八年级数学教学导案上册第一章

合集下载

八年级上浙教版数学第一章教案

八年级上浙教版数学第一章教案

八年级上浙教版数学第一章教案------------------------------------------作者xxxx------------------------------------------日期xxxx1.1认识三角形(1)【教学目标】1、通过动手操作,理解三角形三个内角的和等于180o2、理解三角形的一个外角等于和它不相邻的两个内角的和3、合适用三角形的内角和外角的性质简单的几何问题【教学重点、难点】1.本节教学的重点是三角形三个内角和等于180o的性质是本节重点。

2.涉及的角之间的关系不易辨认,是本节难点。

【教学过程】1,合作学习:①请每个学生利用手中的三角形(已备),把三角形的三个角撕(或剪)下来,然后把这三个角拼起来,然后观察这三个角拼成了一个什么角?②请学生归纳这一结论,教师板书:三角形的三个内角的和等于180O2、三角形内角和性质的应用①口答:△ABC中,∠A=45O,∠B=60O,求∠C②△ABC中,∠A=57O18,,∠B=46O49,。

求∠C③△ABC中,∠A=∠B,∠C=110O,求∠A,∠B④△ABC中,∠A:∠B:∠C=1:2:3,求这个三角形的三个内角。

3、由上题得出图中三角形的形状①②得出的三角形的三个角都是锐角,这样的三角形称之为锐角三角形③得出的三角形有一个角是钝角,这样的三角形称之为钝角三角形④得出的三角形有一个角是直角,这样的三角形称之为直角的三角形若一个三角形为Rt△,那么它的其余两个锐角互余。

4、三角形的外角:①定义:三角形的一边和另一边相邻边组成的角,叫做三角形的外角。

由图得:∠BCE+∠ACB=180O而∠A+∠B+∠ACB=180O∴∠BCE=∠A+∠B从而得到定理:三角形的一个外角等于和它不相邻的两个内角的和②外角也并不一定绝对,要会看一个角之是内角还是外角。

5、练习:1)△ABC中,∠ACD=120O∠A=50O ,求∠B、∠ACD2)如书本例题3),已知,在△ABC中,∠C=Rt∠,D是BC上一点,已知∠1=∠2,∠B=25O,求∠BAD数。

人教版八年级数学上第一章教案

人教版八年级数学上第一章教案

人教版八年级数学上第一章教案教学目标- 理解并应用整数的概念和性质;- 掌握整数的四则运算规则;- 能够解决与整数相关的实际问题;- 培养学生的逻辑思维和解决问题的能力。

