第1章概率论基础2
合集下载
概率论基础 PPT课件

正概率点为至多可列个
连续型 其他
任何随机变量X都是从负无穷到正无穷
离散型随机变量特点:正概率点为有限个或者可列个
0,1:正概率点 P(1)=1/2
P(0)=1/2
非离散型
连续型 其他
三.随机变量(random variable)的分布
4.1 概率的数学(公理化)定义 概率就是广义的函数
数学定义:设E是一个随机试验,Ω为它的样本空间,以E中所有的随机事件 组成的集合(事件体)为定义域,定义一个函数P(A)(其中A为任一随机事件),
且P(A)满足以下三个公理,则称函数P(A)为事件A的概率。
公理1(非负性) 0≤P(A)≤1 公理2(规范性) P(Ω)=1 公理3(可列可加性) 若A1,A2, …,An,…两两相斥,则
第一章 概率论基础
§1.1 概率简述
1. 随机现象及其统计规律性
在一组不变的条件下,具有多种可能发生的结果的现象称为随机现象, 这类现象的一个共同点是: 事先不能预言多种可能结果中究竟出现哪一种。
2. 随机试验与随机事件 我们把对随机现象进行的一次观测或者一次实验统称为一个试验, 如果这个试验满足下面的三个条件: (1)在相同的条件下,试验可以重复地进行;(可重复) (2)试验的结果不止一种,而且事先可以确知试验的所有结果; (3)在进行试验前不能确定出现哪一个结果。(不可预测) 那么我们就称它是一个随机试验,简称试验。一般用字母E表示。
数值p为事件A在条件S下发生的概率(probability) ,记作P(A)=p。
例2:捕鱼问题
× f
n
A
n
P
A
池塘中有鱼若干(不妨假设为n条),先捞上1000条作记号,放回后再
概率论基础基础(复旦版)李贤平概论

符号 Ω Φ ω∈Ω {ω} A⊂ Ω A ⊂B A=B A∪B A∩B Ā A-B A∩B=φ
测度论含义 全集 空集 集合的元素 单点集 一个集合 A A的元素在B中 B 集合A与B相等 A与B的所有元素 A与B的共同元素 A的补集 在A中而不在B中的元素 A与B无公共元素
概率论含义 样本空间,必然事件 不可能事件 样本点 基本事件 一个事件 A A发生导致B发生 B 事件A与B相等 A与B至少有一个发生 A与B同时发生 A的对立事件 A发生而B不发生 A与B互斥
显然 φ ⊂A⊂Ω ⊂Ω ⊂ 且 ⊂ 相等 A=B : A⊂B且B⊂A
2. 和事件 事件A和 至少有一个发生 A∪B :事件 和B至少有一个发生 ∪ 事件 A 显然, ∪ 显然 A∪φ =A A∪Ω=Ω ∪ Ω B
3. 积事件 事件 与 同时发生 A∩B : 事件A与B同时发生 简写AB 简写 A 显然, 显然 A∩φ=φ A∩Ω=A Ω B
例 抛硬币 试验者 Buffon Pearson Kerrich 掷的次数 4040 24000 10000 正面次数 2048 12012 5067 正面频率 0.5069 0.5005 0.5067
例,高尔顿钉板试验 在相同的条件下,大量重复某一试验时,各可能结果出现的 频率稳定在某各确定值附近,即 随机试验中频率的稳定性 频率稳定性的存在标志着随机现象也由数量规律 概率论是研究随机现象中数量规律的数学学科
四、随机事件的关系及运算
对应集合的关系和运算来定义事 件的关系及运算,并根据 事件发生” 并根据“ 件的关系及运算 并根据“事件发生”的 含义,来理解它们在概率论中的含义 含义 来理解它们在概率论中的含义
1. 子事件 包含 A⊂ B : 事件 发生必有事件B发 事件A发生必有事件 发 发生必有事件 ⊂ 包含A 生, 称B包含 包含 B A
概率论基础知识

