中介效应分析方法

合集下载

中介效应分析方法

中介效应分析方法

中介效应分析方法中介效应是指一个变量(中介变量)在一个自变量与因变量之间的关系中发挥了中介作用。

中介效应分析方法主要包括路径分析、回归分析、结构方程模型等。

路径分析是中介效应分析的一种基础方法,它是基于压力-反应模型的。

首先,通过计算自变量与中介变量之间的相关系数,评估自变量对中介变量的影响;然后,通过计算中介变量与因变量之间的相关系数,评估中介变量对因变量的影响;最后,通过计算自变量对因变量的总效应与自变量对因变量的间接效应来评估中介效应的大小。

回归分析是中介效应分析最常用的方法之一,它通过建立多元线性回归方程来研究自变量、中介变量和因变量之间的关系。

在回归分析中,先将自变量和中介变量同时作为自变量输入模型中,得到自变量对中介变量和因变量的影响系数;然后,在将中介变量和自变量作为自变量输入模型中,得到中介变量对因变量的影响系数;最后,通过比较这两组系数的差异来评估中介效应的大小。

结构方程模型(SEM)是一种较为复杂但较为全面的中介效应分析方法。

在SEM中,通过建立测量模型和结构模型来分析中介效应。

测量模型用于分析中介变量的测量模型,并估计其相关系数;结构模型用于分析自变量与中介变量、中介变量与因变量之间的关系,并估计其路径系数。

最后,通过比较路径系数来评估中介效应的大小。

除了以上三种主要的中介效应分析方法外,还有一些其他方法也可以用于中介效应的分析。

例如,Bootstrap法可以用于估计中介效应的置信区间,通过重复有放回抽样来计算中介效应的分布;Granger因果检验可以用来检验中介效应是否显著,通过检验自变量和因变量的序列在中介变量出现之前和之后的预测能力。

总之,中介效应分析方法有多种选择,研究者可以根据研究目的、数据类型和数据分析方法的熟悉程度来选择适合自己研究的方法。

无论是使用哪种方法,都需要进行合理的假设检验和效果估计,以获得准确的中介效应结果。

中介效应分析方法

中介效应分析方法

中介效应分析方法中介效应是指其中一变量对于两个其他变量之间的关系产生影响或干预的效应。

在社会科学研究中,中介效应分析是一种常用的统计分析方法,用于探究变量之间的关系机制。

一、中介效应的概念二、中介效应的分析步骤1.提出研究问题和假设在进行中介效应分析之前,需要明确研究问题和假设。

例如,假设自变量A会通过中介变量B影响因变量C。

2.进行变量之间的相关分析首先,需要进行自变量、中介变量和因变量之间的相关分析,以确定它们之间是否存在显著的关系。

3.进行中介效应分析通过使用统计分析方法,例如结构方程模型(SEM)或回归分析,来评估中介效应的存在。

在这一步骤中,需要计算直接效应和间接效应。

直接效应指自变量对因变量的直接影响,间接效应指自变量通过中介变量对因变量的影响。

4.进行中介效应的检验接下来,需要进行中介效应的检验。

常用的检验方法包括Sobel检验、Bootstrap检验和偏差校正方法等。

这些方法可以用来判断中介效应是否显著。

5.进行鉴别性分析最后,需要进行鉴别性分析来确定中介变量对自变量和因变量之间关系的影响程度。

鉴别性分析可以通过计算中介变量的完全或部分调节效应来实现。

三、中介效应分析的实例为了更好地理解中介效应分析,以下是一个简单的实例:研究问题:是否存在压力对工作满意度的中介效应?假设:个体的压力会通过工作动机对工作满意度产生中介效应。

