工程光学matlab仿真

合集下载

matlab仿真及其在光学课程中的应用

matlab仿真及其在光学课程中的应用

matlab仿真及其在光学课程中的应用一、引言Matlab是一种用于科学计算和数据分析的软件,它具有强大的数学计算能力和易于编程的特点,在光学课程中有着广泛的应用。

本文将介绍Matlab仿真在光学课程中的应用,并提供详细的实例说明。

二、Matlab基础知识1. Matlab环境介绍Matlab环境包括命令窗口、编辑器窗口、工作区窗口、命令历史窗口和帮助窗口等。

其中,命令窗口是进行交互式计算和演示的主要界面,编辑器窗口可以编写程序代码并保存到磁盘上,工作区窗口显示当前变量值,命令历史窗口记录执行过的命令,帮助窗口提供了详细的Matlab函数库说明。

2. Matlab语法规则Matlab语言采用类似于C语言的语法规则,但也有自己独特的特点。

例如,Matlab中所有变量都是矩阵类型,并且支持矩阵运算;函数名和变量名不区分大小写;注释符号为%。

3. Matlab常用函数库Matlab提供了丰富的函数库来支持各种数学计算和数据处理任务,例如矩阵运算、信号处理、图像处理等。

常用的函数库包括:(1)基本数学函数库:abs、sin、cos、tan、exp等;(2)矩阵运算函数库:inv、det、eig等;(3)信号处理函数库:fft、ifft等;(4)图像处理函数库:imread、imshow等。

三、Matlab在光学课程中的应用1. 光学波动方程仿真光学波动方程是描述光波传播的基本方程,通过Matlab可以进行波动方程的仿真计算。

例如,可以模拟出一个平面波在通过一片介质后的折射和反射情况。

具体步骤如下:(1)定义平面波初始状态和介质折射率;(2)利用波动方程求解得到平面波在介质中传播后的场分布;(3)绘制出平面波在介质中传播后的场分布图。

2. 光线追迹仿真光线追迹是描述光线传播和成像的基本方法之一,在Matlab中可以进行光线追迹的仿真计算。

例如,可以模拟出一个凸透镜成像过程。

具体步骤如下:(1)定义凸透镜的曲率半径和折射率;(2)定义物体点的位置和大小;(3)利用光线追迹方法求解得到物体点成像后的位置和大小;(4)绘制出凸透镜成像后的图像。

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真基于Matlab的光学实验仿真一、引言光学是研究光的传播、反射、折射和干涉等现象的学科,广泛应用于光学器件、光通信等领域。

在光学实验中,通过搭建实验装置来观察和研究光的行为,以验证光学理论并深入理解光的特性。

然而,传统的光学实验不仅设备复杂,成本高昂,而且需要大量的实验时间和实验设计。

因此,基于计算机仿真的方法成为了一种重要的补充和替代。

Matlab作为一种强大的数值计算和仿真工具,具有强大的数学运算能力和友好的图形界面,被广泛应用于科学研究和工程设计。

在光学实验中,Matlab可以模拟光的传播、折射、干涉等各种光学现象,使得研究人员可以在计算机上进行光学实验,加速实验过程并提高实验效率。

二、光的传播仿真在光学实验中,光的传播是一项重要的研究内容。

通过Matlab的计算能力,我们可以模拟光线在不同介质中的传播情况,并观察其光程差、折射等现象。

光的传播可以用波动光学的理论来描述,其中最经典的是亥姆霍兹方程。

在Matlab中,我们可以利用波动光学的相关工具箱,通过求解亥姆霍兹方程来模拟光的传播。

例如,我们可以模拟光在一特定系统中的衍射效应。

在Matlab中,衍射效应可以通过菲涅尔衍射和弗雷涅尔衍射来模拟。

我们可以设定特定的光源和障碍物,通过Matlab的计算能力计算光的传播、衍射和干涉等现象,得到不同条件下的衍射效应,并可视化展示。

三、光的折射仿真光的折射是光学领域中的另一个重要现象,研究光的折射对于理解光在不同介质中的传播行为至关重要。

通过Matlab的仿真,我们可以模拟光的折射行为,并研究不同介质对光的影响。

在Matlab中,我们可以利用光学工具箱中的折射相关函数,输入光线的入射角度、折射率等参数,模拟光线在不同介质中的折射行为。

通过改变不同介质的折射率、入射角度等参数,我们可以观察到光的全反射、折射偏折等现象,并进行定量分析和比较。

四、光的干涉仿真光的干涉是光学领域的重要研究课题之一,通过模拟光的干涉行为,可以深入理解光的相干性、波动性质等特性。

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真一、本文概述随着科技的快速发展,计算机仿真技术已成为科学研究、教学实验以及工程应用等领域中不可或缺的一部分。

在光学实验中,仿真技术能够模拟出真实的光学现象,帮助研究者深入理解光学原理,优化实验设计,提高实验效率。

本文旨在探讨基于Matlab的光学实验仿真方法,分析Matlab在光学实验仿真中的优势和应用,并通过具体案例展示其在光学实验仿真中的实际应用效果。

通过本文的阐述,读者将能够了解Matlab在光学实验仿真中的重要作用,掌握基于Matlab的光学实验仿真方法,从而更好地应用仿真技术服务于光学研究和实验。

二、Matlab基础知识Matlab,全称为Matrix Laboratory,是一款由美国MathWorks公司出品的商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算等领域。

