频率 0.5069 0.5005 0.5067
例,高尔顿钉板试验 在相同的条件下,大量重复某一试验时,各可能结果出现的 频率稳定在某各确定值附近,即 随机试验中频率的稳定性 频率稳定性的存在标志着随机现象也由数量规律 概率论是研究随机现象中数量规律的数学学科
四、随机事件的关系及运算
对应集合的关系和运算来定义事 件的关系及运算,并根据 事件发生” 并根据“ 件的关系及运算 并根据“事件发生”的 含义,来理解它们在概率论中的含义 含义 来理解它们在概率论中的含义
1. 子事件 包含 A⊂ B : 事件 发生必有事件B发 事件A发生必有事件 发 发生必有事件 ⊂ 包含A 生, 称B包含 包含 B A
概率论基础知识

对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
第1章 概率论基础知识

1.1.2 条件概率与概率乘法公式
1 条件概率
例 1.1.1 一个包装箱里有6件产品。假设其中有4件是一级品, 2件为二级品。若随机实验E是“从包装箱中随机抽取1件产 品”,则明显地,抽到二级品的概率是1/3。 若事件A是“第一次抽取并抽到二级品”,事件B是“第二 次抽取并抽到二级品”,那么在事件A发生的条件下,再从 剩下的5件产品中抽取1件,事件B发生即“第二次抽到二级 品”的概率就是1/5。 我们称这样的概率为“事件A发生的条件下,事件B发生的 概率”,简称为“事件B的条件概率”,记为P{B|A}. 本例中P{B|A}=1/5。
2 基本事件
一次随机实验的可能结果,称为基本事件或基本随机事件。
3 样本空间
所有基本事件组成的集合,称为样本空间或基本空间。
4 随机事件
随机事件简称事件,是指基本事件的集合。
5 相容事件与不相容事件
在一次随机实验中不可能同时发生的事件,称为不相容事件, 反之称为相容事件。
6.概率(Probability)
为对比条件概率与非条件概率的区别,现在来看上例中P(B) 等于多少? 由于B指的是“第二次抽到二级品” 的事件,而这时A可能发 生,也可能不发生(即A的对立事件Ac发生)。这样事件B就 可以表示成:B=AB+AcB。注意到AB与AcB是互不相容的。 因此 2 1 4 2 1 c P( B) P( AB ) P( A B) 6 5 6 5 3 注意到事件A的概率也是P(A)=1/3. 于是有如下的表达式:
P{B | A} P( AB) P{ A | B}P( B) P( A) P( B) P( B) P( A) P( A) P( A)
2. 相互独立事件的概率乘法公式
《概率论基础》(李贤平)第三版-课后答案

第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。
(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。
(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。
(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。
3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
第一章概率论的基础知识3-45学分

随机事件
二、样本空间
1、样本空间:试验的所有可能结果所组成的 集合称为样本空间,记为S( Ω ) . 2、样本点: 试验的每一个结果或样本空间的 元素称为一个样本点,记为e ( ω ). 3.由一个样本点组成的单点集称为一个基本事 件,记为{e} ( {ω} ).
请给出E1-E7的样本空间
三、随机事件
五、事件的运算
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC), (AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC) 4、德.摩根(De Morgan)律:
A B A B,
k k
AB A B
可推广 Ak Ak ,
A
k
k
Ak .
k
交变并,并变交,最后加补
例2
甲、乙、丙三人各向目标射击一发子弹, 以A、B、C分别表示甲、乙、丙命中目标, 试用A、B、C的运算关系表示下列事件:
A1 : “至少有一人命中目标 ” :
A B C
A2 : “恰有一人命中目标” : ABC ABC ABC A3 : “恰有两人命中目标” : ABC ABC ABC A4 : “最多有一人命中目标 ” : A5 : “三人均命中目标” :
i 1
n
4. 积(交)事件:A与B同时发生 AB=AB发生
4’n个事件A1, A2,…, An同时发生 A1A2…An发生
5.差事件:A-B称为A与B的差事件。A-B发生
事件A发生而B不发生
何时A-B=? 何时A-B=A?
6 互不相容(互斥)
7 对立事件 (逆事件)
A B
组合一:从含有n个元素的集合中随机抽取k 个, 共有
步步高大一轮复习讲义数学答案

