1第一章概率论基础知识-6
概率论1-6

此定义可以推广到任意有限多个事件的情形 :
一般, 个事件, 一般 设A1,A2,...,An(n≥2)个事件 如果对于其中 ≥ 个事件 任意2个 任意3个 任意n个事件的积事件的概 任意 个, 任意 个, ..., 任意 个事件的积事件的概 都等于各事件概率之积, 则称事件A 率, 都等于各事件概率之积 则称事件 1,A2,...,An 相互独立. 相互独立
2 1 2 1 1 P( A) = = , P(B) = = , P( AB) = , 4 2 4 2 4 1 P(B | A) = . 2
可知P(B|A)=P(B), 而P(AB)=P(A)P(B). 可知
是试验的两事件, 设A,B是试验的两事件,若P(A)>0,则可定义 是试验的两事件 ,则可定义P(B|A). 一般, 的发生对 发生的概率有影响 的发生对B发生的概率有影响时 一般,A的发生对 发生的概率有影响时, P(B|A) ≠P(B) 影响不存在时 影响不存在时,P(B|A)=P(B),此时有 , P(AB)=P(B|A)P(A)=P(B)P(A) 定义:若两事件 定义:若两事件A,B满足 P(AB)= P(A) P(B), 满足 , 则称A 相互独立, 独立. 则称 ,B相互独立,简称 ,B独立 相互独立 简称A 独立
§6独立性
首先我们考虑下面问题: 首先我们考虑下面问题: 个产品, "有放回抽样"的产品抽样问题,总共a个产品, 有放回抽样"的产品抽样问题,总共 个产品 其中有b个次品,若前后抽样两次,有放回抽样, 其中有b个次品,若前后抽样两次,有放回抽样, 则注意到第1次是否取得正品并不影响第2 则注意到第1次是否取得正品并不影响第2次取得 正品的概率,即假设Ai表示"第i次取得正品", 正品的概率,即假设A 表示" 次取得正品" i=1,2, i= ,则P(A2|A1)=P(A2), 此时乘法公式为P(A1A2)=P(A1)P(A2) 此时乘法公式为 这就是说,已知事件 发生 并不影响事件B发生的概 这就是说 已知事件A发生 并不影响事件 发生的概 已知事件 发生,并不影响事件 这时称事件A 独立. 率,这时称事件 ,B独立 这时称事件 独立
概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论第一章第六节

(2) P( A1 A2
An )
1 P(A1 A2
An )
1 P( A1 A2 An )
A1 A2 An独立
A1 A2 An独立
1 P( A1 )P( A2 ) P( An ).
9
例1 三人独立地去破译一份密码,已知各人能译出的 概率分别为1/5,1/3,1/4,问三人中至少有一人能将 密码译出的概率是多少?
2
2
P( AB) 0,P( A)P(B) 1 ,
4
由此可见两事件互斥但不独立.
二者之间没 有必然联系
B
AB
AS
B AS
若P( A) 0 , P(B) 0 , A,B相互独立与互不相容
不能同时成立.
20 返回
为p , p 1 2 . 问对甲而言, 采取三局二胜制有利,
还是五局三胜制有利. 设各局胜负相互独立. 解 采用三局二胜制 , 甲最终获胜 ,
胜局情况可能是 :
“甲甲”,“甲乙甲”;“乙甲甲”,
设Ai :“甲第i局胜”(i 1, 2, 3), 设A :“甲最终胜”,
则 A A1 A2 A1 A2 A3 A1 A2 A3
p pp
纯 纯纯
H1: 不纯 纯 纯
q pp
纯 纯纯
p 1 0.01 0.99,
q 1 0.95
H2:不纯 不纯 纯
q qp
纯 纯纯
H3: 不纯 不纯 不纯
q qq
纯 纯纯
0.05.
P(H0)
C936 , C3
100
P(H3 )
C43 C3
100
,
P( H1 )
C926C41 C3
100
,
P( H2 )
概率论第一章 概率论的基本概念

P( A1 A2 An ) = P( A1) P( A2) P( An ).
概率的有限可加性
证明 令 An1 = An2 = = , Ai Aj = , i j, i, j = 1,2,.
由概率的可列可加性得
P(A1
A2
An )
=
P(
Ak
)
=
P( Ak ) =
n
P( Ak ) 0
概率论
第一章 概率论的基本概念
第一节 随机试验 第二节 样本空间、随机事件 第三节 频率与概率 第四节 等可能概型(古典概型) 第五节 条件概率 第六节 独立性
概率论
第一节 随机试验
几个具体试验 随机试验 小结
概率论
上一讲中,我们了解到,随机现象有其偶 然性的一面,也有其必然性的一面,这种必然 性表现在大量重复试验或观察中呈现出的固有 规律性,称为随机现象的统计规律性.而概率 论正是研究随机现象统计规律性的一门学科.
nH
f
22 0.44
n = 500 nH f
251 0.502
15124
123 4 5 6 7
随3 n的增0.6大, 频率25 f 呈现0.5出0 稳定24性9 0.498
0.2 21 0.42 256 0.512
1.0
25 0.50 247 0.494
ห้องสมุดไป่ตู้
0.2
24 0.48 251 0.502
0.4
(3) 若 A1, A2, , Ak 是两两互不相容的事件,则 f ( A1 A2 Ak ) = fn( A1) fn( A2 ) fn( Ak ).
实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做
7 遍, 观察正面出现的次数及频率.
概率论基础知识

