19.1变量与函数

合集下载

19.1.1《变量与函数》教案设计

19.1.1《变量与函数》教案设计

19.1.1《变量与函数》教案设计19.1.1变量与函数第⼀课时教学⽬标:1、知识技能:运⽤丰富的实例,使学⽣在具体情境中领悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量。

2、过程与⽅法:通过动⼿实践与探索,让学⽣参与变量和变量的形成过程,以提⾼分析问题和解决问题的能⼒;让学⽣体会“变化与对应”的数学思想3、情感态度:引导学⽣探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情,在解决问题的过程中体会数学的应⽤价值,并感受成功的喜悦,建⽴⾃信⼼。

教学重、难点:重点:了解常量和变量之间的关系难点:在复杂问题中常量和变量的识别课时安排:⼀课时教法与学法:教法:教师主导,学⽣主体,使学⽣从具体到抽象,感性到理性的认知。

学法:观察、分析、抽象、概括,注重过程的经历和体验。

教学过程:⼀.课前学习⼀辆汽车以60千⽶/⼩时的速度匀速⾏驶,⾏驶⾥程为s千⽶.⾏驶时间为t⼩时.1、根据题意填写下表:t⼩时 1 2 3 4 5S千⽶2、在以上这个过程中,变化的量是____ ____.不变的量是_____3、试⽤含t的式⼦表⽰s 。

⼆、创设情境,引⼊新课1多媒体展⽰现实⽣活中事物变化的图⽚,让学⽣初步感受事物运动变化中的数量关系。

2教师强调指出:完美⽣活在⼀个运动的世界⾥,⾏星在宇宙中的位置随时间⽽变化;⼈体细胞的个数随年龄⽽变化;⽓温⽓压随海拔⽽变化;........这种⼀个量随另⼀个量的变化⽽变化的现象⼤量存在,我们来回顾⼀下上节课所研究的每个问题中是否各有两个变化?同⼀问题中的变量之间有什么联系?也就是说当其中⼀个变量确定⼀个值时,另⼀个变量是否随之确定⼀个值呢?这将是我们这节研究的内容.3.板书课题:变量与函数。

三.⼩组合作,探索新知(⼀)提出问题,创设情境1、⼩明到商店买练习簿,每本单价2元,购买的总数x(本)与总⾦额y(元)的关系式,可以表⽰为________;2、圆的周长C与半径r的关系式________________;3、n边形的内⾓和S与边数n的关系式______________4、等腰三⾓形的顶⾓为x度,那么底⾓y的度数⽤含x的式⼦表⽰为 ______________.教学⼩结:通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,⾸先需确定在这个过程中哪些量是变化的,⽽哪些量⼜是不变的.在⼀个变化过程中,我们称数值发⽣变化的量为变量,那么数值始终不变的量称之为常量.如上述两个过程中,售出票数x、票房收⼊y;重物质量m,?弹簧长度L都是变量.⽽票价10元,弹簧原长10 cm……都是常量.(⼆)上述⼏个问题有共同之处吗?请同学们思考下列问题,分组讨论交流⼀下。

《19.1 变量与函数》课件(含习题)

《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.

人教初中数学八下 19.1 变量与函数课件 【经典初中数学课件汇编】

人教初中数学八下 19.1 变量与函数课件 【经典初中数学课件汇编】

t(秒)
12
3
4
s(米)
60
120 180
240
当 时间t 确定一个值时, 路程S 就
随之确定一个值。
4
问题2
票房收入y元与售票数量x张的关系式:
y=10x X=150时 y=1500; X=205时 y=2050;
当_售__票_数__量_x_确定一个值时,票__房_收__入_y_就随之 确定一个值。
如图,DC∥ EF ∥ AB, DA∥ GH∥ CB,图中的平行四 边形有__个,9它们是__A_HO_ __B_HO_F _D_EO___CF_OG__EA_BFE_ __C_DE_F _ADG_HG___BCH_G __AB_CD_
____________
探究
A1
A
A2
B
C
A3
大声回答
在 ABCD 中, 已知一个内角的 度数是60°,则其余三个内角的 度数分别为:120°、60°、120°
如图,小明用一根36m长的绳子围成了一个平行 四边形的场地,其中一条边AB长为8m,其他三 条边各长多少?
解:
A
D
四边形ABCD是平行四边形
A BC;D A DBC
解:
A
B
∵四边形ABCD是平行四边形(已知)
∴ AB=CD,BC=AD(平行四边形的对边相等)
C 即AB+BC= 1
ABCD =10cm
2
又∵ AC=7 cm(已知)
∴ C△ ABC=AB+BC+AC=10+7=17(cm)
在平行四边形ABCD中,若AE平分
∠DAB,AB=5cm,AD=9cm,则EC= 4cm .

19.1.1 变量与函数(第2课时)课件

19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=

x
2

2(
x

2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.