步步高大一轮复习讲义数学答案第一章:概率论基础1.1 集合与概率题目:设集合A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。
答案:•交集:A∩B = {3,4,5}•并集:A∪B = {1,2,3,4,5,6,7}•差集:A-B = {1,2}1.2 条件概率与事件独立题目:某班级有40名男生和30名女生,从中随机抽取一名学生,求抽到男生的概率。
答案: - 总人数:40 + 30 = 70 - 抽到男生的概率:40/70 = 4/72.1 随机变量与离散型随机变量题目:设随机变量X表示投掷一枚骰子出现的点数,求X 的概率分布。
答案:X123456P(X)1/61/61/61/61/61/62.2 连续型随机变量与概率密度函数题目:设随机变量X表示一位学生的身高,其概率密度函数为f(x) = 0.01,0<x<100,求X在区间[50,70]的概率。
答案: - X在区间[50,70]的概率:P(50<=X<=70) =∫(50,70)0.01dx = 0.01*(70-50) = 0.23.1 矩阵与线性方程组题目:解下列线性方程组: - 2x + 3y = 8 - 3x + 2y = 7答案: - 通过消元法可得:x = 1,y = 23.2 行列式与矩阵的逆题目:求下列矩阵的逆矩阵: - A = [1, 2; 3, 4]答案: - A的逆矩阵:A^(-1) = [ -2, 1/2; 3/2, -1/2]第四章:数学分析基础4.1 极限与连续题目:求极限lim(x->0)(sinx/x)的值。
答案: - 极限lim(x->0)(sinx/x) = 14.2 导数与微分题目:求函数y=3x^2的导数。
答案: - y的导数:dy/dx = 6x以上是《步步高大一轮复习讲义》中关于数学部分的答案,希望对你的复习有所帮助。
祝你学习顺利!。
概率论与数理统计基础知识

从集合的角度看
B
A
事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。
1.1(随机试验与样本空间)