几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
概率论基础(第2版)李贤平 全部习题解答

(1) P{只订购A的} P{A(B C)}=P A P AB P AC P ABC
0.45 0.1. 0.08 0.03 0.30
(2) P{只订购 A 及 B 的} PAB C} P AB P ABC 0.10 0.03 0.07
(3) P{只订购 A 的} 0.30
E1 E1 E 2
E1 E 4
E1 E 3
E5
(5)若 E2 ,则必有 E1 或 E3 之一发生,由此得
E6 , E0
E2 E3
E2 E1 E2 E3 E2 。
概率论基础(第 2 版)李贤平 全部习题解答
第一章 事件与概率
1.在某城市中,公发行三种报纸 A,B,C.在这个城市的居民中,订阅 A 的占 45%,订阅 B 的占 35%,订阅 C 的占 30%,同时订阅 A 及 B 的占 10%,同时订阅 A 及 C 的占 8%,同时订阅 B 及 C 的占 5%,同时订阅 A,B,C 的占 3%.试求下列百分率:(1)只订阅 A 的;(2) 只订阅 A 及 B 的;(3)只订阅一种报纸的;(4)正好订阅两种报纸的;(5)至少订阅一种报纸的;(6) 不订阅报纸的。 解:
ABC A;(3) 何时成立 C B ;(4)何时同时成立 A=B 及 A C
解:
(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。
解:
A1 A2 An A1 ( A2 A1) ( An A1 An1)
(或)= A1 A2 A1 An A1 A2 An1 .
0.45 0.1. 0.08 0.03 0.30
(2) P{只订购 A 及 B 的} PAB C} P AB P ABC 0.10 0.03 0.07
(3) P{只订购 A 的} 0.30
E1 E1 E 2
E1 E 4
E1 E 3
E5
(5)若 E2 ,则必有 E1 或 E3 之一发生,由此得
E6 , E0
E2 E3
E2 E1 E2 E3 E2 。
概率论基础(第 2 版)李贤平 全部习题解答
第一章 事件与概率
1.在某城市中,公发行三种报纸 A,B,C.在这个城市的居民中,订阅 A 的占 45%,订阅 B 的占 35%,订阅 C 的占 30%,同时订阅 A 及 B 的占 10%,同时订阅 A 及 C 的占 8%,同时订阅 B 及 C 的占 5%,同时订阅 A,B,C 的占 3%.试求下列百分率:(1)只订阅 A 的;(2) 只订阅 A 及 B 的;(3)只订阅一种报纸的;(4)正好订阅两种报纸的;(5)至少订阅一种报纸的;(6) 不订阅报纸的。 解:
ABC A;(3) 何时成立 C B ;(4)何时同时成立 A=B 及 A C
解:
(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。
解:
A1 A2 An A1 ( A2 A1) ( An A1 An1)
(或)= A1 A2 A1 An A1 A2 An1 .
第1章 概率论基础知识

1.1.2 条件概率与概率乘法公式
1 条件概率
例 1.1.1 一个包装箱里有6件产品。假设其中有4件是一级品, 2件为二级品。若随机实验E是“从包装箱中随机抽取1件产 品”,则明显地,抽到二级品的概率是1/3。 若事件A是“第一次抽取并抽到二级品”,事件B是“第二 次抽取并抽到二级品”,那么在事件A发生的条件下,再从 剩下的5件产品中抽取1件,事件B发生即“第二次抽到二级 品”的概率就是1/5。 我们称这样的概率为“事件A发生的条件下,事件B发生的 概率”,简称为“事件B的条件概率”,记为P{B|A}. 本例中P{B|A}=1/5。
2 基本事件
一次随机实验的可能结果,称为基本事件或基本随机事件。
3 样本空间
所有基本事件组成的集合,称为样本空间或基本空间。
4 随机事件
随机事件简称事件,是指基本事件的集合。
5 相容事件与不相容事件
在一次随机实验中不可能同时发生的事件,称为不相容事件, 反之称为相容事件。
6.概率(Probability)
为对比条件概率与非条件概率的区别,现在来看上例中P(B) 等于多少? 由于B指的是“第二次抽到二级品” 的事件,而这时A可能发 生,也可能不发生(即A的对立事件Ac发生)。这样事件B就 可以表示成:B=AB+AcB。注意到AB与AcB是互不相容的。 因此 2 1 4 2 1 c P( B) P( AB ) P( A B) 6 5 6 5 3 注意到事件A的概率也是P(A)=1/3. 于是有如下的表达式:
P{B | A} P( AB) P{ A | B}P( B) P( A) P( B) P( B) P( A) P( A) P( A)
2. 相互独立事件的概率乘法公式
概率统计 第一章 概率论的基础知识