Matlab以其强大的矩阵计算能力和丰富的函数库,在光学实验仿真领域具有广泛的应用。

Matlab中的变量无需预先声明,可以直接使用。

变量的命名规则相对简单,以字母开头,后面可以跟字母、数字或下划线。

Matlab支持多种数据类型,包括数值型(整数和浮点数)、字符型、逻辑型、结构体、单元数组和元胞数组等。

Matlab的核心是矩阵运算,它支持多维数组和矩阵的创建和操作。

用户可以使用方括号 [] 来创建数组或矩阵,通过索引访问和修改数组元素。

Matlab还提供了大量用于矩阵运算的函数,如矩阵乘法、矩阵转置、矩阵求逆等。

Matlab具有强大的数据可视化功能,可以绘制各种二维和三维图形。

在光学实验仿真中,常用的图形包括曲线图、散点图、柱状图、表面图和体积图等。

用户可以使用plot、scatter、bar、surf和volume 等函数来创建这些图形。

Matlab支持多种控制流结构,如条件语句(if-else)、循环语句(for、while)和开关语句(switch)。

这些控制流结构可以帮助用户编写复杂的算法和程序。

《2024年基于Matlab的光学实验仿真》范文

《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。

然而,实际的光学实验通常涉及到复杂的光路设计和精密的仪器设备,实验成本高、周期长。

因此,通过基于Matlab的光学实验仿真来模拟光学实验,不仅能够为研究提供更方便的实验条件,而且还可以帮助科研人员更深入地理解和掌握光学原理。

本文将介绍基于Matlab的光学实验仿真的实现方法和应用实例。

二、Matlab在光学实验仿真中的应用Matlab作为一种强大的数学计算软件,在光学实验仿真中具有广泛的应用。

其强大的矩阵运算能力、图像处理能力和数值模拟能力为光学仿真提供了坚实的数学基础。

1. 矩阵运算与光线传播Matlab的矩阵运算功能可用于模拟光线传播过程。

例如,光线在空间中的传播可以通过矩阵的变换实现,包括偏振、折射、反射等过程。

通过构建相应的矩阵模型,可以实现对光线传播过程的精确模拟。

2. 图像处理与光场分布Matlab的图像处理功能可用于模拟光场分布和光束传播。

例如,通过傅里叶变换和波前重建等方法,可以模拟出光束在空间中的传播过程和光场分布情况,从而为光学设计提供参考。

3. 数值模拟与实验设计Matlab的数值模拟功能可用于设计光学实验方案和优化实验参数。

通过构建光学系统的数学模型,可以模拟出实验过程中的各种现象和结果,从而为实验设计提供依据。

此外,Matlab还可以用于分析实验数据和优化实验参数,提高实验的准确性和效率。

三、基于Matlab的光学实验仿真实现方法基于Matlab的光学实验仿真实现方法主要包括以下几个步骤:1. 建立光学系统的数学模型根据实际的光学系统,建立相应的数学模型。

这包括光路设计、光学元件的参数、光束的传播等。

2. 编写仿真程序根据建立的数学模型,编写Matlab仿真程序。

这包括矩阵运算、图像处理和数值模拟等步骤。

在编写程序时,需要注意程序的精度和效率,确保仿真的准确性。

3. 运行仿真程序并分析结果运行仿真程序后,可以得到光束传播的模拟结果和光场分布等信息。

matlab仿真在光学原理中的应用

matlab仿真在光学原理中的应用

MATLAB仿真在光学原理中的应用1. 简介光学是研究光的产生、传播、照明及检测等现象和规律的科学,它在物理学、医学、通信等领域有着重要的应用。

随着计算机科学和数值计算的发展,MATLAB作为一种强大的科学计算软件,被广泛应用于光学原理的仿真和分析中,为光学研究提供了有力的工具和方法。

本文将介绍MATLAB仿真在光学原理中的应用,并通过列举几个典型例子来说明MATLAB在解决光学问题上的优势。

2. 光的传播仿真光的传播是光学研究中的重要内容,MATLAB可以通过数值模拟的方法来进行光的传播仿真。

以下是一些常见的光传播仿真的应用:•光线传播仿真:通过计算光线在不同介质中的折射、反射和衍射等规律,可以模拟光在复杂光学系统中的传播过程。

•光束传输仿真:通过建立传输矩阵或使用波前传输函数等方法,可以模拟光束在光学元件中的传输过程,如透镜、棱镜等。

•光纤传输仿真:通过数值模拟光在光纤中的传播过程,可以分析光纤的传输损耗、模式耦合和色散等问题。

MATLAB提供了许多函数和工具箱,如光学工具箱、光纤工具箱等,可以方便地进行光传播仿真和分析。

3. 光学成像仿真光学成像是光学研究中的重要应用之一,MATLAB可以用于模拟和分析光学成像过程。

以下是一些常见的光学成像仿真的应用:•几何光学成像仿真:根据几何光学理论,可以通过模拟光线的传播和聚焦过程来分析光学成像的特性,如像差、焦距和倍率等。

•衍射光学成像仿真:通过衍射理论和数值计算,可以模拟光的衍射和干涉效应对光学成像的影响,如衍射限制和分辨率等。

•光学投影仿真:通过模拟光束、透镜和光阑等光学元件的组合和调节,可以分析光学投影系统的成像质量和变换特性。

MATLAB提供了丰富的函数和工具箱,如图像处理工具箱、计算光学工具箱等,可以方便地进行光学成像仿真和分析。

4. 激光光学仿真激光是光学研究中的一个重要分支,MATLAB可以用于模拟和分析激光的特性和应用。

以下是一些常见的激光光学仿真的应用:•激光器仿真:通过建立激光器的数学模型和模拟激光的发射过程,可以分析激光器的输出特性和光束质量等。

《2024年基于Matlab的光学实验仿真》范文

《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。

然而,由于实验条件的限制和复杂性,实验过程往往需要耗费大量的时间和资源。

因此,基于Matlab的光学实验仿真成为了一种有效的替代方法。

通过仿真,我们可以在计算机上模拟真实的光学实验过程,获得与实际实验相似的结果,从而节省实验成本和时间。

本文将介绍基于Matlab的光学实验仿真的基本原理、方法、应用和优缺点。

二、Matlab在光学实验仿真中的应用Matlab是一种强大的数学计算软件,具有丰富的函数库和强大的计算能力,可以用于光学实验的仿真。

在光学实验仿真中,Matlab可以模拟各种光学元件、光学系统和光学现象,如透镜、反射镜、干涉仪、光谱仪等。

此外,Matlab还可以通过编程实现复杂的算法和模型,如光线追踪、光场计算、光波传播等。

三、基于Matlab的光学实验仿真方法基于Matlab的光学实验仿真方法主要包括以下几个步骤:1. 建立仿真模型:根据实验要求,建立相应的光学系统模型和算法模型。