对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
第1章 概率论基础知识

1.1.2 条件概率与概率乘法公式
1 条件概率
例 1.1.1 一个包装箱里有6件产品。假设其中有4件是一级品, 2件为二级品。若随机实验E是“从包装箱中随机抽取1件产 品”,则明显地,抽到二级品的概率是1/3。 若事件A是“第一次抽取并抽到二级品”,事件B是“第二 次抽取并抽到二级品”,那么在事件A发生的条件下,再从 剩下的5件产品中抽取1件,事件B发生即“第二次抽到二级 品”的概率就是1/5。 我们称这样的概率为“事件A发生的条件下,事件B发生的 概率”,简称为“事件B的条件概率”,记为P{B|A}. 本例中P{B|A}=1/5。
2 基本事件
一次随机实验的可能结果,称为基本事件或基本随机事件。
3 样本空间
所有基本事件组成的集合,称为样本空间或基本空间。
4 随机事件
随机事件简称事件,是指基本事件的集合。
5 相容事件与不相容事件
在一次随机实验中不可能同时发生的事件,称为不相容事件, 反之称为相容事件。
6.概率(Probability)
为对比条件概率与非条件概率的区别,现在来看上例中P(B) 等于多少? 由于B指的是“第二次抽到二级品” 的事件,而这时A可能发 生,也可能不发生(即A的对立事件Ac发生)。这样事件B就 可以表示成:B=AB+AcB。注意到AB与AcB是互不相容的。 因此 2 1 4 2 1 c P( B) P( AB ) P( A B) 6 5 6 5 3 注意到事件A的概率也是P(A)=1/3. 于是有如下的表达式:
P{B | A} P( AB) P{ A | B}P( B) P( A) P( B) P( B) P( A) P( A) P( A)
2. 相互独立事件的概率乘法公式
《概率论》第1章§6独立性

两两独立 三三独立 ……
概率论的基本概念
§6 独立性
8/25
设每个人血清中含有肝炎病毒的概率为0.4%, 求混合100个人的血清中含有肝炎病毒的概率. 记 Ai { 第 i 个人血清含肝炎病毒 }, i 1, 2, ,100 则所求概率为
100 P ( Ai ) P Ai i 1 i 1
100
1 P ( Ai )
i 1
100
根据实际问题 判断事件独立性
1 0.996
100
0.33
第一章
概率论的基本概念
§6 独立性
9/25
P( AB) P( A) P( B) P( BC ) P( B) P(C ) P(CA) P(C ) P( A)
A, B, C 相互独立
时 , 两种赛制甲最终获胜的 1 2 .
制有利 .
概率是
相同的 , 都是
§6 独立性
19/25
甲、乙两坦克的首发命中率均为0.8,经修正后的第 二发命中率均为0.95,敌目标被一发炮弹击中而被击毁 的概率为0.2,被两发炮弹击中而击毁的概率为0.5,被三 发炮弹击中必定被击毁。在战斗中,甲、乙两坦克分别 向敌同一目标发射了两发炮弹,求敌目标被击毁的概率。
p n P ( Ai )
i 1 n
1 P ( Ai )
i 1
n
n 1 (1 p) 1 0.999 n
n pn
1000
2000
3000
4000
5000
0.632 0.865 0.950 0.982 0.993
可见即使 p 很小,但只要试验不断进 行下去,小概率事件几乎必然要发生
概率统计 第一章 概率论的基础知识

