函数与变量的测试题

合集下载

变量与函数达标试题及答案

变量与函数达标试题及答案

变量与函数达标试题及答案一、精心选一选(每小题5分,共30分)1.一本笔记本每本4.5元,买x本共付y元,则4.5和y分别是()A.常量、常量B.变量、变量C.常量、变量D.变量、常量2.若一辆汽车以50千米/时的速度匀速行驶,则行驶的路程s(千米)与行驶的时间t(时)之间的函数关系式是()A.S=50+50tB.s=50tC.s=50-50tD.以上都不对3.下列函数中,自变量的取值范围为x≥2的是()A.y=B.y=C.y=D.y=4.下列说法正确的是()A.变量x、y满足x+2y=-3,则y是x的函数B.变量x、y满足|y|=x,则y是x的函数C.变量x、y满足y2=x,则y是x的.函数D.变量x、y满足y2=x2,则y是x的函数5.(2008年巴中市)在常温下向一定量的水中加入食盐Nacl,则能表示盐水溶液的浓度与加入的Nacl的量之间的变化关系的图象大致是()A.B.C.D.6.清晨一农家将一筐新鲜草莓拿到市场上去销售,下午为了尽快售完,进行了一次降价,下面的函数图象是反映果农身上的钱数(M)随时间(T)变化的状况,其中最合理的是图2中的()二、细心填一填(每小题6分,共24分)7.若每千克散装色拉油售价6.25元,则货款金额y(元)与购买数量x(千克)之间的函数关系式为_______,其中_______是自变量,_______是______的函数.8.函数y=3x-5中,自变量x的取值范围是________,函数y=中,自变量x的取值范围是________.9.如图1,老师让小强和小华都画函数y=x2的图象,结果两个人画的不太一样.图中甲是小强画的的,乙是小华画的.你认为画的图象比较正确的是________同学.10.如图2,图象反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中t表示时间,s表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是________min.三、用心做一做(共46分)11.(14分)某校师生为四川汶川地震灾民捐款,平均每人捐50元.(1)写出捐款总额y(元)与捐款人数x(人)之间的关系式,指出式子中的变量与常量,并指出在这个变化过程中,哪一个量是自变量?哪一个量是因变量?(2)如果该校有师生3000人,那么此次该校师生共为汶川灾区捐款多少元?12.(16分)图3是某水库的水位高度h(米)随月份t(月)变化的图象,请根据图象回答下列问题:(1)5月、10月的水位各是多少米?(2)最高水位和最低水位各是多少米?在几月?(3)水位是100米时,是几月?13.(16分)某公司决定投资新项目,通过考察确定有6个项目可供选择,各项目所需要资金及预计年利润如下表:所需资金(亿元)124678预计利润(千万元)0.20.350.550.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果预计获得0.9千万元的年利润,投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多少个项目的投资,预计最大利润是多少?答案一、1.C2.B3.A4.A5.D6.C二、7.y=6.25x,x,y,x8.一切实数,x≥2且x≠39.乙10.50三、11.(1)y=50x,其中x、y是变量,50是常量,x是自变量,y是因变量(2)50×3000=150000(元).12.(1)5月的水位是120米,10月的水位是140米;(2)最高水位是160米,在8月;最低水位是80米,在1月;(3)是3月和12月.13.(1)反映了所需资金和预计年利润之间的关系,其中所需资金为自变量,预计年利润为因变量;(2)预计年利润为0.55亿元.(3)需要资金7亿元.(4)共有三种方案:①1亿元,2亿元,7亿元;②4亿元,6亿元;③2亿元,8亿元.其利润分别为1.45亿元、1.35亿元、1.25亿元.预计最大利润为1.45亿元。

变量与函数练习试题

变量与函数练习试题

变量与函数练习题一、填空1、一根蜡烛原长a(cm),点燃后燃烧的时间为t(分钟),所剩余的蜡烛的长y(cm),其中是变量的,常量是。

2、在圆的周长公式C=2πr中,常量是,变量是。

3、《新文化报》每份0.5元,购买《新文化报》所需钱数y(元)与所买份数x之间的关系是,其中是常量,是变量。

4、(1)用总长为60(m)的篱笆围成长方形场地,长方形的面积S(m2)与一边长为x(m)之间的关系式为(2)用总长为L(m)的篱笆围成长方形场地,长方形的面积为60(m2),一边长为x(m)。