2. 设置仿真参数:根据实际需求,设置仿真参数,如光源类型、光束尺寸、光路走向等。

3. 编写仿真程序:使用Matlab编写仿真程序,实现光路计算、光场分析和结果输出等功能。

4. 运行仿真程序:运行仿真程序,获取仿真结果。

5. 分析结果:对仿真结果进行分析和讨论,得出结论。

四、应用实例以透镜成像为例,介绍基于Matlab的光学实验仿真的应用。

首先,建立透镜成像的仿真模型,包括光源、透镜和屏幕等元件。

然后,设置仿真参数,如光源类型、透镜焦距、屏幕位置等。

接着,使用Matlab编写仿真程序,实现光线追踪和光场计算等功能。

最后,运行仿真程序并分析结果。

通过仿真结果,我们可以观察到透镜对光线的聚焦作用和成像效果,从而验证透镜成像的原理和规律。

五、优缺点分析基于Matlab的光学实验仿真具有以下优点:1. 节省时间和成本:通过仿真可以快速获得实验结果,避免实际实验中的复杂性和不确定性。

工程光学matlab仿真

工程光学matlab仿真

工程光学仿真实验报告1、杨氏双缝干涉实验1杨氏干涉模型杨氏双缝干涉实验装置如图1所示: S 发出的光波射到光屏上的两个小孔S1 和S2 , S1 和S2 相距很近,且到S 等距;从S1 和S2 分别发散出的光波是由同一光波分出来的,所以是相干光波,它们在距离光屏为 D 的屏幕上叠加,形成一定的干涉图 样; 图 杨氏双缝干涉假设S 是单色点光源,考察屏幕上某一点P ,从S1 和S2 发出的光波在该点叠加产生的光强度为:I = I1 + I2 + 2 I1 I2 cos δ 1-1式中, I1 和I2 分别是两光波在屏幕上的光强度, 若实验装置中S1 和S2 两个缝大小相等, 则有I1 = I2 =I0 1-2δ= 2πr2 - r1/λ1-3 1-3 2221)2/(D y d x r +++= 1-4 2222)2/(D y d x r ++-= 1-5可得 xd r r 22122=- 1-6因此光程差:12r r -=∆ 1-7则可以得到条纹的强度变化规律- 强度分布公式:]/)([cos 1220λπd r r I I -= 1-8 (2)仿真程序clear;Lambda=650; %设定波长,以Lambda 表示波长Lambda=Lambda1e-9;d=input '输入两个缝的间距 '; %设定两缝之间的距离,以d 表示两缝之间距离d=d;Z=; %设定从缝到屏幕之间的距离,用Z 表示yMax=5LambdaZ/d;xs=yMax; %设定y 方向和x 方向的范围Ny=101;ys=linspace-yMax,yMax,Ny;%产生一个一维数组ys,Ny 是此次采样总点数%采样的范围从- ymax 到ymax,采样的数组命名为ys%此数组装的是屏幕上的采样点的纵坐标for i=1:Ny %对屏幕上的全部点进行循环计算,则要进行Ny 次计算L1=sqrtysi-d/2.^2+Z^2;L2=sqrtysi+d/2.^2+Z^2; %屏上没一点到双缝的距离L1和L2Phi=2piL2-L1/Lambda; %计算相位差Bi,:=4cosPhi/2.^2; %建立一个二维数组,用来装该点的光强的值end %结束循环NCLevels=255; %确定使用的灰度等级为255级Br=B/NCLevels; %定标:使最大光强4. 0对应于最大灰度级白色subplot1,4,1,imagexs,ys,Br; %用subplot 创建和控制多坐标轴colormapgrayNCLevels; %用灰度级颜色图设置色图和明暗subplot1,4,2,plotB:,ys; %把当前窗口对象分成2块矩形区域 %在第2块区域创建新的坐标轴%把这个坐标轴设定为当前坐标轴%然后绘制以 b : , ys 为坐标相连的线title '杨氏双缝干涉';3仿真图样及分析a 双缝间距2mmb 双缝间距4mmc 双缝间距6mmd 双缝间距8mm图改变双缝间距的条纹变化由上面四幅图可以看出,随着双缝之间的距离增大,条纹边缘坐标减小,也就是条纹间距减小,和理论公式d D e /λ=推导一致;如果增大双缝的缝宽,会使光强I 增加,能够看到条纹变亮;二、杨氏双孔干涉实验1、杨氏双孔干涉杨氏双孔干涉实验是两个点光源干涉实验的典型代表;如图2所示;当光穿过这两个离得很近小孔后在空间叠加后发生干涉,并在像屏上呈现出清晰的明暗相间的条纹;由于双孔发出的波是两组同频率同相位的球面波, 故在双孔屏的光射空间会发生干涉; 于是, 在图2中两屏之间的空间里,如果一点P 处于两相干的球面波同时到达波峰或波谷的位置, 叠加后振幅达到最高, 图 杨氏双孔干涉表现为干涉波的亮点; 反之, 当P 处处于一个球面波的波峰以及另一个球面波的波谷时候,叠加后振幅为零,变现是暗纹;1r 为S1到屏上一点的距离, 2221)2/(D y d x r +++= 2-1,2r 为S2到屏上这点的距离,2222)2/(D y d x r ++-= 2-2,如图2,d 为两孔之间的距离,D 为孔到屏的距离;由孔S1和孔S2发出的光的波函数可表示为 )ex p(1111ikr r A E = 2-3 )ex p(2212ikr r A E =2-4 则两束光叠加后 21E E E += 2-5干涉后光强 **E E I = 2-62、仿真程序clear;Lambda=63210^-9; %设定波长,以Lambda 表示波长d=; %设定双孔之间的距离D=1; %设定从孔到屏幕之间的距离,用D 表示A1=; %设定双孔光的振幅都是1A2=;yMax=1; %设定y 方向的范围xMax=yMax/500; %设定x 方向的范围N=300; %采样点数为Nys=linspace-yMax,yMax,N;%Y 