人教八年级数学下册-变量与函数(附习题)

人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

2、每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;

人教初中数学八下 19.1.1 变量与函数课件4 【经典初中数学课件汇编】


汽车行驶里程随行驶时间而变化
问题一
汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表:
60 120 180 240 300 说说你是如何得到的:路程 = 速度×时间
S = 60t 试用含t的 式子表示 s
问题二
每张电影票的售价为10元,如果早场售出票150张, 日场售出205张,晚场售出310张,三场电影票的票房 收入各多少元?
A HE B
O DF
C
说一说
•这节课我的收获是……
1、用一个变量表示另一个变量。 2、变量、常量和函数的概念。 3、自变量的取值范围和函数值。
教学反思:
• 用一个变量表示另一个变量。 自变量的取值范围和函数值。
19.1.1 变量与函数
人教实验版
行星在宇宙中的位置随时间而变化
气温随海拔而变化
例如x和y,对于x的每一个值,y都有惟一的值与 之对应,我们就说x是自变量,y是因变量,此时 也称y是x的函数.
300000
(1) 解析法 如问题3中的f = ,
问题4中的S=πr2,这些表达式称为函数的
关系式.
(2) 列表法
波长l(m) 300 500 600 1000 1500
频率 1000 600 500 300 200 f(khz)
时,重叠部分的面积是多少?
解 :设重叠部分面积为
y cm2,MA长为x cm
y与x之间的函数关系式为
当x=y1=时12,yx=21 12 1
2
2
1 答:MA=1cm时,重叠部分的面积是2 cm2
1.分别写出下列各问题中的函数关系式及自变量的取 值范围: (1).某市民用电费标准为每度0.50元,求电费

19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)


在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ
y是x的函数.
(1)两个变量; (2)两个变量之间有对应关系.
(3)取定x的每一个值,y都有唯一的值与x对应. 对于函数y = 2 x ,取定x=3, y 有唯一的值 6 与x=3对 应,此时我们把 6 叫做当自变量的值为 3 时的函数值.
一般地, 如果当x=a时,y=b,则b叫做当自变量为a时的函数值。
y=2x+15 X≥1且为整数
A
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。 ∴ s 与 n 的函数关系式为: s = 3n-3 (n>1的整数)
等腰三角形ABC的周长为10, 底边BC长 为 y , 腰AB长为 (1) y 关于
x, 求:
x 的函数解析式;
(2) 腰长AB=3时,底边的长.
探索研究 1、小明到商店买练习簿,每本单价2元,购买的总数x(本) y=2x ; 与总金额y(元)的关系式,可以表示为________ 填写下表 x(本)
1
2
4
3
6
4
8
5
10
y(元) 2
c 2 r ; 2、圆的周长C与半径r的关系式________________
填写下表
半径 r 圆周长c
2 4 6 8 10
1
2
3
4
5
探索研究 s=(n-2) ×1800 3、n边形的内角和S与边数n的关系式______________; 填写下表 边数n 内角和s
3
1800
4
3600
5
5400
6
7200

4、等腰三角形的顶角为x度,那么底角y的度数用含x的式子表 180 x y 示为 ______________. 2 填写下表 300 400 500 600 顶角x ﹍ 底角y 750 700 650 600
说一说
上述变化过程中出现的数量,你认为可以 怎样分类? 数值不断 变化的量 变量
数值固定 不变的量
常量
辨一辨
指出下列变化过程中的变量和常量: (1)汽油的价格是7.4元/升,加油 x L,车主加油 付油费 y 元; (2)小明看一本200 页的小说,看完这本小说需要 t 天,平均每天所看的页数为 n; (3)用长为40 cm 的绳子围矩形,围成的矩形一边 2 长为 x cm,其面积为 S cm .
x 1 y x 3
y x 4 5 x
2x 1 y x4
5 2x y x 3 x 2
求下列各函数的自变量x的取值范围。 (1)
y 6x 2x
2
(4)y
2 x
(2)
4 y 2x 3
x2
x 5 y (5) 3x 1
3 (3) y
1 (1)分母不等于0;【 (a≠ 0】 a
∴自变量 n 的取值范围: n≥1
解: 由n-1≥0得n≥1
( 3) y
解:由x+2 ≠ 0得 x≠-2
∴自变量 n 的取值范围: x≠-2
( 4) h
1 k k 1
k≤1且k ≠-1
解:自变量的取值范围是:
• 2.梯形的上底长 2cm,高 3cm,下底 长 xcm大于上底长但不超过 5cm。 写出梯形面积S关于 x 的函数解析式 及自变量 x 的取值范围。
× 2 + 5 =
显示y(计算结果)
填表
x y
1 7
3 11
-4 -3
0 5
101 207
显示的数 y 是 x 的函数吗? 为什么?
问题 :在平整的公路上,汽车紧急刹车后仍 v2 将滑行s米,一般有经验公式 s ,其 中v表示刹车前汽车的速度(单位:千米/时) 计算当v分别为60,100时,相应的滑行距离s是多少?
(4 ) y = x 2 .
(1) y=3x-1;
(3 ) y =
1 ; x2
(1)(2)中x取任意实数,原式都有意义 解: (3)x≠-2时,原式有意义. (4)x≥2时,原式有意义.
练一练
求下列函数中自变量x的取值范围:
(1) y=3x-1 (3) y 4 x 8
(2) y 2 x 1
∴自变量的取值范围是: 0 ≤ x ≤ 500
(3)当 x = 200时,函数 y 的值为:y=50-0.1×200=30
因此,当汽车行驶200 km时,油箱中还有油30L
1.求出下列函数中自变量的取值范围
(1)y=2x
解: 自变量 x 的取值范围: x为任何实数 (2) m
3 x2
n 1
(x≥0)
y 4x 5
(x为一切实数)
y x2
(x≥2)
y 2x 3
3
(x为一切实数)
求下面的函数自变量的取值范围:
y 3x 5
2 y x 1
y x6
5
y x 1
想想下面这几道题——
y x 2 x 5
y x 1 x 2
y 1 x3
自我挑战
判断下列问题中的变量 y 是不是 x 的函数?
(1)在 y = 2x 中的y与x; 是 (2)在 y = x 中的y与x; 是
2
(3)在 y = x 中的y与x; 不是
2
(4).在下面的我国人口统计表中,年份与 人口数可以记作两个变量x与y,对于表 中每一个确定的年份(x),都对应着 一个确定的人口数(y)吗? 是
(2)开偶数次方中的被开方数必须大 于等于0。【
函数自变量取值范围的条件:
a(a≥0)】
(3)使实际有意义
八年级 数学
指出下列关系式中的变量与常量:
(1) y = 5x -6
6 (2) y= x
(3) y= 4X2+5x-7
(4) S = Лr2
解:(1)5和-6是常量,x和y是变量。
(2)6是常量,x、y是变量。
(3)4、5、-7是常量,x、y是变量。 (4)兀是常量,s、r是变量。
知识驿站
一般地,在一个变化过程中,如果有两个变量, (假定为x和y),对于x的每一个确实的值,y都有 唯一确定的值与其对应,那么我们就说x是自变量,
D