则L与x之间的关系式为5、在判断变量之间的关系是不是函数关系时,应满足两个特征:①必须有个变量,②给定其中一个变量(自变量)的值,另一个变量(因变量)都有与其相对应。

6. 设地面气温是20°C,如果每升高1km,气温下降6°C,则气温t(°C)与高度h(km)的关系是__________________,其中常量是,变量是。

对于每一个确定的h值都有的t值与其对应;所以自变量,是因变量,是的函数7、购买单价是0.4元的铅笔,总金额y(元),与铅笔数n(个)的函数关系是___________.8、等腰三角形的顶角的度数y与底角的度数x的函数关系式是_______________.x的取值围是___________.9、周长为10 cm的等腰三角形,腰长y(cm)与底边长x(cm)的函数关系为______________ 自变量x的取值围是_____________10、一弹簧,不挂重物时,长6cm,挂上重物后,重物每增加1kg,弹簧就伸长0.25cm,但所挂重物不能超过10kg,则弹簧总长y(cm)与重物质量x(kg)之间的函数关系式为__________ _。

(注明自变量的取值围)11、A,B两地相距30千米,小飞以每小时6千米的速度从A地步行到B地,若设他与B地的距离为y千米,步行的时间为x小时,则y与x之间的关系式为________12.已知5x+2y-7=0,用含x的代数式表示y为______;用含y的代数式表示x为______.13、据调查,某公园自行车存放处在某一星期日的存放量为4000辆,其中变速车存放车费是每辆次0.30元,普通车存车费是每辆一次0.20元.若普通车存放车数为x辆次,则变速车存放车数为 辆次,存车费总收入y 元,则y 关于x 的函数关系是_________ 14、.函数是表达现实世界中数量之间变化规律的一种数学模型,它的三种数学表示方法分别为_________、_________、_________. 15、函数1-=x y 中,自变量x 的取值围是______________;函数11+=x y 中,自变量x 的取值围是______________ 16、函数1-=x xy 中,自变量x 的取值围是 . 17.已知函数y =2x 2-1,当x 1=-3时,相对应的函数值y 1=______;当52-=x 时,相对应的函数值y 2=______;当x 3=m 时,相对应的函数值y 3=______.反过来,当y =7时,自变量x =______.18.已知等式24x y +=,则y 关于x 的函数关系式为________________.19.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值围是 20.某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x 件,应收货款y 元,那么y 与x 的函数关系式是______,自变量x 的取值围是______.21. 市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y (元)与所售豆子的数量x kg 之间的关系为_______,当售出豆子5kg 时,豆子总售价为______元;当售出豆子10kg 时,豆子总售价为______元.22.导弹飞行高度h (米)与飞行时间t (秒)之间存在着的数量关系为213004h t t =-+,当15t =时,h =____________.23、.如图,表示一辆汽车行驶的速度和时间的图象,你能用语言描述汽车的行驶情况吗?________________________________.24、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 与n 的关系可以用式子表示为 (n 为正整数). 25.购买一些铅笔,单价为0.3元/枝,总价元随铅笔枝数变化,则关于的解析式是________,当x=40时,函数值是________元, 二、选择题1、汽车在匀速行驶的过程中,若用s 表示路程,v 表示速度,t 表示时间,那么对于等式s=vt ,下列说确的是( )A.s 与v 是变量,t 是常量B.t 与s 是变量,v 是常量C.t 与v 是变量,s 是常量D.s 、v 、t 三个都是变量2、下列变量之间的关系中,不是函数关系的是( ) A.长方形的宽一定,其长与面积 B.正方形的周长与面积 C.等腰三角形的底边和面积 D.球的体积和球的半径3.在下列等式中,y 是x 的函数的有( )3x -2y =0,x 2-y 2=1,.|||,|,y x x y x y ===A .1个B .2个C .3个D .4个4、.下列函数中自变量取值围选取错误..的是( )A .2y x x =中取全体实数 B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥5、下列函数中自变量x 的取值围是x≥5的函数是( )A .y =B .y =C .y =D .y =6.下列函数中,自变量x 不能为1的是( ). (A )1y x =(B )21x y x +=- (C )21y x =+ (D )8x y = 7.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。