教学重点- 整数的概念和性质;- 整数的四则运算规则。

教学准备- 教材:人教版八年级数学上册;- 教具:教案、黑板、彩色粉笔、计算器。

教学过程导入(5分钟)1. 引导学生回顾数轴的概念,了解正数和负数在数轴上的位置。

概念讲解(10分钟)1. 通过数轴的示意图,向学生介绍整数的概念。

2. 解释整数的正负之分,并引导学生理解整数的性质。

整数的表示(10分钟)1. 可视化展示正数、0和负数在数轴上的位置。

2. 引导学生掌握整数的表示方法,包括带有正负号的数、绝对值等。

整数的比较(10分钟)1. 引导学生理解整数的大小关系,通过数轴和实例进行比较。

2. 教师提问,学生回答,互动讨论巩固研究。

整数的加减法(15分钟)1. 介绍整数的加减法规则,带领学生进行简单的练。

2. 分别讲解同号相加、异号相减的情况,并举例说明。

3. 面向不同层次的学生进行适当的拓展和巩固。

整数的乘法和除法(15分钟)1. 介绍整数的乘法和除法规则,带领学生进行简单的运算实践。

2. 引导学生理解同号相乘、异号相乘、整数相除的规律,并解释其原理。

实际问题的运用(15分钟)1. 通过生活实例,引导学生运用整数的四则运算解决实际问题。

2. 鼓励学生思考,尝试用整数解决其他实际问题。

小结与反思(10分钟)1. 整理本节内容,总结整数的概念和性质,以及四则运算规则。

2. 让学生回顾本节课的研究内容,思考自己的理解和存在的问题。

作业布置1. 利用课本的练题进行巩固训练;2. 鼓励学生自主寻找实际问题,并尝试用整数进行解答。

教学反思本节课通过生动的导入和概念讲解,引导学生理解整数的概念和性质。

通过示意图的展示和实例的举例,使学生掌握整数的表示方法和大小关系。

通过适当的练和巩固,提高学生的运算能力和问题解决能力。

湘教版数学八年级上册1.1《平方根》教学设计

湘教版数学八年级上册1.1《平方根》教学设计

湘教版数学八年级上册1.1《平方根》教学设计一. 教材分析《平方根》是湘教版数学八年级上册第一章的第一节内容。

本节主要介绍平方根的概念,让学生理解平方根的性质,学会求一个数的平方根,并掌握平方根在实际问题中的应用。

本节课的内容是学生进一步学习二次根式、实数等知识的基础,对于学生形成完整的数学知识体系具有重要意义。

二. 学情分析学生在七年级时已经学习了有理数的乘方,对乘方的概念和性质有一定的了解。

但是,对于平方根的概念和性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过实际问题,感受平方根的概念,理解平方根的性质。

同时,学生需要通过大量的练习,掌握求一个数的平方根的方法。

三. 教学目标1.知识与技能:理解平方根的概念,掌握平方根的性质,学会求一个数的平方根,并能应用于实际问题。

2.过程与方法:通过实际问题,引导学生感受平方根的概念,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:平方根的概念,平方根的性质,求一个数的平方根的方法。

2.难点:平方根在实际问题中的应用。

五. 教学方法1.情境教学法:通过实际问题,引导学生感受平方根的概念,激发学生的学习兴趣。

2.讲授法:讲解平方根的概念、性质和求平方根的方法,让学生理解和掌握。

3.练习法:大量的练习,让学生巩固所学知识,提高解决问题的能力。

六. 教学准备1.课件:制作课件,展示平方根的概念、性质和求平方根的方法。

2.练习题:准备一些练习题,用于巩固所学知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如面积、体积等,让学生感受平方根的概念。

引导学生思考:如何快速找到一个数的平方根?2.呈现(10分钟)讲解平方根的概念,介绍平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根是虚数等。

北师大版八年级数学上册第一章《勾股定理》(大单元教学设计)

北师大版八年级数学上册第一章《勾股定理》(大单元教学设计)
3.针对不同学生的学习程度,设计分层练习题,使学生在课后能够有针对性地巩固所学知识。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,梳理勾股定理及其逆定理的知识体系。
2.学生分享自己在学习勾股定理过程中的收获和感悟,提高学生的归纳总结能力。
3.教师强调勾股定理在实际生活中的应用价值,激发学生学习数学的兴趣。
6.课堂小结,巩固提高
通过对本节课所学知识的回顾和总结,帮助学生梳理知识体系,巩固重点,突破难点。
7.作业布置,分层设计
根据学生的学习程度,分层布置作业,使学生在课后能够有针对性地巩固所学知识。
8.教学评价,多元反馈
采用课堂提问、作业批改、小组评价等多种方式,全面了解学生的学习情况,给予及时、有效的反馈,促进学生全面发展。
注意事项:
1.请同学们认真完成作业,保持字迹工整,便于教师批改和反馈。
2.遇到问题时,可先与同学讨论,如仍有疑问,可向教师请教。
3.作业完成后,及时检查,确保解答过程正确,避免因粗心大意而出现错误。
4.家长在辅导孩子完成作业时,注意引导孩子独立思考,切勿直接给出答案。
3.小组合作,共同探讨勾股定理在几何图形证明中的应用。选取一个或多个几何图形,运用勾股定理进行证明,并将证明过程和结果整理成文档,以便在课堂上分享。
4.完成课后拓展题(见附件),挑战更高难度的勾股定理相关问题。此部分作业旨在提高学生的逻辑思维能力和创新意识。
5.家长参与作业:请同学们向家长介绍勾股定理及其在实际生活中的应用,并邀请家长参与一起解决一道勾股定理相关问题,增进家校互动,提高学生学习兴趣。
9.教学反思,持续改进
教师在教学过程中,要关注学生的学习反馈,及时进行教学反思,调整教学方法,提高教学效果。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的加、减、乘、除运算规则。