方向上采样的范围从-ymax 到ymaxxs=linspace-xMax,xMax,N;%X 方向上采样的范围从-xmax 到xmaxfor i=1:Nfor j=1:N %对屏幕上的全部点进行循环计算,则要进行NN 次计算 r1i,j=sqrtxsi-d/2^2+ysj^2+D^2;r2i,j=sqrtxsi+d/2^2+ysj^2+D^2; %屏上一点到双孔的距离r1和r2E1i,j=A1/r1i,jexp2pi1jr1i,j/Lambda;%S1发出的光的波函数E2i,j=A2/r2i,jexp2pi1jr2i,j/Lambda;%S2发出的光的波函数Ei,j=E1i,j+E2i,j; %干涉后的波函数Bi,j=conjEi,jEi,j; %叠加后的光强endend %结束循环NCLevels=255; %确定使用的灰度等级为255级Br=B/NCLevels; %定标:使最大光强4. 0对应于最大灰度级白色imagexs,ys,Br; %仿真出图像colormap 'hot';title '杨氏双孔';(3)干涉图样及分析1改变孔间距对干涉图样的影响d=1mm d=3mm图 改变孔间距对干涉的影响如图,分别是孔间距为1mm 和3mm 的干涉图样,可以看出,随着d 的增加,视野中干涉条纹增加,条纹变细,条纹间距变小;2)改变孔直径的影响图 孔直径对干涉的影响如图,这里改变孔直径指的是改变光强,不考虑光的衍射;孔直径变大,光强变大,可以看出,干涉条纹变亮;3、平面波干涉(1)干涉模型根据图可以看出,这是两个平行光在屏上相遇发生干涉,两束平行光夹角为θ;它们在屏上干涉叠加,这是平面波的干涉;两束平行波波函数为:)ex p(111ikr A E = 3-1)ex p(222ikr A E = 3-2两束光到屏上一点的光程差为θsin y =∆ 3-3 图 平行光干涉垂直方向建立纵坐标系,y 是屏上点的坐标;那么屏上点的光强为)cos(2212221∆++=k A A A A I 3-4式中A1和A2分别是两束光的振幅;(2)仿真程序clear;Lambda=; %设定波长Lambda=Lambda1e-9;t=input '两束光的夹角'; %设定两束光的夹角A1=input '光一的振幅'; %设定1光的振幅A2=input '光二的振幅'; %设定2光的振幅yMax=10Lambda;xs=yMax; %X 方向和Y 方向的范围N=101; %设定采样点数为Nys=linspace-yMax,yMax,N; %Y 方向上采样的范围从- ymax 到ymaxfor i=1:N %循环计算N 次phi=ysisint/2; %计算光程差Bi,:=A1^2+A2^2+2sqrtA1^2A2^2cos2piphi/Lambda;%计算光强end %结束循环 NCLevels=255; %确定使用的灰度等级为255级Br=BNCLevels/6; %定标:使最大光强4. 0对应于最大灰度级白色subplot1,4,1,imagexs,ys,Br; %用subplot 创建和控制多坐标轴colormapgrayNCLevels; %用灰度级颜色图设置色图和明暗subplot1,4,2,plotB:,ys; %把这个坐标轴设定为当前坐标轴%然后绘制以 b : , ys 为坐标相连的折线(3)干涉图样及分析1)改变振幅比对干涉图样的影响a 振幅比1:1b 振幅比1:2图不同振幅比的干涉图样由图看出,振幅比从1:1变成1:2后,干涉条纹变得不清晰了;干涉叠加后的波峰波谷位置没有变化,条纹间距没有变化,但是叠加后的波振幅变小了,即不清晰;2)改变平行光夹角对干涉图样的影响a 两束光夹角60度b 两束光夹角90度图平面波不同夹角的干涉图样图是两束平行光夹角为60度和90度的干涉条纹,由于夹角不同,光程差不同,改变叠加后光波波峰波谷位置,因此干涉明条纹和暗条纹的位置和间距不同;4、两点光源的干涉(1)干涉模型如图,S1和S2是两个点光源,距离是d;两个点光源发出的光波在空间中相遇发生干涉;在接收屏上,发生干涉的两束波叠加产生干涉条纹;S2与屏距离是z,S1与屏的距离是d+z;两个点光源的干涉是典型的球面波干涉,屏上一点到S1 图 点光源干涉 和S2的距离可以表示为 2221)(z d y x r +++= 4-1 2222z y x r ++= 4-2则 )ex p(1111ikr r A E = 4-3 )ex p(2222ikr r A E = 4-4 其中A1和A2分别是S1、S2光的振幅;干涉后的光为21E E E += 4-5因此干涉后光波光强为**E E I = 4-6(2)仿真程序clear;Lambda=650; %设定波长Lambda=Lambda1e-9;A1=2; %设定S1光的振幅A2=2; %设定S2光的振幅d=input '输入两点光源距离'; %设定两个光源的距离z=5; %设定S2与屏的距离xmax= %设定x 方向的范围ymax=; %设定y 方向的范围N=200; %采样点数为Nx=linspace-xmax,xmax,N;%X 方向上采样的范围从-xmax 到xmax,采样数组命名为x y=linspace-ymax,ymax,N;%Y 方向上采样的范围从-ymax 到ymax,采样数组命名为y for i=1:Nfor k=1:N %对屏幕上的全部点进行循环计算,则要进行NN 次计算 