变量与函数的练习题

变量与函数的练习题

变量与函数的练习题变量与函数的练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

以下是小编精心整理的变量与函数的练习题,欢迎阅读,希望大家能够喜欢。

变量与函数的练习题篇1一.填空题1、在圆的周长和半径之间的关系式C=2πr中,其中,_______是常量,_______是变量.2、有一棵树苗,刚栽下去时树高1.2米,以后每年长高0.2米,设x年后树高为y米,那么y与x之间的函数解析式为_______。

3、某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x 每增加某1千克,弹簧长度y增加0.5厘米。

则y=_______,其中的变量_______,常量_______。

4、小明用30元钱去购买价格为每件5元的某种商品,求他剩余的钱y(元)与购买这种商品x件之间的关系。

当x=5时,函数值是。

5、一个长方形的长比宽大3cm,如果宽是xcm,那么这个长方形的面积是,当x为8时,长方形的面积为.6、当x=9时,函数y=x+4的值是_______。

7、等腰三角形的周长为20cm,设腰长为xcm,底边长为ycm,那么y与x之间的函数解析式是_______,其中自变量x的'取值范围是_______。

二.选择题8、下列关系式中,变量x= - 1时,变量y=6的是()A y= 3x+3B y= -3x+3C y=3x – 3D y= - 3x – 39、球的体积公式:V= πr3,r表示球的半径,V表示球的体积。

当r=3时,V=()A 4 π B12πC 36πD π10、某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y如下表示,根据表中所提供的信息,售价y与售货数量x的函数解析式为()数量x(千克 ) 1 2 3 4售价y(元) 8+0.4 16+0.8 24+1.2 32+1.6A y=8.4xB y= 8x +0.4C y=0.4x +8D y=8x11、正方体的棱长是a,表面积为S,那么S与a之间的函数解析式是()A.S=4a2B.S=a3C. S=6a2D.S=8a212、一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y(升)与它工作时间t(小时)之间的函数关系式是A y= 0.5 tB y= 4 - 0.5 tC y= 4+ 0.5 tD y= 4 / t13. 在函数中,自变量x的取值范围是()A. x≠3B. x≠0C. xD. x≠-314. 函数中,自变量x的取值范围是()A. x≥1B. xC. xD. x≠115.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x之间的函数关系式是 ()A.y=1.5x(x为自然数)B.y=23x(x为自然数)C.y=12x(x为自然数)D.y=18x(x为自然数)16.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t (小时)(0≤t≤4)之间的函数解析式是 () A.h=4tB.h=5tC.h=20-4tD.h=20-5t17. 一杯水越晾越凉,下列图象中可以表示这杯水的水温T(℃)与时间t(分)的函数关系()ABC D18. 下图是南昌市某天的温度随时间变化的图像,通过观察可知:下列说法错误的是()A. 这天15点时温度最高B. 这天3点时温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时温度是30℃19. 近年来国内生产总值年增长率的变化情况如图所示,从图上看,下列结论中不正确的是()A. 1995—1999年国内生产总值的年增长率逐年减小B. 2000年国内生产总值的年增长率开始回升C. 这7年中每年的国内生产总值不断增长D. 这7年中每年国内生产总值有增有减三.解答题20、长方形的周长为18cm,长为ycm,宽为xcm.求y与x之间的函数解析式,并写出自变量x的取值范围。

(完整版)变量与函数测试题

(完整版)变量与函数测试题

变量与函数、函数的图象及正比率函数测试题一、填空题1、某本书的单价是 14 元,当购置 x 本这类书时,花销为 y 元,则用 x 表示 y时,应有 ,此中变量是 ,常量是 。

2、一汽车油箱中有油 60 升,若每小时耗油 6 升,则油箱中节余油量 y (升)与时间 t (时)之间的函数关系式为 ,此中变量是 , 常量是 。

3、当 x =2 时,函数 y =2x+k 和 y=3kx - 2 的函数值相等,则 k = 。

4、已知矩形的周长为 6,设它的一条边长为 x ,那么它的面积 y 与 x 之间的函数关系式是 ,x 的取值范围为 。

5、一盒装冰淇淋售价 19 元,内装有 6 枝小冰淇淋,请写出每枝冰淇淋售价y (元)与函数 x (枝)之间的关系式 。

6、在函数关系式V4 R 3中, 是常量,是变量。

37、函数的三种表示方法是,,。

8、用描点法画函数图象的一般步骤是 , ,。

9、一棵 2 米高树苗,按均匀每年长高 10 厘米计算,树高 h (厘米)与年数 n 之间的函数关系式是 ,自变量 n 的取值范围是10、形如 _____ ______ 的函数是正比率函数。