教学内容:有理数的定义及分类。

有理数的加法、减法、乘法、除法运算规则。

教学步骤:1. 引入有理数的概念,解释有理数的定义及分类。

2. 通过示例演示有理数的加法、减法、乘法、除法运算规则。

3. 让学生进行练习,巩固所学的运算规则。

1.2 代数式教学目标:理解代数式的概念及其组成。

掌握代数式的运算规则。

教学内容:代数式的概念及其组成。

代数式的运算规则。

教学步骤:1. 引入代数式的概念,解释代数式的组成。

2. 通过示例演示代数式的运算规则。

3. 让学生进行练习,巩固所学的运算规则。

第二章:几何基础2.1 点、线、面教学目标:理解点、线、面的概念及其关系。

教学内容:点、线、面的概念及其关系。

教学步骤:1. 引入点、线、面的概念,解释它们之间的关系。

2. 通过示例展示点、线、面的特征和性质。

3. 让学生进行练习,巩固所学的概念。

2.2 直线与角教学目标:理解直线和角的概念及其性质。

教学内容:直线和角的概念及其性质。

教学步骤:1. 引入直线和角的概念,解释它们的性质。

2. 通过示例展示直线的特征和角的性质。

3. 让学生进行练习,巩固所学的概念。

第三章:方程与不等式3.1 方程的概念与解法教学目标:理解方程的概念及其解法。

教学内容:方程的概念及其解法。

教学步骤:1. 引入方程的概念,解释方程的解法。

2. 通过示例演示方程的解法。

3. 让学生进行练习,巩固所学的解法。

3.2 不等式的概念与解法教学目标:理解不等式的概念及其解法。

教学内容:不等式的概念及其解法。

教学步骤:1. 引入不等式的概念,解释不等式的解法。

2. 通过示例演示不等式的解法。

3. 让学生进行练习,巩固所学的解法。

第四章:函数与图像4.1 函数的概念与性质教学目标:理解函数的概念及其性质。

教学内容:函数的概念及其性质。

教学步骤:1. 引入函数的概念,解释函数的性质。

苏教版数学八年级上册全册教案-苏教版八年级数学上册教案

苏教版数学八年级上册全册教案-苏教版八年级数学上册教案

苏教版数学八年级上册全册教案-苏教版八年级数学上册教案第一章矩形和平行四边形第一节课前热身知识点1. 四边形既有不等边的叫做梯形。

2. 梯形的面积=上底+下底 ×高 ÷ 2。

教学目标1. 能识别矩形和平行四边形。

2. 理解平行四边形和矩形的性质和定义。

3. 掌握平行四边形和矩形的周长和面积公式。

4. 能灵活解决与矩形和平行四边形相关的问题。

第二节矩形知识点1. 矩形的特点是四条边相互平行,四个角都是直角。

2. 特殊矩形:正方形,长方形。

教学目标1. 掌握矩形的定义和基本性质。

2. 能计算矩形的周长和面积。

3. 能够解决与矩形相关的问题。

第三节平行四边形知识点1. 平行四边形的特点是对边平行,对角线互相平分。

2. 特殊平行四边形:菱形。

教学目标1. 理解平行四边形的定义和基本性质,能够正确的画出平行四边形。

2. 掌握平行四边形的周长和面积计算公式,能够灵活运用解决问题。

3. 能够分辨平行四边形和其他的四边形。

4. 能够解决与平行四边形相关的问题。

第二章比例和单位换算第一节倍数和倍数的性质知识点1. 倍数:一个数是另一个数的几倍,这个数就是另一个数的倍数。

2. 倍数性质:(1) 两个数的比例相等,其中一个数是另一个的倍数;(2) 若a, b与c成比例,则它们的倍数也成比例。

3. 倍数应用:量的倍数、面积倍数、体积倍数。

教学目标1. 能够理解倍数的含义和性质。

2. 掌握计算倍数以及倍数的应用。

第二节均分知识点1. 如何将一个数分成几等份称为均分。

2. 两个数分别和它们的平均数的关系。

3. 三个或三个以上数和它们的平均数的关系。

教学目标1. 能够理解均分的概念。

2. 掌握均分的计算方法。

3. 能够解决与均分相关的问题。

第三节比例知识点1. 比例的概念。

2. 比例的四种关系:等比、比例、反比、无关。

3. 比例的计算和综合应用。

4. 度量单位换算。

教学目标1. 能够理解比例的概念。

2. 掌握比例的计算方法和应用。

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案

北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。

教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。

我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。

教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。

1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。

2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

八年级上册数学第一章导学案

八年级上册数学第一章导学案

1.1(1)探索勾股定理导学案主备:审核: 审批:班级:使用人:【学习目标】1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

【学前准备】1、画一个直角三角形并测量三边的长。

2、准备一张坐标纸【自学探究】阅读课本2-5页回答下列问题1、a=3㎝,b=4㎝和a=6㎝,b=8㎝①请你量出斜边c的长度。

(1)(2)②、进行有关的计算(1) a2+b2= c2=(2) a2+b2= c2=③、得出结论:3cm6cm8cm2、思考:(1)观察图1-1, A的面积是__________个单位面积;B的面积是__________个单位面积;C的面积是__________个单位面积。