7 (1) P( A B) P( A) P( B) P( AB) 10 3 (2) P( A B) 1 P( A B) 10 2 (3) P( A B) P( A) P( AB) 5
条件概率
已知事件A发生的条件下,事件B发生 的概率称为A条件下B的条件概率,记 作P(B|A)
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
7 10 10 3 C 27 C 20 C10 18 P( B) N (S ) 203
4、 随机取数问题
例4:从1,2,3,4,5诸数中,任取3个排成自左向右的次序, 求: (1)
A1 “所得三位数是偶数”的概率? (2) A2 “所得三位数不小于200”的概率?
注
任何事件均对应着样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素
例1
定义
E4: 掷一颗骰子,考察可能出现的点数。 S4={1,2,3,4,5,6}; A=“掷出偶数点” B=“掷出大于4的点 ” ={2,4,6} ={5,6} C=“掷出奇数点”={1,3,5}
样本空间的子集称为随机事件。
n n1 nm 2 ! nm 1 !n n1 nm 1 !
n! n1!....nm !
种取法.
1、抽球问题
例1:设盒中有3个白球,2个红球,现从盒中 任抽2个球,求取到一红一白的概率。
解:设事件A为取到一红一白
N (S ) C
2 5
N ( A) C C
一般地,设A、B是S中的两个事件,则
P( AB) P( B | A) P( A)
称为事件A发生的条件下事件B发生的条件概率
概率论与数理统计基础知识