11、正比率函数 y=kx ( k 为常数, k<0)的图象挨次经过第 ________象限,函数值 y 随自变量 x 的增大而 _________.12、已知 y 与 x 成正比率,且 x=2 时 y=-6 ,则 y 与 x 的函数关系式为 ____ __ . 二、选择题13、函数 y x2 中,自变量 x 的取值范围是( )A .x ≥2B . x>2C . x<2D .x ≠214、以下关系中的两个量成正比率的是( )A .从甲地到乙地,所用的时间和速度; B.正方形的面积与边长 C .买相同的作业本所要的钱数和作业本的数目; D .人的体重与身高 15、以下函数中, y 是 x 的正比率函数的是( )A .y=4x+1B. y=2x 2C . y=-5xD.y= x16、若函数 y=( 2m+6) x 2+( 1-m )x 是正比率函数,则 m 的值是( )A .m=-3B .m=1C . m=3D . m>-31 2,则 1 与17、已知( x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且 y2x >xy ?的大小关系是(). 1 .以上都有可能A .y 1 2B . 1 2C2 D>yy <y y =y 18、以下说法中不建立的是()A.在 y=3x-1 中 y+1 与 x 成正比率;B.在 y=- x中 y 与 x 成正比率2C .在 y=2( x+1)中 y 与 x+1 成正比率;D .在 y=x+3 中 y 与 x 成正比率19、一辆客车从襄樊出发开往武汉,设客车出发 t 小时后与武汉的距离为s 千米,以下图像能大概反应 s 与 t 之间的函数关系的是()s(千米)s(千米)s(千米)s(千米)Ot(小时)Ot(小时)O t(小时)O t (小时)A CB D20、画出以下函数的图象(1)y=-2x(2)y=-2x+121、求以下各函数的自变量的取值范围:(1)y=2x-1(2)y2( 3)y x 1x122、汽车由北京驶往相距850 千米的沈阳,它的均匀速度为80 千米/时,求汽车距沈阳的行程s(千米)与行驶时间t( 时) 的函数关系式,写出自变量的取值范围。

函数与变量经典试题

函数与变量经典试题

8年级数学第19章第1节:一次函数——变量与函数及函数图像一、变量、常量和函数1、以固定的速度v 0向上抛一个小球,小球的高度h 与小球的运动时间t 之间的关系式是h=v 0t-4.9t 2,在这个关系式中,变量、常量分别是( )A .4.9是变量,t 、h 是变量B .v 0是常量,t 、h 是变量C .v 0、-4.9是常量,t 、h 是变量D .4.9是常量,t 、h 是变量2、一辆汽车以60千米/时的速度行驶,行驶的路程s (km )与行驶时间t (h )之间的关系式为s=60t ,其中变量是( )A.速度与路程B.速度与时间C.时间与路程D.速度、时间、路程3、在△ABC 中,它的底边是a ,底边上的高为h ,则三角形的面积12s ah =,当h 为定长时,在在此关系式中( )A.s 、a 是变量,h 、12是常量B. s 、a 、h 是变量,12是常量C. h 、a 是变量,s 、12是常量 D. s 是变量,a 、h 、12是常量4、已知圆柱的体积公式是V=πr 2h ,若h 为常数,则在这个公式中,变量是( ) A.V 、π B. V 、π、r C. V 、r D. V 、h5、下列变量间的关系不是函数关系的是 ( ) A. 长方形的宽一定,其长与面积 B. 正方形的周长与面积 C. 圆的半径与面积 D. 等腰三角形的底边长与面积6、下列各曲线中哪些表示y 是x 的函数?7.下列:①;②;③;④,具有函数关系(自变量为)的是.8、在圆的周长公式中,下列说法错误的是( ) A .是变量,2是常量 B .是变量,是常量2y x =21y x =+22(0)y x x =≥0)y x =≥x 2C r =πC r π,,C r ,2πC .是自变量,是的函数D .将写成,则可看作是自变量,是的函数 二、自变量的取值范围1. 在函数3x 1y -=中,自变量x 的取值范围是()A. x ≠3B. x ≠0C. x>3D. x ≠-32. 函数1x y -=中,自变量x 的取值范围是()A. x ≥1B. x>1C. x>0D. x ≠13.边形的内角和,其中自变量的取值范围是( ) A .全体实数B .全体整数C .D .大于或等于3的整数4. 下面函数中,自变量的取值范围不是全体实数的是()A .B .C .D .5.函数的自变量的取值范围是__________.6、 求下列各函数的自变量的取值范围:(1) 21-=x y (2) 21-=x y (3) 5+=x y(4) 53+-=x x y (5) 11-+=x x y (6) x x y -+-=531(7) 321+-=x xy (8) 53322+-=x x y7、已知:函数31,53<<--=y x y ,求自变量x 的取值范围.三、列函数关系式、求函数值1.分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式。