l1i,k=sqrtd+z^2+ykyk+xixi; %计算采样点到S1的距离l2i,k=sqrtz^2+ykyk+xixi; %计算采样点到S2的距离E1i,k=A1/l1i,kexp2pi1j.l1i,k/Lambda;%S1复振幅E2i,k=A2/l2i,kexp2pi1j.l2i,k/Lambda;%S2复振幅Ei,k=E1i,k+E2i,k; %干涉叠加后复振幅Bi,k=conjEi,k.Ei,k;%干涉后光强endendNclevels=255; %确定使用的灰度等级为255级Br=BNclevels; %定标imagex,y,Br; %做出干涉图像colormap 'hot';title '双点光源干涉';3干涉图样及分析改变点光源的间距对干涉图样的影响ad=1mbd=2mcd=3m图改变点光源间距的干涉图样 图是根据图仿真干涉出的图样,S1和S2之间距离分别为1m 、2m 、3m,由图样可以看出,随着d 的增加,光程差变大,视野内的干涉圆环逐渐增多,圆环之间的距离变小;5、 平面上两点光源干涉(1)干涉模型S1和S2是平面上的两个点光源,距离为d,两个光源发出的光相遇发生干涉,产生干涉条纹;以S1所在处为原点建立平面直角坐标系,平面上任意一点到S1、S2的距离是 221y x r += 5-1 图 平面两点光源干涉222)(y d x r +-= 5-2S1和S2发出的都是球面波,可表示为)ex p(1111ikr r A E = 5-3 )ex p(2222ikr r A E =5-4 式中A1和A2分别是S1、S2的振幅;干涉叠加后的波函数为21E E E += 5-5因此干涉后光波光强为**E E I = 5-62仿真程序clear;Lambda=650; %设定波长Lambda=Lambda1e-9;A1=; %设定S1光的振幅d1S 2SA2=; %设定S2光的振幅d= %设定两个光源的距离xmax=; %设定x 方向的范围ymax=; %设定y 方向的范围N=500; %采样点数为Nx=linspace-xmax,xmax,N;%X 方向上采样的范围从-xmax 到xmax,采样数组命名为x y=linspace-ymax,ymax,N;%Y 方向上采样的范围从-ymax 到ymax,采样数组命名为y for i=1:Nfor k=1:N %对屏幕上的全部点进行循环计算,则要进行NN 次计算 r1i,k=sqrtykyk+xixi; %计算采样点到S1的距离r2i,k=sqrtykyk+xi-dxi-d; %计算采样点到S2的距离E1i,k=A1/r1i,kexp2pij.r1i,k/Lambda;%S1复振幅E2i,k=A2/r2i,kexp2pij.r2i,k/Lambda;%S2复振幅Ei,k=E1i,k+E2i,k; %干涉叠加后复振幅Bi,k=conjEi,k.Ei,k; %干涉后光强endend %结束循环Nclevels=255; %确定使用的灰度等级为255级Br=BNclevels/4; %定标imagex,y,Br;colormap 'hot';title '并排双点光源干涉';(3)干涉图样及分析1)聚散性对干涉图样的影响a 会聚b 发散图聚散性对干涉的影响两个点光源并排放置,在靠近点光源的观察屏上看到的干涉条纹是一组放射状的条纹,并且强度从中心向四周减弱,光源的聚散性对干涉图样没有影响;2改变两光源间距对干涉的影响ad=4um bd=8um图两光源间距对干涉的影响从图可以看出,视野中条纹逐渐多了;随着间距变小,干涉条纹宽度变小,条纹间距变小;6、平行光与点光源干涉图 图 图1平面波和球面波干涉如图,三幅图都是点光源和平行光的干涉,平面光入射的角度不同;平行光与点光源相遇在空间中产生干涉,在屏上形成干涉条纹;点光源与屏的距离为z,屏上坐标为x,y 的一点与点光源的距离是2221z y x r ++= 6-1由点光源发出的光波表示为 )ex p(1111ikr r A E = 6-2 平行光可以表示为)sin /ex p(22θikz A E = 6-3式中θ表示平行光与屏的夹角;两束光发生干涉叠加后,干涉光复振幅21E E E += 6-4则光强**E E I = 6-52仿真程序clear;Lambda=650; %设定波长,以Lambda 表示波长Lambda=Lambda1e-9; %变换单位A1=1; %设定球面波的振幅是1A2=1; %设定平面波的振幅是1xmax=; %设定x 方向的范围ymax=; %设定y 方向的范围t=input '输入角度'; %设定平行光和屏的夹角z=1; %设定点光源和屏的距离N=500; %N 是此次采样点数x=linspace-xmax,xmax,N; %X 方向上采样的范围从-xmax 到ymaxy=linspace-ymax,ymax,N; %Y 方向上采样的范围从-ymax 到ymaxfor i=1:N %对屏幕上的全部点进行循环计算,则要进行NN 次计算 for k=1:Nl1i,k=sqrtykyk+xixi+z^2; %表示屏上一点到点光源的距离E1i,k=A1/l1i,kexp2pij.l1i,k/Lambda;%球面波的复振幅E2i,k=A2exp2pij.z1/sint/Lambda; %平面波的复振幅Ei,k=E1i,k+E2i,k; %屏上点的振幅Bi,k=conjEi,k.Ei,k; %屏上每个采样点的光强end %结束循环end %结束循环Nclevels=255; %确定使用的灰度等级为255级Br=BNclevels/4; %定标:使最大光强4. 