7 (1) P( A B) P( A) P( B) P( AB) 10 3 (2) P( A B) 1 P( A B) 10 2 (3) P( A B) P( A) P( AB) 5
条件概率
已知事件A发生的条件下,事件B发生 的概率称为A条件下B的条件概率,记 作P(B|A)
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
7 10 10 3 C 27 C 20 C10 18 P( B) N (S ) 203
4、 随机取数问题
例4:从1,2,3,4,5诸数中,任取3个排成自左向右的次序, 求: (1)
A1 “所得三位数是偶数”的概率? (2) A2 “所得三位数不小于200”的概率?
注
任何事件均对应着样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素
例1
定义
E4: 掷一颗骰子,考察可能出现的点数。 S4={1,2,3,4,5,6}; A=“掷出偶数点” B=“掷出大于4的点 ” ={2,4,6} ={5,6} C=“掷出奇数点”={1,3,5}
样本空间的子集称为随机事件。
n n1 nm 2 ! nm 1 !n n1 nm 1 !
n! n1!....nm !
种取法.
1、抽球问题
例1:设盒中有3个白球,2个红球,现从盒中 任抽2个球,求取到一红一白的概率。
解:设事件A为取到一红一白
N (S ) C
2 5
N ( A) C C
一般地,设A、B是S中的两个事件,则
P( AB) P( B | A) P( A)
称为事件A发生的条件下事件B发生的条件概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设有N 条外线。由题意有 P{XN}0.9
由德莫佛-拉普拉斯定理得
P{XN}P
Xnp np(1p)
Nnp np(1p)
2020/4/21
nN p(1n pp)N 3.0180.
查表 (1得 .2)80.9.0
故 N 应满足条件 N 10 1.28 3.08
即N1.3 9.4 取 N1,4 即至少 1要 条 4 安 外装 线
例1 某人要测量甲、乙两地之间的距离。 限于测量 工具,他分成 1200 段来测量。每段测量误差(单位: 厘米)服从于(-0.5, 0.5)上的均匀分布。求总距离误 差的绝对值超过20厘米的概率。
解 设第k 段的测量误差为 Xk k1,2,,12.00 且 X1,X2,,X120是0 独立同分布的随机变量。且
2020/4/21
例7 利用 ⑴ 契比雪夫不等式 ⑵ 中心极限定理
分别确定投掷一枚均匀硬币的次数,使得出现“正面 向上”的频率在0.4到0.6之间的概率不小于0.9。
解 设 X 表示正面出现的次数(n 次试验)
X~b(n,1/2)
⑴ 利用契比雪夫不等式 E(X)np1n 2
P0.4
X n
0.6 P 0 .4 n X 0 .6 n
(或几乎处X 处 随) 机收 X 变 , 敛 量 记 X 于 n作 a.sX.
四种收敛关系:
以概率1收敛或r-阶收敛 依概率收敛 依分布收敛
2020/4/21
大数定律
定义 设{Xn}为p 维随机向量序列,数学期望E(Xn)
存在
Xn
1 n
n i1
Xi
■若对于任意的 0,都有
ln iP m X n E X n 0
所以
1 n
lni m Pni1
Xi
1
2020/4/21
定理2(辛钦定律)
设随机变量序列X1 , X2 , … 独立同分布,
且具有相同的数学期望 E (X i),i1 ,2,L
则
1 n
lni m Pnk1Xk
1
辛钦
辛钦大数定律中,随机变量的方差可以不存在,只要 独立同分布就可以了。
2020/4/21
n 1 0 0 ,p 0 .8 ,n p 8 0 , n p q 1 6 4
P7 0X8686 48070 480
1 . 5 2 . 5 1 0 . 9 0 3 . 9 3 1 9 0 . 9 2 3 2 8
P X 8 0 1 P X 8 0 1 00.5
2020/4/21
例5 某单位有200台电话分机,每台分机有5%的时间
要使用外线通话。假定每台分机是否使用外线是相互独
立的,问该单位总机要安装多少条外线,才能以90%以
上的概率保证分机用外线时不等待?
解 设有X 部分机同时使用外线,则有 X~B(n,p),
其中 n 2 0 0 ,p 0 . 0 5 , n p 1 0 ,n p ( 1 - p ) 3 . 0 8 .
2020/4/21
P 0 .4 n1 2nX1 2n0 .6 n1 2n
PX12n
0.1n
0.9
由契比雪夫不等式
P X1 2n0.1n 1(0n .1 /n 4)2 0.9
所以 n250
2020/4/21
⑵ 利用中心极限定理 X~b(n,1/2) 由德莫佛-拉普拉斯定理得 X~N (n/2,n/4)
2.5 1.25
2020/4/21
0 . 9 9 1 8 0 .1 0 5 6 0 . 8 8 6 2
例4 有100台车床彼此独立地工作。每台车床的实
际工作时间占全部工作时间的80%,求下列事件的 概率。
(1)任一时刻有70-86台车床工作。