第1章 概率论基础
1.1 随机试验与样本空间
1.1.1 随机试验
客观世界中存在着两类现象: 必然现象 随机现象
概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
Ω {H, T }
它既可以作为抛掷硬币出现正面或出现反面的 模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排
队的模型等.
1.1.2 样本空间
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
在一定条件下必然出现的现象,
称为必然现象;
实例: “太阳从东边升起” “水从高处向低处流” “同性电荷互斥”
1.1.1 随机试验
必然现象的特征
条件完全决定结果
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况. 结果有可能出现正面也可能出现反面.
1827 ) 、 高 斯 ( Gauss, 德 ,1777-1855 ) 和 泊 松
(Poisson,法,1781-1840)等一批数学家对概率论作 了奠基性的贡献.
【概率论简史】
1812年,拉普拉斯所著《概率的分析理论》实现了
从组合技巧向分析方法的过渡,开辟了概率论发展的
新时期.
19世纪后期,极限理论的发展成为概率论研究的中 心课题,是概率论的又一次飞跃,为后来数理统计的 产生和应用奠定了基础.契比谢夫(Chebyhev,俄, 1821-1894)对此做出了重要贡献.他建立了关于独立
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
| ( X , Y ) |2 1
1.4随机变量的数字特征
推广: 设X1,X2 , ∙∙∙ ,Xn是n个随机变量,则
D( X i ) DX i 2 cov(X i , Y j )
i 1 i 1 1i j n
n
n
1.4 随机变量的数字特征
例:(配对问题)n个人将自己的帽子放在一起,充分混合后每 人随机取出一顶帽子,试求选中自己帽子的人数的均值和方差。 解:定义随机变量X
刻画随机变量X,Y取值存在 某种统计上的线性相关关系
2 X
2 Y
1.4随机变量的数字特征
1.4.2.3 随机变量的协方差和相关系数 定义4:设 X= X(ω), Y= Y (ω)是定义在概率空间(Ω ,F, P)上的两 个随机变量,若 0 DX 2 ,0 DY 2
n 1 1 2 n 2 2C n 2 n n (n 1) 1
1.4 随机变量的数字特征
1.4.2.4 随机变量的矩 定义5 : 设 X= X(ω)是定义在概率空间(Ω ,F, P)上的随机变量, F (x)为其分布函数:
(1)对 >0R,其 阶绝对矩(absolute moment of order )为
1.4随机变量的数字特征
随机变量数学期望的性质 若ci (i=1,2, ∙∙∙ ,n)为常数, Xi= Xi(ω)是定义在概率空间(Ω ,F, P)上的随机变量,
则
E[ ci X i ] ci EX
i 1 i 1
n
n
设g(x)为x函数,F (x)为随机变量X分布函数,若E[ g(X)] 存在,则
E[ g ( X )]
g ( x)dF ( x)
—当X为离散型随机变量,即 P (X=xi)=pi(i N )时,则
EX xi pi
i 1
EX 是X所有可能值的加权平均
—当X为连续型随机变量,且有概率密度 f (x) 时,则
EX
xf ( x)dx
1.4随机变量的数字特征
gX(x)称为随机变量X的矩母函数。
1.5 矩母函数、特征函数和拉普拉斯变换
☞ 性质: 设X= X(ω)是定义在概率空间(Ω ,F, P)上随机变量,其分布函数 为F (x) , gX(x)称为随机变量X的矩母函数,则 (1) g(0)=1 ; (2)若g(t)在包含原点的(t1, t2)上存在,那么其存在各阶导数,即
g(k)(0)=E(X k) , k =1,2, ∙∙∙ .
ebt g(at) (4)设X1(ω),X2(ω),∙∙∙,Xn(ω)互相独立,矩母函数分别为 g1(t),g2(t),∙∙∙,gn(t),则
(3) aX +b的矩母函数为
X ( ) X i ( ) 的矩母函数为 gi (t )
1.5 矩母函数、特征函数和拉普拉斯变换
1.5.1随机变量的矩母函数(moment generating function) 定义1 . 设X= X(ω)是定义在概率空间(Ω ,F, P)上随机变量,其分 布函数为F (x) ,定义 etX 的数学期望为
g X (t ) E (e ) g X (t ) E (e )
D (aX ) a D( X ) , a const ☆设 X 1, ∙∙∙ ,Xn是互相独立的随机变量
2
D( X i ) D( X i )
i 1 i 1
n
n
1.4随机变量的数字特征
1.4.2.3随机变量的协方差和相关系数 定义3:设 X= X(ω), Y= Y (ω)是定义在概率空间(Ω ,F, P) 上的两个随机变量,若
X Y
称
cov( X , Y ) cov( X , Y ) ( X ,Y ) XY DXDY