(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。

预习后你还有什么问题?最想和大家讨论交流的问题是什么?【合作交流】勾股定理例题:P2引例【随堂练习】1、P5随堂练习1、2【小结】你学到了什么:你还有什么问题:【今日作业】1. 求出下列直角三角形中未知边的长度。

2、求斜边长17厘米、一条直角边长15厘米的直角三角形的面积【巩固练习】1.在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=(2)若c=41,a=9,则b=2.等腰△ABC的腰长AB=10cm,底BC为16cm,则底边上的高为,面积为3.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 & 32 D.37 & 334.一个抽斗的长为24cm,宽为7cm,在抽斗里放铁条,铁条最长能是多少?【延伸拓展】1.若正方形的面积为2cm2,则它的对角线长为2cm()2.已知四边形 ABCD中,AD∥BC,∠A=90°,AB=8,AD=4,BC=6,则以DC为边的正方形面积为3.在△ABC中,∠ACB=90°,AC=12,CB=5,M、N在AB上且AM=AC,BN=BC则MN的长为() A.2 B.26 C.3 D.42、P7数学理解31.1.2探索勾股定理导学案主备:审核:审批:班级:使用人:【学习目标】利用拼图及列式变形等方法验证勾股定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3从图1—1,1—2,1—3,1|—4中你发现什么?
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、议一议
1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?
直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”
重点
难点
重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
难点会辨析哪些问题应用哪个结论.
教法
选择
引导探索研究发现法
课型
新授
课前
准备
标有单位长度的细绳、三角板、量角器、题篇
是否使用
多媒体

教学
时数
课时
教学
课 时
第课时
备课
总数
第课时
课堂教学过 程设计
也就是说:如果直角三角形的两直角边为a,b,斜边为c,那么
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度,请大家想一想(2)中的规律,对这个三角形仍然成立吗?
四、随堂练习
1、求下图中字母所代表的正方形的面积。
教学内容
教师活动
学生活动
复习引入:
使用勾股定理的前提条件是什么?
已知△ABC的两边AB=5,AC=12,则BC=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
⒈如何来判断?
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
2这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?
教师总结:
板书
提问
练习
学生交流
学生测量后回答斜边长为13
回答是肯定的:成立
辅导
作业设置
课本P7 §1.1 1、 2、
教学札记
本节课是在了解勾股定理的由来的具体背景下,通过学生自己的观察、发现、总结、归纳,探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
教学札记
本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索,共同探究、解决问题.在教学中能注意充分调动学生的学习积极性、主动性,坚持做到以人为本,以学生为先,立足于让学生先看、先想、先说、先练,根据自己的体验,用自己的思维方式,通过实验、思考、合作、交流学好知识。
八年级数学教案上册(第一章)
———————————————————————————————— 作者:
———————————————————————————————— 日期:
课题
§1.1探索勾股定理(一)
学习
目标
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
2、你是怎样得出上面的结果的?
3、图1—2中,A,B,C之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?
二、做一做
出示投影3
(书中P3图1—4)提问:
1、图1—3中,A,B,C之间有什么关系?
出示投影图文
在学生交流回答的基础上教师直接发问:
投影出示问题
回答
学生讨论、交流形成共识
教学内容
教师活动
学生活动
2、图1—4中,A,B,C之间有什么关系?
就是说,如果三角形的三边为 , , ,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13;6,8, 10;8,15,17.
()这三组数都满足a2+b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
教学内容
教师活动
学生活动
一、创设问题的情境,激发学生的学习热情,导入课题
出示投影1
(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p6谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2
(书中的P2图1—2)并回答:
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点
难点
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教法
选择
引导探索研究发现法
课型
新授
课前
准备
出示投影
是否使用
多媒体

教学
时数
课时
教学
课时
第课时
备课
总数
第课时
课堂 教学过程 设计
检查签阅
第周,应备课时,实备课时,共课时
评价:时间:检查(签章):
课题
§1.2 能得到直角三角形吗
学习
目标
1.掌握直角三角形的判别条件,并能进行简单应用;
2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
总结
出示题目
引导学生进行正确的解答及规范的书写
练习后总结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
学生尝试、讨论,得出结论
练习,探究
作业设置
P1.4知识技能1
提问
提出问题
出示题目
学生复述勾股定理
学生答
演示
用直角三角板检验
尝试
教学内容
教师活动
学生活动
⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
满足a2+b2=c2的三个正整数,称为勾股数.
⒋例1一个零件的形状如左图所示,按规定这个零件中 ∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15;ﻩ⑵15,36,39;
⑶12,35,36;ﻩ⑷12,18,22.
⒉已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是最大角.
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.
相关文档
最新文档