变量与函数水平测试题

变量与函数水平测试题

19.1.1变量与函数测试题一、选择题(每题4分,共32分)1. 在圆的周长R c π2=中,常量与变量分别是( )(A) 2是常量,c 、π、R 是变量 (B)2π是常量,c 、R 是变量(C) c 、2是常量,R 是变量 (D)2是常量,c 、R 是变量2. 汽车离开甲站10千米后,以60千米/时的速度匀速前进了t 小时,则汽车离开甲站所走的路程s (千米)与时间t (小时)之间的关系式是( ).(A )1060s t =+ (B )60s t = (C )6010s t =- (D )1060s t =-3. 如图,若输入x 的值为-5,则输出的结果( ).(A )―6 (B )―5 (C )5 (D )64.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是( )A 、沙漠B 、体温C 、时间D 、骆驼5.下列函数中,自变量x 不能为1的是( ).(A )1y x = (B )21x y x +=- (C )21y x =+ (D )8x y = 6.下列图形中的曲线不表示y 是x 的函数的是( )7、一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y (升)与它工作时间t(小时)之间的函数关系式是( )A y= 0.5 tB y= 4 - 0.5 tC y= 4+ 0.5 tD y= 4 / t 8地壳的厚度约为8~40km ,在地表以下不太深的地方,温度可按y=35x+t 计算,(B ) y O x其中x 是深度,t 是地球表面温度,y 是所达深度的温度。

当x 为22km 时,地壳的温度(地表温度为2°C )( )A 24°CB 772°C C 70°C D570°C二、填一填(每小题 4分,共24分)9.已知等式24x y +=,则y 关于x 的函数关系式为________________.10. 市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价y (元)与所售豆子的数量x kg 之间的关系为_______,当售出豆子5kg 时,豆子总售价为______元;当售出豆子10kg 时,豆子总售价为______元.11.函数是表达现实世界中变量之间变化规律的一种数学模型,它的三种数学表示方法分别为_________、_________、_________.12.函数12--=x x y 中自变量x 的取值范围是______________.13.导弹飞行高度h (米)与飞行时间t (秒)之间存在着的数量关系为213004h t t =-+,当t=10时,h =____________.14用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 与n 的关系可以用式子表示为 (n 为正整数).三、解答题(44分)15、(8分)求下列函数自变量的取值范围。