(2)任一时刻有80台以上车床工作。
解 设任一时刻工作的车床台数为X 。X~bn,p
2020/4/21
定理1 设 X1,X2,L,相X互n,L 独立同分布,
2 D X i 0 , i 1 ,2 , 记 Fnx 为 Xn n 1i n1Xi EXi的分布函数
su F n x p x 0 , n
x
其中 x为标准正态分布函数。
记为
2020/4/21
Xn L N0,1
2
P
Xk
k 1
0
1200 1 12
20
1200
1 12
1 2 2
222
2 0 . 0 2 2 8 0 . 0 4 5 6
2020/4/21
例2根据以往经验,某种电器元件的寿命服从均值为 100小时的指数分布. 现随机地取16只,设它们的寿命 是相互独立的. 求这16只元件的寿命的总和大于1920 小时的概率.
P 0 .4 n 0 .5 n X 0 .5 n 0 .6 n 0 .5 n 0 .9 n /2 n /2 n /2
2 0n.1/n210.9 0n.1/n20.95 0.2n1.645 n 6 7 .6 5 故取n68
2020/4/21
Thank you
Thank you
limP n np x x
1
t2
e 2 dt
n np(1 p) 2
x
2020/4/21
推论: 设随机变量
Yn ~B(n, p).
当n充分大时有:
P aY nb C k npkqn k a k b bnpnqpanpnqp
这个公式给出了n 较大时二项分布的概率计算方法。
2020/4/21
则
1
n
n i1
Xi
P
.
即对任意的ε> 0,
1 n lni mPnk1Xk
1
证明
E
1 n
n i 1
Xi
1n ni1
E(Xi)1nin1
2020/4/21
D
1 n
n i 1
X
i
n12 i n1D(Xi)n12 i n1
2
2 n
由切比雪夫不等式得
1
1 n Pnk1Xk
1n22
则称 X n 依概率收敛于a ,记为 Xn Pa.
2020/4/21
依分布收敛
定义F : n(x), 设 n1,2,,F(x)分别是随
Xn(n1,2,)及X的分布函数 连, 续若 x
ln i m Fn(x)F(x),
则{X 称 n}依分布 X, 收记 敛 Xn 为 L 于 X.
注:对于分布{收 Xn}敛 并, 不需要定义在共 概率空间。实际 敛上 的, 并收 不 {Xn是 },而是
解 设第i 只元件的寿命为Xi , i=1,2, …,16 则X1,X2,…,Xn相互独立, E( Xi ) =100, D( Xi ) =10000
16
16只元件的寿命的总和为 Y X k
k 1
E(Y )=1600, D(Y )=160000
由中心极限定理, Y 1600 近似服从正态分布N (0,1) 400
例3 报童沿街向行人兜售报纸,假设每位行人买报 的概率为0.2, 且他们是否买报是相互独立的。求报童 向100位行人兜售之后,卖掉15-30份报纸的概率。
解 设报童卖掉报纸的份数为X, X~bn,p
n 1 0 0 ,p 0 .2 ,n p 2 0 , n p q 1 6 4
P15X3030 42015 420
其部分和
X1,X2,K,Xn
n
Xi
i1
在什么条件下趋于什么分布。
2020/4/21
1. 大数定律
■切比雪夫Chebyshev不等式 ■几个常见的大数定律
2020/4/21
依概率收敛
定义1 设随机变量序列 X1,X2,K,Xn,如果存
在常数 a ,使得对于任意 0 有:
ln im P{X |na|}1
定理3(伯努利大数定律) 设nA是n重贝努里试验中事件A发生的次数, P是事件A发生的概率,则对任给的ε> 0,有
lni mPnnA
p
1
即 nA P p . n
证明 引入随机变量
Xi
1, 0,
第 第ii次 次试试验验中中AA发不生发,生,i1, 2, L
2020/4/21
显然
n A X 1 X 2 L X n
X k ~ U 0 .5 ,0 .5 ,k 1 ,2 ,L ,1 2 0 0 .
E(Xk)0, D (X k)1 1 20.5( 0.5 )21 1 2
2020/4/21
由独立同分布的中心极限定理可得
1200
P
1200 k 1
1 P
Xk1Leabharlann 00k 1Xk 10
20
0
更一般 EX 地 nr, ,EX 设 r,其中
r 0为常数,如果ln i m EXnXr 0, 则称 {Xn}r阶收敛 X,记 于X 作 n rX.
1-阶收敛又称为平均收敛,2-阶收敛即为均方收敛。
2020/4/21
以概率1收敛
定 义 若 P{:ln i m Xn()X()} 1, ( 简
P{ln i m XnX}1) ,则称随机{X 变 n}以 量概 序 1
且
E ( X ) i p , D ( X k ) p ( 1 p ) , k 1 , 2 , L , n
又由于各次试验相互独立,所以
X1,X2,L,Xn 独立同分布, 则由辛钦大数定律可得
lni mPnnA
p
1
2020/4/21
§5.2 中心极限定理
中心极限定理的客观背景: 在实际问题中,常常需要考虑许多随机 因素所产生的综合影响.
则称{Xn}服从大数定律,其中
n
x
x
2 i