0对应于最大灰度级 imagex,y,Br; %干涉图样colormap 'hot'; %设置色图和明暗(3)仿真图样及分析平行光入射角度对干涉图样的影响a90=θ b 45=θ c 135=θ图平行光入射角度对干涉的影响图分别是平行光与屏夹角为90度、45度、135度的情况,斜入射与垂直入射相比,干涉圆环更大;而角度互补的两种入射方式,区别在于中心是明还是暗;由图可以看出,斜入射135度的平行光与点光源干涉,干涉图样中心是暗斑;7、平行光照射楔板 (1)图的楔板 L=63010^-9;alfa=pi/20000;H=; %波长630nm,倾角e-4,厚5mm n=; %折射率N= a2=axes'Position',,,,; %定位在绘图中的位置x,y=meshgridlinspace0,,200; %将5mm5mm 区域打散成200200个点h=tanalfax+H; %玻璃厚度Delta=2hn+L/2; %光程差In=+cosDeltapi2/L/2; %光强分布按比例缩小到0-1imshowIn %生成灰度图图 图 λ=630nm ,θ=pi/20000λ=430nm ,θ=pi/20000 λ=630nm ,θ=pi/30000图 图可见增大波长或者减小楔角会使干涉条纹间距加大;(2)牛顿环L=63010^-9;R=3; %波长630nm 曲率半径3Ma2=axes'Position',,,,; %定位在绘图中的位置x,y=meshgridlinspace,,200; %将5mm5mm 区域打散成200200r2=x.^2+y.^2; %r2为各个点距中心的距离^2矩阵h=R-sqrtR^2-r2 %空气薄膜厚度Delta=2h+L/2 %光程差In=+cosDeltapi2/L/2; %光强分布按比例缩小到0-1 imshowIn %生成灰度图λ=630nm ,R=3M图图λ=430nm ,R=3M λ=630nm ,R=10M图图增大波长或者增大球的曲率半径会使牛顿环半径增大;3圆柱曲面干涉L=63010^-9;R=3; %波长630nm,曲率半径3Ma2=axes'Position',,,,; %定位在绘图中的位置x,y=meshgridlinspace,,200; %将5mm5mm区域打散成200200r2=x.^2+0y.^2; % r2为各个点距中心的距离^2矩阵h=R-sqrtR^2-r2 %空气薄膜厚度Delta=2h+L/2 %光程差In=+cosDeltapi2/L/2; %光强分布按比例缩小到0-1 imshowIn %生成灰度图λ=630nm ,R=3M图图λ=430nm ,R=3M λ=630nm ,R=10M图图可见增大波长或者增大圆柱底面的半径会使干涉条纹变宽;(4)任意曲面L=63010^-9;R=3; %波长630nm 曲率半径3Ma2=axes'Position',,,,; %定位在绘图中的位置x,y=meshgridlinspace,,200; %将5mm5mm区域打散成200200r2=x.^2+y.^2; %r2为各个点距中心的距离^2矩阵h=sinr23000 %空气薄膜厚度Delta=2h+L/2 %光程差In=+cosDeltapi2/L/2; %光强分布按比例缩小到0-1 imshowIn曲面函数:z=sin3000x^2+y^2图图8、等倾干涉(1)平行平板干涉图图 如图,扩展光源上一点S 发出的一束光经平行平板的上、下表面的反射和折射后,在透镜后焦平面P 点相遇产生干涉;两支光来源于同一光线,因此其孔径角是零;在P 点的强度是: )cos(22121∆++=k I I I I I8-1其中光程差2/cos 22λθ+=∆nh 8-2 光程差越大,对应的干涉级次越高,因此等倾条纹在中心处具有最高干涉级次; λλ02/2m nh =+ 8-30m 一般不一定是整数,即中心不一定是最亮点,它可以写成q m m +=10,式中1m 是最靠近中心的亮条纹的整数干涉级,第N 条亮条纹的干涉级表示为]1[1+-N m ;如图2,其角半径记为N 1θ则 q N hn n +-=11'1λθ 8-4 上式表明平板厚度h 越大,条纹角半径就越小;条纹角间距为12'12θλθh n n =∆ 8-5 表明靠近中心的条纹稀疏,离中心越远的条纹越密,呈里疏外密分布;(2)仿真程序xmax=;ymax=; %设定y 方向和x 方向的范围Lamd=452e-006; %设定波长,以Lambda 表示波长h=2; %设置平行平板的厚度是2mmn=input '输入折射率'; %设置平行平板的折射率,以n 表示f=50; %透镜焦距是50mmN=500; %N 是采样点数x=linspace-xmax,xmax,N;%X 方向采样的范围从-ymax 到ymax,采样数组命名为x y=linspace-ymax,ymax,N;%Y 方向采样的范围从-ymax 到ymax,采样数组命名为y for i=1:N %对屏幕上的全部点进行循环计算,则要进行NN 次计算 S S Sfor j=1:Nri,j=sqrtxixi+yjyj; %平面上一点到中心的距离ui,j=ri,j/f; %角半径ti,j=asinnsinatanui,j; %折射角phii,j=2nhcosti,j+Lamd/2; %计算光程差Bi,j=4cospiphii,j/Lamd.^2;%建立一个二维数组每一个点对应一个光强end%结束循环end%结束循环Nclevels=255; %确定使用的灰度等级为255级Br=B/Nclevels; %定标:使最大光强4. 0对应于最大灰度级白色imagex,y,Br; %做出函数Br的图像colormapgrayNclevels; %用灰度级颜色图设置色图和明暗(3)干涉图样及分析折射率变化对干涉图样的影响an= bn= cn=图折射率变化对干涉的影响观察上面三幅图,分别是折射率、、时候的干涉图样;由图可以看出,等倾干涉的条纹间距是不相等的,靠近中心处比较稀疏,外部比较密集;随着折射率的增大,视野内的条纹变少,条纹间距变大,条纹更稀疏;。