初二变量与函数练习卷

初二变量与函数练习卷

变量与函数练习卷一、选择题1.一个长方形的面积是10cm2,其长是a cm,宽是b cm,下列判断错误的是()A.10是常B.10是变量C.b是变量D.a是变量2.圆的面积公式为s=πr2,其中变量是()A.s B.πC.r D.s和r3.下列变量间的关系不是函数关系的是()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径4.在图中,不能表示y是x的函数的是()A.B.C.D.下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm6.据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100二、填空题三、解答题(题型注释)年份(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是怎样的?(1)表中反映了哪些变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体的质量为3kg时,弹簧的长度为多少?(3)如果物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(4)当物体的质量为2.5kg时,根据(3)的关系式,求弹簧的长度.一、选择题1.一辆汽车以50km/h的速度行驶,行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是()A.速度与路程B.速度与时间C.路程与时间D.三者均为变量2.下列说法正确的是()A.常量是指永远不变的量B.具体的数一定是常C.字母一定表示变量D.球的体积公式V=43πr3中,变量是π,r.下表是某报纸公布的世界人口数据情况:表中的变量(A.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是时间(年份)D.一个也没有4.下列各曲线中表示y是x的函数的是()A.B.C.D.5.下列四个选项中,不是y关于x的函数的是()A.|y|=x-1B.y=2xC.y=2x-7D.y=x26.下列变量之间的关系不是函数关系的有()①长方形的宽一定时,其长与面积;②等腰三角形的底边与面积;③某人的身高与年龄.A.0个B.1个C.2个D.3个7.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A.y=12xB.y=12x C.y=-2x D.y=2x8.一个蓄水池有15m3的水,以每分钟0.5m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t (分)间的函数表达式为()A.Q=0.5t B.Q=15t C.Q=15+0.5t D.Q=15-0.5t二、填空题9.2B铅笔每枝0.5元,买n枝需W元,其中常量是_________,变量是_________.10.由实验测得某一弹簧的长度y(cm)与悬挂物体的质量x(kg)之间有如下关系:y=16+0.5x.这里的常量是_________,变量是_________.11.某水库的水位持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位y 与上涨时间x之间的函数关系式是_________.12.三角形的一个内角的度数为x,与它相邻的外角的度数为y,则y与x的函数关系式是.13.下列各式①y=0.5x-2;②y=|2x|;③3y+5=x;④y2=2x+8中,y是x的函数的有__________(只填序号)三、解答题14.写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s=40t.(1)上表反映了温度与长度两个变量之间的关系,其中__________是自变量,__________是函数.(2)当温度是10℃时,合金棒的长度是__________cm.(3)如果合金棒的长度大于10.05cm小于10.15cm,根据表中的数据推测,此时的温度应在_________℃~__________℃的范围内.(4)假设温度为x℃时,合金棒的长度为y cm,根据表中数据写出y与x之间的关系式__________.(5)当温度为-20℃或100℃,合金棒的长度分别为__________cm或__________cm.。

八年级数学:变量与函数-练习(含答案)

八年级数学:变量与函数-练习(含答案)