从集合的角度看
B
A
事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。
概率论第一章ppt课件

i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e
.
本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 条件概率也是概率,它符合概率的定义,具有概率的性质:
非负性 P(BA)0
规范性 P(A)1
可列可加性 Pi 1Bi Ai 1PBi A
1.2基本概念
P ( B 1 B 2A ) P ( B 1A ) P ( B 2A ) P ( B 1 B 2A ) P (B A ) 1 P (B A )
1.2基本概念
以上结果表明:在相同条件下作重复实验时,对某一实验结 果(事件A)具有如下特征: ☞其是否发生是随机的,事先无法确定; ☞其发生的频率又稳定的,稳定在一个常数附近; ☞一般讲,对实验的某一结果(事件A)出现的频率偏离这个常数 很大的可能性虽存在,但实验次数越大,频率偏离这个常数的可 能性越小。我们就称这个常数为这一结果(事件A)发生的概率。 例如:
A: 0.0788 B: 0.0156 C: 0.0268 D: 0.0389 E: 0.1268 F: 0.0256 G: 0.0187 H: 0.0573 I: 0.0707 J: 0.0010 K: 0.0060 L: 0.0394 M: 0.0244 N: 0.0706 O: 0.0776 P: 0.0186 Q: 0.0009 R: 0.0594 S: 0.0634 T: 0.0987 U: 0.0280 V: 0.0102 W: 0.0214 X: 0.0016 Y: 0.0202 Z: 0.0006
总次数n 12000 12000 24000 4049 80640
正面向上nH 6019 6019 12012 2048 39699
频率fH 0.5016 0.5016 0.5005 0.5005 0.4923
例:Dewey G. 统计了约438023个英语单词中各字母出现的频率, 发现各字母出现的频率不同:
➢我们称1/2这个常数是“投掷硬币,正面朝上”这一事件的概率; ➢从上个世纪以来,各国婴儿性别的统计资料表明,女婴的频率“稳定”在 21/43附近。我们称21/43这个常数是“出生婴儿为女婴”这一事件的概率。
Байду номын сангаас.2基本概念
定义:在相同条件下重复进行的n次试验中, 事件A发生的频率稳定 地在某一常数 p 附近摆动, 且随 n 越大摆动幅度越小, 则称p为事件 A的概率, 记作P(A) 二、概率的古典定义 设 随机试验 E 具有下列特点: ➢ 基本事件的总数有限; ➢ 每个基本事件发生是等可能的。 则称 E 为古典概型(或等可能概型)。古典概率的计算公式
[ P ( A B )m ] P i( A n ) P ( B ) 1 0 .3
b) [ P ( A B ) m ] m aP x ( A ) i P ( B , n ) P } ( { A ) 0 . 6
1.2基本概念
小概率事件 —— 若P(A)<0.001 则称A为小概率事件 小概率原理 ——一次试验中小概率事件一般是不会发生 的. 若在一次试验中居然发生了,则可怀疑该 事件并非小概率事件.
其中的数字表示掷出正面的次数
☞解(Ⅱ):此样本空间为:
基本事件总数: n=4 . 事件A
(正 正 1 )( , , 2 正 ( , 3 , 反 ( , 反 4, 反 ) 正
“掷出 1 次正面” 由 2 个样本点( 正, 反 ) ,( 反, 正 ) 组成,
即 m 2,.故
P(A) m 1.
解:a)由加法法则 P ( A B ) P ( A ) P ( B ) P ( A B )
故 P ( A B ) P ( A ) P ( B ) P ( A B )
因此 [P (A B )m ] i[ n P (A B )m ] a 1 x 所以 [P (A B )m ] ax [P (A B )m ]in
1.2基本概念
1.2.1关于概率的基本概念
➢随机(现象)事件; ➢概率和频率; ➢随机事件的交、并及对立事件和互斥事件; ➢概率的加法公式;
1.2基本概念
一、概率的统计定义
☞频率:设在 n 次试验中,事件 A 发生了m 次,则称 f n
事件A发生的频率。
m为 n
☞频率的性质
ↂ非负性 0fn(A)1
1.2基本概念
三、几何概率的定义
☞在某些情况中(如两个引例),可把实验中基本事件组中的每
一个基本实验与某一个几何区域R中的点一一对应起来,这个区
域可以是一段曲线(一维区域),或一个平面区域(二维区域)。
这样在实验中某一事件A,就可与几何区域R中的子区域r表示了,
如下图.为定义统一,若几何区域的大小我们称为这个区域的“测
度”,则 子区域r的测度
P(A)= 区域R的测度
R样本 空间
r事件
1.2基本概念
1.2.2条件概率
➢ 定义 设A、B为两事件, P(A)>0, 则称
P ( AB ) P(A)
为事件 A 发生的条件下事件 B 发生的条件概率,记为PBA
➢ 条件概率的计算方法
(1)等可能概型可用缩减样本空间法;
(2)其他概型用定义与有关公式。
ↂ规范性 fn()1
ↂ可加性事件 A, B互斥,则 fn(A B )fn(A )fn(B )
(注:可加n性 可推广到有限个两两互斥事件的和事件)
ↂ可加性 limfn(A)P(A) →常数
1.2基本概念
☞频率稳定性的实例: 例:投一枚硬币观察正面向上(H)的次数
试验者 蒲丰 皮尔森 皮尔森 德.摩根 罗曼诺夫斯基
P(A) m n
其中 n Ω中所包含的基本事件数总;
m组成事A件 的基本事件的 . 个数
1.2基本概念
例 将一枚 均匀的硬币连掷 2 次, 求掷出1 次正面的概率
☞解(Ⅰ):此样本空间为
基本事件总数n=3,事件A
“掷出 1 次正面”有1个样本点,
即m=1,故 P(A) m 1 n3
0 1,1 ,2 2 3
n2
1.2基本概念
☞结果的讨论:
解(Ⅰ)是错误的!
因为这里的样本点ω1、ω2、ω3已不
是等可能出现的
P (1 ) P (3 ) 1 /4 1 /2 P (2 )
1.2基本概念
例 设P ( A ) = 0.6 , P ( B ) = 0.7, 在何条件 下, P(AB) 取得最大(小)值?求最大(小)值.