工程光学等厚干涉Matlab仿真-推荐下载

工程光学等厚干涉Matlab仿真-推荐下载
第五题 四个图均为等厚干涉。因此相位差,光强的式子均相同,只要பைடு நூலகம்改光程差,并设置相关的 参数即可。
2
I
4
cos
1. 平面楔板
2
(1) 光程差分析
(
2
2nh 2
(2) 参数设置
波长 =500nm 楔角 =0.1rad 折射率n 1
(3) Matlab 仿真程序
)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程光学仿真实验报告1、杨氏双缝干涉实验(1)杨氏干涉模型屏图, 0(1-8)21(2)仿真程序clear;Lambda=650; %设定波长,以Lambda表示波长Lambda=Lambda*1e-9;d=input('输入两个缝的间距 )'); %设定两缝之间的距离,以d表示两缝之间距离d=d*0.001;Z=0.5; %设定从缝到屏幕之间的距离,用Z表示yMax=5*Lambda*Z/d;xs=yMax; %设定y方向和x方向的范围Ny=101;ys=linspace(-yMax,yMax,Ny);%产生一个一维数组ys,Ny 是此次采样总点数%采样的范围从- ymax 到ymax,采样的数组命名为ys%此数组装的是屏幕上的采样点的纵坐标for i=1:Ny %对屏幕上的全部点进行循环计算,则要进行Ny 次计算L1=sqrt((ys(i)-d/2).^2+Z^2);L2=sqrt((ys(i)+d/2).^2+Z^2); %屏上没一点到双缝的距离L1和L2Phi=2*pi*(L2-L1)/Lambda; %计算相位差B(i,:)=4*cos(Phi/2).^2; %建立一个二维数组,用来装该点的光强的值end %结束循环NCLevels=255; %确定使用的灰度等级为255级Br=(B/4.0)*NCLevels; %定标:使最大光强(4. 0)对应于最大灰度级(白色) subplot(1,4,1),image(xs,ys,Br); %用subplot 创建和控制多坐标轴colormap(gray(NCLevels)); %用灰度级颜色图设置色图和明暗subplot(1,4,2),plot(B(:),ys); %把当前窗口对象分成2块矩形区域 %在第2块区域创建新的坐标轴%把这个坐标轴设定为当前坐标轴%然后绘制以( b (: ) , ys)为坐标相连的线title('杨氏双缝干涉');(3)仿真图样及分析a)双缝间距2mm b)双缝间距4mmc)双缝间距6mm d)双缝间距8mm图1.2改变双缝间距的条纹变化由上面四幅图可以看出,随着双缝之间的距离增大,条纹边缘坐标减小,也就是条纹间距减小,和理论公式d D e /λ=推导一致。

如果增大双缝的缝宽,会使光强I 增加,能够看到条纹变亮。

二、杨氏双孔干涉实验1、杨氏双孔干涉杨氏双孔干涉实验是两个点光源干涉实验的典型代表。

如图2所示。

当光穿过这两个离得很近小孔后在空间叠加后发生干涉, 并在像屏上呈现出清晰的明暗相间的条纹。

由于双孔发出的波是两组同频率同相位的球面波, 故在双孔屏的光射空间会发生干涉。

于是,在图2中两屏之间的空间里, 如果一点P 处于两相干的球面波同时到达 波峰(或波谷)的位置, 叠加后振幅达到最高, 图2.1 杨氏双孔干涉表现为干涉波的亮点; 反之, 当P 处处于一个球面波的波峰以及另一个球面波的波谷时候,叠加后振幅为零,变现是暗纹。

1r 为S1到屏上一点的距离, 2221)2/(D y d x r +++= (2-1),2r 为S2到屏上这点的距离,2222)2/(D y d x r ++-= (2-2),如图2,d 为两孔之间的距离,D 为孔到屏的距离。

由孔S1和孔S2发出的光的波函数可表示为 )ex p(1111ikr r A E = (2-3) )ex p(2212ikr r A E =(2-4)2for endend %结束循环NCLevels=255; %确定使用的灰度等级为255级Br=(B/4.0)*NCLevels; %定标:使最大光强(4. 0)对应于最大灰度级(白色)image(xs,ys,Br); %仿真出图像colormap('hot');title('杨氏双孔');(3)干涉图样及分析1)改变孔间距对干涉图样的影响d=1mm d=3mm图2.2 改变孔间距对干涉的影响如图2.2,分别是孔间距为1mm和3mm的干涉图样,可以看出,随着d的增加,视野中干涉条纹增加,条纹变细,条纹间距变小。