x A. y 2
B. y x
2
C. y x D. y x
例1 一辆汽车的油箱中现有汽油50L,如果 不再加油,那么油箱中的余油量y(单位:L) 随行驶里程x(单位:km)的增加而减少,平 均耗油量为0.1L/km。
(1)写出表示y与x的函数关系的式子。 (2)指出自变量x的取值范围 (3)汽车行驶200 km时,油箱中还有多少油? 解:(1) 函数关系式为: y = 50-0.1x (2) 由x≥0及50-0.1x ≥0 得 0 ≤ x ≤ 500
300
当V=60时,S=12
1 当V=100时,S= 33 3
2 v 变式:已知 s 300
求自变量为60,100时的函数值?
考考你 在计算器上按下列程序进行操作: 输入x(任意一个数) 按键 显示y(计算结果) 下表中的x和y是输入的5个数与相应的计算结果
× 2 =
x y
1 3
2 5
3 7
0 1
(3) 自变量的取值范围;
试一试:看谁的眼光准
判断下列变量关系,y不是x的函数?
(1)y=2x;
(2)y=5+x; (5) y=x2-4x+5
判断是不是函数,我们可以看它的数学式子中的变量之 间是否满足函数的定义
(3) y2=10+x
(4) |y|=3x+1
例1
求下列函数中自变量x的取值范围:
(2) y=2x2+7;
X的变化而变化。
Y=0.1x
(3)秀水村的耕地面积是106 m2,这个村人均耕地 6 面积y随着人数x的变化而变化 10
y
(4)水池中有水10L,每小时漏水0.05L,水池中的水量V 随时间T的变化而变化 V=10-0.05t
x
2.下列各曲线中 不表示 y 是 x 的函数的是(
4
)
3.下列关系中,y不是x函数的是(
像y=2x这样,用关于自变量的数学式子 表示函数与自变量之间的关系,是描述函数的 常用方法。
这种式子叫做函数的解析式
• 如何书写呢? 函数的解析式是等式 • 函数解析式的书写要求: 通常等式的 左边 的一个字母表示函数 右边 是含有自变量的代数式
函数一语,起用于公元 1692 年,最早见自德国数 学家莱布尼兹的著作。 他 是德国最重要的自然科学 家、数学家、物理学家、 历史学家和哲学家,一个 举世罕见的科学天才,和 牛顿同为微积分的创建人。 他博览群书,涉猎百科,对丰 富人类的科学知识宝库做出了 不可磨灭的贡献。
-1 -1
所按的第三、四两个键是哪两个键? +,1 y是x的函数吗?如果是,写出它的表达式 (用含x的式子表示y )y是x的函数 y=2x+1
1.写出下列各问题中的关系式,
并指出其中的自变量与函数。 (1)正方形的面积S 随边长 x 的变化 S=x2
(2)每分向一水池注水0.1M3,注水量Y随注水时间
年份 1984 人口数(亿) 10.34
1989 1994
1999
11.06 11.76
12.52
(5)如图,是体检时的心电图,其中横坐 标x表示时间,纵坐标y表示心脏某部位 的生物电流,它们是两个变量,其中y是 x的函数吗? 是
y
x
想一想
在计算器上按下列程序进行操作:
输入x(任意一个数) 按键
2
(4) y 4 x 8
2 2
x5 (5) y x 8
相关文档
最新文档