八年级数学:变量与函数练习(含答案)一、选择题:1.下列关于圆的面积S与半径R之间的函数关系式S=πR2中,有关常量和变量的说法正确的是()A.S,R2是变量,π是常量 B.S,R是变量,2是常量C.S,R是变量,π是常量 D.S,R是变量,π和2是常量2.据调查,北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0.1x+800(0≤x≤4000) B.y=0.1x+1200(0≤x≤4000)C.y=-0.1x+800(0≤x≤4000) D.y=-0.1x+1200(0≤x≤4000)3.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集的数据如下:请你根据上述数据分析判断,水银柱的长度L(mm)与体温计的读数t℃(35≤t≤42)之间存在的函数关系式为()A.L=110t-66 B.L=11370t C.L=6t-3072D.L=39552t二、填空题4.小明带10元钱去文具商店买日记本,已知每本日记本定价2元,则小明剩余的钱y(元)与所买日记本的本数x(元)之间的关系可表示为y=10-2x.在这个问题中______是变量,_______是常量.5.在函数y=12x-中,自变量x的取值范围是______.6.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y(元)与所存月数x之间的函数关系式为________.三、解答题7.求下列函数中自变量x的取值范围;(1)y=2x2+1;(2)y=13x.8.写出下列各问题中的函数关系式(不需标明自变量的取值范围):(1)小明绕着一圈为400m的跑道跑步,求小明跑的路程s(m)与圈数n之间的函数关系式;(2)已知等腰三角形的周长为36,腰长是x,底边上的高是6,若把面积y看作腰长x的函数,试写出它们的函数关系式.四、思考题9.某旅客带了30公斤的行李乘飞机,按规定,旅客最多可免费携带20公斤的行李,超重部分每公斤按飞机票价的1.5%购买行李票,现该旅客购买了120元的行李费,求他的飞机票价格.B卷:提高题一、七彩题1.(一题多解题)按如图所示堆放钢管.(1)填表:(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.二、知识交叉题2.(科外交叉题)一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.三、实际应用题3.山东省是水资源比较贫乏的省份之一,为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定用水收费标准如下:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年3,4月份的用水量和水费如下表所示:用水量(立方米)水费(元)月份3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费为y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的函数关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?四、经典中考题4.(2008,齐齐哈尔,4分),函数中,自变量x的取值范围是_______.C卷:课标新型题一、探究题1.(结论探究题)某商场计划投入一笔资金采购一批商品并转手出售,经市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获得10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,如何购销获利较多?二、说理题2.某移动通讯公司开设两种业务,“全球通”:先缴50元月租费,然后每通话1跳次,再付0.4元;“神州行”:不缴月租费,每通话1跳次,付话费0.6元(本题的通话均指市内通话).若设一个月内通话x跳次,两种方式的费用分别为y1和y2元.(跳次:1min为1跳次,不足1min按1跳次计算,如3.2min为4跳次)(1)分别写出y1,y2与x之间的函数关系式;(2)一个月内通话多少跳次时,两种方式的费用相同?(3)某人估计一个月内通话300跳次,应选择哪种合算?参考答案A卷一、1.C 点拨:解题的关键是对π和R2中的指数如何处理.判断变量和常量的根据就是看它们是否可改变,显然π是不改变的,是常量,圆的面积是随半径R的变化而变化的,故S和R 为变量,当R变化时R2也变化,R2中的指数2与变量和常量无关.2.D 点拨:存车费总收入y=电动车存车总费用+普通车存车总费用=0.3×(4000-x)+0. 2x=-0.1x+1200,其中0≤x≤4000.故应选D.3.C 点拨:由图表可知L随t的变化而变化,通过变化规律,可以得到L与t之间的关系式为L=56.5+6(t-35),即L=6t-3072(35≤t≤42).二、4.x,y;10,2 点拨:因为所买日记本数x是可以变化的,小明余下的钱y也是变化的,故y与x是变量,而10和2是保持不变的,故它们是常量.5.x≠2 点拨:分式12x-有意义,须令x-2≠2,得x≠2.6.y=10000+12.8x(x≥0且x为整数)点拨:本息和=本金+利润,本金=10000元,利息=本金×月利率×月数×(1-20%)=10000×0.16%·x·0.8=12.8x,所以y=10000+12.8x.三、7.解:(1)自变量x的取值范围是全体实数;(2)因为3-x≠0,所以x≠3,即自变量x的取值范围是x≠3.8.解:(1)s=400n.(2)y=-6x+108.点拨:(1)总路程=一圈的长度×圈数;(2)由题意可知,等腰三角形的底边长为(36-2x),所以y=12×(36-2x)×6,即y=-6x+108.四、9.解法一:(从方程的角度解)设他的飞机票价格为x元,根据题意,得(30-20)·x·1.5%=120,所以x=800.