2)改变孔直径的影响图2.3 孔直径对干涉的影响如图2.3,这里改变孔直径指的是改变光强,不考虑光的衍射。

孔直径变大,光强变大,可以看出,干涉条纹变亮。

3(1)E1E2∆I=(2t=input('两束光的夹角'); %设定两束光的夹角A1=input('光一的振幅'); %设定1光的振幅A2=input('光二的振幅'); %设定2光的振幅yMax=10*Lambda;xs=yMax; %X方向和Y方向的范围N=101; %设定采样点数为Nys=linspace(-yMax,yMax,N); %Y方向上采样的范围从- ymax到ymaxfor i=1:N %循环计算N次phi=ys(i)*sin(t/2); %计算光程差B(i,:)=A1^2+A2^2+2*sqrt(A1^2*A2^2)*cos(2*pi*phi/Lambda);%计算光强end %结束循环NCLevels=255; %确定使用的灰度等级为255级Br=B*NCLevels/6; %定标:使最大光强(4.0)对应于最大灰度级(白色)subplot(1,4,1),image(xs,ys,Br); %用subplot 创建和控制多坐标轴colormap(gray(NCLevels)); %用灰度级颜色图设置色图和明暗 subplot(1,4,2),plot(B(:),ys); %把这个坐标轴设定为当前坐标轴(31) 2 4(1 (d+z )。

两个点光源的干涉是典型的球面波干涉,屏上一点到S1 图4.1 点光源干涉和S2的距离可以表示为 2221)(z d y x r +++= (4-1) 2222z y x r ++= (4-2)则 )ex p(1111ikr r A E = (4-3))ex p(2222ikr r A E = (4-4) 其中A1和A2分别是S1、S2光的振幅。

干涉后的光为21E E E += (4-5)因此干涉后光波光强为**E E I = (4-6)(2)仿真程序clear;Lambda=650; %设定波长Lambda=Lambda*1e-9;A1=2; %设定S1光的振幅A2=2; %设定S2光的振幅d=input('输入两点光源距离'); %设定两个光源的距离z=5; %设定S2与屏的距离xmax=0.01 %设定x 方向的范围ymax=0.01; %设定y 方向的范围N=200; %采样点数为Nx=linspace(-xmax,xmax,N);%X 方向上采样的范围从-xmax 到xmax,采样数组命名为x y=linspace(-ymax,ymax,N);%Y 方向上采样的范围从-ymax 到ymax,采样数组命名为y for i=1:Nfor k=1:N %对屏幕上的全部点进行循环计算,则要进行N*N 次计算 l1(i,k)=sqrt((d+z)^2+y(k)*y(k)+x(i)*x(i)); %计算采样点到S1的距离l2(i,k)=sqrt(z^2+y(k)*y(k)+x(i)*x(i)); %计算采样点到S2的距离E1(i,k)=(A1/l1(i,k))*exp((2*pi*1j.*l1(i,k))/Lambda);%S1复振幅E2(i,k)=(A2/l2(i,k))*exp((2*pi*1j.*l2(i,k))/Lambda);%S2复振幅E(i,k)=E1(i,k)+E2(i,k); %干涉叠加后复振幅B(i,k)=conj(E(i,k)).*E(i,k);%干涉后光强endendNclevels=255; %确定使用的灰度等级为255级Br=B*Nclevels; %定标image(x,y,Br); %做出干涉图像colormap('hot');title('双点光源干涉');(3)干涉图样及分析改变点光源的间距对干涉图样的影响a)d=1m b)d=2mc)d=3m图4.2改变点光源间距的干涉图样 图4.2是根据图4.1仿真干涉大,视野内的干涉圆环逐渐增多,圆环之间的距离变小。

5、 平面上两点光源干涉(1)干涉模型S1和S2是平面上的两个点光源,距离为d ,两个光源发出的光相遇发生干涉,产生干涉条纹。

以S1所在处为原点建立平面直角坐标系,平面上任意一点到S1、S2的距离是 221y x r += (5-1) 图5.1 平面两点光源干涉 222)(y d x r +-= (5-2)S1和S2发出的都是球面波,可表示为)ex p(1111ikr r A E = (5-3) )ex p(2222ikr r A E =(5-4) 式中A1和A2分别是S1、S2的振幅。

干涉叠加后的波函数为21E E E += (5-5)因此干涉后光波光强为**E E I = (5-6)(2)仿真程序clear;Lambda=650; %设定波长Lambda=Lambda*1e-9;A1=0.08; %设定S1光的振幅A2=0.08; %设定S2光的振幅d=0.00001 %设定两个光源的距离d1S 2Sxmax=0.3; %设定x 方向的范围ymax=0.3; %设定y 方向的范围N=500; %采样点数为Nx=linspace(-xmax,xmax,N);%X 方向上采样的范围从-xmax 到xmax,采样数组命名为x y=linspace(-ymax,ymax,N);%Y 方向上采样的范围从-ymax 到ymax,采样数组命名为y for i=1:Nfor k=1:N %对屏幕上的全部点进行循环计算,则要进行N*N 次计算 r1(i,k)=sqrt(y(k)*y(k)+x(i)*x(i)); %计算采样点到S1的距离r2(i,k)=sqrt(y(k)*y(k)+(x(i)-d)*(x(i)-d)); %计算采样点到S2的距离E1(i,k)=(A1/r1(i,k))*exp((2*pi*j.*r1(i,k))/Lambda);%S1复振幅E2(i,k)=(A2/r2(i,k))*exp((2*pi*j.*r2(i,k))/Lambda);%S2复振幅end (3126 图6.1 图6.2 图6.3(1)平面波和球面波干涉如图,三幅图都是点光源和平行光的干涉,平面光入射的角度不同。

平行光与点光源相遇在空间中产生干涉,在屏上形成干涉条纹。

点光源与屏的距离为z ,屏上坐标为(x,y)的一点与点光源的距离是2221z y x r ++= (6-1)由点光源发出的光波表示为)ex p(1111ikr r A E = (6-2) 平行光可以表示为)sin /ex p(22θikz A E = (6-3)式中θ表示平行光与屏的夹角。

相关文档
最新文档