刻画随机变量(X,Y) 之间线性关系的密切 程度
为(X,Y)的相关系数(correlation coefficient)。 特别若 (X,Y) =0 X,Y不相关
1.4随机变量的数字特征
2
( X ) D( X ) ( X )
为标准差(standard deviation)
1.4随机变量的数字特征
性质: 设 X= X(ω)是定义在概率空间(Ω ,F, P)上的随机变量, F (x)为其分布函数,随机变量X方差具有如下性质 ☆ ☆ D( X c) D( X ) , c const
1.4 随机变量的数字特征
cov(X i , X j ) E ( X i , X j ) EX i EX j
n n
1 1 1 2 2 n(n 1) n n (n 1)
DX D( X i ) DX i 2 cov(X i , Y j )
i 1 i 1 1i j n
1 Xi 0
其分布率为
第i个人选中自己的帽子; (i 1,2,, n) 否则; n
X Xi
i 1
1 n 1 P(X i 1 ) ,P(X i 0 ) n n
EXi 1 , i 1,2,n n
1.4 随机变量的数字特征
EX E ( X i ) EX i 1
设 X,Y是定义在概率空间(Ω ,F, P)上的两个随机变量,
E (aX bY ) aEX bEY , a, b const
若X,Y相互独立
EXY EXEY
1.4随机变量的数字特征
1.4.2.2随机变量的方差(variance) 定义2:设 X= X(ω)是定义在概率空间(Ω ,F, P)上的随机变量, F (x)为其分布函数,若 x dF ( x) 存在,则称 2 2 DX E ( X EX ) ( x EX ) dF ( x) 刻画随机变量X 为随机变量X 的方差。 围绕其均值散布程度 亦记作 2 2 DX var X ( X ) X 而称 2
E| X |
|
x | dF ( x)
(2)对 k N , 若 E| X |k 存在,其k 阶原点矩(moment about origin )为 k k k E ( X ) x dF ( x) (2)对 m >1 N,若 E| X |m 存在,其m 阶中心矩(moment about center )为 m m E( X EX ) ( x EX )m dF ( x)
关于R-S积分的几个特例 ☆特别当 g(x)=1
b a g ( x)dF ( x)
F (b) F (a) P(a X b)
☆ 若X是离散型随机变量,即P ( X =ci )= pi (i=1,2, ∙∙∙ ) ,则
F ( x) pi
ci x
c0 , c1 , cn X ~ p , p , p 1 n 0
i j
n n
(3)若X1, X2, ∙∙∙ ,Xn两两不相关,则 D( X i ) D( X i )
i 1 i 1
(4)施瓦茨(Schwarz)不等式,设随机变量X, Y存在二阶矩,则
[ E ( XY )]2 E ( X 2 ) E (Y 2 )
特别 | cov( X , Y ) |2 DXDY 2 2 X Y
性质:
☆ 协方差 cov(X,Y)=σXY和相关系数 (X,Y) 是刻画随机变量之 间相依性(interdependence)的数字特征,他们具有相同的符
号,且:
cov(X,Y)=σXY >0( (X,Y) >0)随机变量X,Y具有相同的变化趋势; cov(X,Y)=σXY <0( (X,Y) <0) 随机变量X,Y具有相反的变化趋势。
1.4随机变量的数字特征
☆设 X,Y是定义在概率空间(Ω ,F, P)上的两个随机变量,则:
(1)D( a
i 1
n
i Xi )
(2)若X1,X2 , ∙∙∙ ,Xn互相独立,则cov(Xi, Xj)=0 (ij) Xi,X j不相关
2 ai DX i i 1
n
2 ai a j cov( X i , X j )
i 1 i 1 n n
由 EX i
2
1 n
,得
2
DX i EX i
1 1 ( EX i ) 2 , i 1,2,, n n n
2
而当 i j 时,
1 E ( X i , X j ) P( X i 1, X j 1) P( X i 1) P( X j 1 X i 1) n(n 1)
是一个跳跃型分布函数,即F(x)仅在c1 , c2 , ∙∙∙ 点作跃度pi的变化,
则R-S积分为
b
a
g ( x)dF ( x) g (ci )[ F (ci 0) F (ci 0)] g (ci ) pi
i 1 i 1
其R-S积分级数
1.4随机变量的数字特征
tX
tX
tx e dF ( x)
如果X= X(ω)为连续型的,概率密度函数为 f (x),那么
tx e
f ( x)dx
x1 , xn , p1 , pn ,
x0 , 如果X= X(ω)为离散型的,概率分布率为, X ~ p , 0 txk 那么 g X (t ) e pk k
0 DX ,0 DY 称 cov( X , Y ) E[( X EX )(Y EY )] E ( XY ) ( EX )( EY )
为(X,Y)的协方差(covariance)。简记为cov(X, Y)=σXY 特别X与 Y独立 cov(X, Y)=σXY=0