解法二:(从函数的角度解)设飞机票价格为k元,则行李票的价格y(元)与所带行李的公斤数x(公斤,x>20)之间的函数关系为y=(x-20)·k·1.5%,已知x=30时,y=120,代入关系式,得120=(30-20)·k·1.5%,解得k=800.答:略.点拨:解法一和解法二实质上是一致的,只不过考虑问题的角度不同,解法一是解法二的特殊情况.B卷一、1.解法一:(1)当x=1时,y=1;当x=2时,y=1+2=3;当x=3时,y=1+2+3=6;当x=4时,y=1+2+3+4=10;…;当x=x时,y=1+2+3+4+…+x=12x(x+1).(2)y=12x(x+1)=12x2+x12(x≥1且为整数).解法二:如图所示,将原题图倒置过来与原图一起拼成平行四边形,利用其面积计算公式可得到结论y=12x(x+1),即y=12x2+12x.(1)题表中依次填为:1,3,6,10,12x2+12x.(2)y=12x·(x+1)=12x2+12x.(x≥1且为整数)点拨:仔细分析总数与层数之间的关系是解决这类图形问题常用方法之一.二、2.解:(1)v=2t;(2)当t=3.5时,v=2×3.5=7,即3.5秒时小球的速度为7米/秒;(3)当v=16时,16=2t,t=8,即8秒时小球的速度为16米/秒.点拨:本题是函数关系式与物理学科的知识交叉题,也就是函数关系式在物理学科中的实际应用.三、3.解:(1)当x≤6时,y=ax;当x>6时,y=6a+c(x-6).将x=5,y=7.5代入y=ax,得7.5=5a,将x=9,y=27代入y=6a+c(x-6),得27=6a+3c.解得a=1.5,c=6.所以y=1.5x(x≤6),y=6x-27(x>6);(2)将x=8代入y=6x-27,得y=21,所以5月份的水费是21元.四、4.x≤3且x≠1C卷一、1.解:设商场投资x元,在月初出售可获利y1元,到月末出售出获利y2元.根据题意,得y1=15%x+10%(1+15%)x=0.265x,y2=30%x-700=0.3x-700.(1)当y1=y2时,0.265x=0.3x-700,所以x=20000;(2)当y1<y2时,0.265x<0.3x-700,所以x>20000;(3)当y1>y2时,0.265x>0.3x-700,所以x<20000.所以当商场投资20000元时,两种销售方法获利相同;当商场投资超过20000元时,第二种销售方式获利较多;当商场投资不足20000元时,第一种销售方式获利较多.点拨:要求哪种销售方式获利较多,关键是比较在自变量的相同取值范围内,两个函数值的大小,除上述方法外,也可以采用作差的方法解决.二、2.解:(1)y1=50+0.4x,y2=0.6x;(2)两种方式的费用相同时,y1=y2,即50+0.4x=0.6x,解得x=250.即一个月内通话250跳次,两种方式的费用相同;(3)某人一个月估计通话300跳次,则全球通的费用为:y1=50+0.4×300=170(元),神州行的费用为:y2=0.6×300=180(元),因为y1<y2,所以选择“全球通”合算.点拨:“话费问题”是日常生活中常见的问题,电话费与通话时间也是一种函数关系,要用函数的思想来加以说理解决.本题体现了分类思想,分两种情况来分析问题是解决此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于函数与变量的测试题
一、填空题(每小题3分,共24分)
1.矩形的面积为,则长和宽之间的关系为,当长一定时,是常量,
是变量.
2.飞船每分钟转30转,用函数解析式表示转数和时间之间的关系式是.
3.函数中自变量的取值范围是
4.函数中,当时,,当时,.
5.点在函数的图象上,则点的坐标是.
6.函数中自变量的取值范围为.
7.下列:①;②;③;④,具有函数关系(自变量为)的是.
8.圆的面积中,自变量的取值范围是.
二、选择题(每小题3分,共24分)
1.在圆的周长公式中,下列说法错误的是()
A.是变量,2是常量
B.是变量,是常量
C.是自变量,是的函数
D.将写成,则可看作是自变量,是的函数
2.边形的内角和,其中自变量的取值范围是()
A.全体实数
B.全体整数
C.
D.大于或等于3的整数
3.在下表中,设表示乘公共汽车的站数,表示应付的'票价(元)
(站)12345678910
(元)1122233344
根据此表,下列说法正确的是()
A.是的函数
B.不是的函数
C.是的函数
D.以上说法都不对
4.油箱中有油20升,油从管道中匀速流出,100分钟流成.油箱中剩油量(升)与流出的时间(分)间的函数关系式是()
A.B.C.D.
5.根据下表写出函数解析式()
A.B.C.D.
6.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价(元)与支数
之间的函数关系式为()
A.B.C.D.
7.设等腰三角形(两底角相等的三角形)顶角的度数为,底角的度数为,则
有()
A.(为全体实数)
B.
C.D.
8.下列有序实数对中,是函数中自变量与函数值的一对对应值的是
()[B.C.D.
三、解答题(共40分)
1.(10分)如图1是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中:
(1)气温(℃)(填“是”或“不是”)时间(时)的函数.
(2)时气温最高,时气温最低,最高汽温是℃,最低气温是℃.
(3)10时的气温是℃.
(4)时气温是4℃.
(5)时间内,气温不断上升.
(6)时间内,气温持续不变.
2.(10分)按图2方式摆放餐桌和椅子.若用来表示餐桌的张数,来表示可
坐人数,则随着餐桌数的增加:
(1)题中有几个变量?
(2)你能将其中的一个变量看成是另一个变量的函数吗?如果是,写出函数解析式.
3.(10分)已知水池中有800立方米的水,每小时抽50立方米.
(1)写出剩余水的体积立方米与时间(时)之间的函数关系式.
(2)写出自变量的取值范围.
(3)10小时后,池中还有多少水?
(4)几小时后,池中还有100立方米的水?
4.(10分)某市第五中学校办工厂今年产值是15万元,计划今后每年增加2万元.
(1)写出年产值(万元)与今后年数之间的函数关系式.
(2)画出函数图象.
(3)求5年后的年产值.。

相关文档
最新文档