分析步骤:1.进行压力、工作动机和工作满意度之间的相关分析,以评估它们之间的相关关系。

2.使用回归分析方法,计算压力对工作满意度的直接效应和间接效应。

3. 进行中介效应的检验,例如使用Bootstrap检验,来判断中介效应是否显著。

4.进行鉴别性分析,例如计算完全或部分中介效应的值,来评估中介变量工作动机对于压力与工作满意度之间关系的影响程度。

通过上述分析,可以得出关于压力、工作动机和工作满意度之间关系机制的结论。

这有助于深入理解变量之间的关系,并为实践提供理论依据。

中介效应模型三步法与四步法-概述说明以及解释

中介效应模型三步法与四步法-概述说明以及解释

中介效应模型三步法与四步法-概述说明以及解释1.引言1.1 概述中介效应模型是社会科学研究中常用的一种分析方法,用于研究一个变量如何通过中介变量影响另一个变量。

中介变量在原变量与因变量之间起到传递与解释作用,帮助我们理解两个变量之间的关系机制。

中介效应模型有三步法与四步法两种常用的建模方法,本文将对这两种方法进行详细介绍与比较。

在中介效应模型中,步骤一是通过回归分析得到原变量与中介变量之间的关系,步骤二是确定中介变量对因变量的解释效果,步骤三是对整个模型进行验证与修正。

这个三步法是中介效应模型最基本的建模步骤,简单易行,适用于一般的研究情境。

而四步法则在三步法的基础上增加了步骤四,即对比不同中介变量的效应大小,进一步分析中介效应的效果。

本文旨在比较中介效应模型三步法与四步法的优劣与适用情况,通过案例分析来说明两种方法的实际应用。

此外,文章还将从理论与实践的角度出发,对中介效应模型在研究中的意义进行探讨,并展望未来的研究方向。

通过本文的阐述,读者将能够深入理解中介效应模型的基本原理与建模方法,了解三步法与四步法在实践中的应用情况,为进一步开展相关研究提供参考与指导。

同时,读者还能够对中介效应模型的优劣进行评估,根据研究需要选择合适的方法进行分析,提高研究成果的科学性与说服力。

在接下来的章节中,我们将首先介绍中介效应模型三步法的具体步骤与应用案例,然后对比四步法的优劣与适用情况,最后总结全文并展望未来的研究方向。

通过系统的分析与比较,我们将为读者提供一份全面且详尽的中介效应模型研究指南,帮助他们在实际研究中更好地运用这一方法。

1.2 文章结构本文分为四个主要部分。

首先,在引言部分,我们将对中介效应模型进行概述,并明确文章的目的。

接下来,我们将详细介绍中介效应模型的三步法,包括步骤一、步骤二和步骤三,并通过案例分析来说明该方法的应用。

然后,我们还将介绍中介效应模型的四步法,其中包括步骤一、步骤二、步骤三和步骤四,并结合案例分析来展示其实际运用。

中介效应分析方法

中介效应分析方法

中介效应分析方法1 中介变量和相关概念在本文中,假设我们感兴趣的是因变量(Y) 和自变量(X) 的关系。

虽然它们之间不一定是因果关系,而可能只是相关关系,但按文献上的习惯而使用“X对的影响”、“因果链”的说法。

为了简单明确起见,本文在论述中介效应的检验程序时,只考虑一个自变量、一个中介变量的情形。

但提出的检验程序也适合有多个自变量、多个中介变量的模型。

中介变量的定义考虑自变量X 对因变量Y 的影响,如果X通过影响变量M来影响Y,则称M 为中介变量。

例如“, 父亲的社会经济地位”影响“儿子的教育程度”,进而影响“儿子的社会经济地位”。

又如,“工作环境”(如技术条件) 通过“工作感觉”(如挑战性) 影响“工作满意度”。

在这两个例子中,“儿子的教育程度”和“工作感觉”是中介变量。

假设所有变量都已经中心化(即均值为零) ,可用下列方程来描述变量之间的关系:Y = cX + e1 (1)M = aX + e2 (2)Y = c’X + bM + e3 (3)e1 Y=cX+e1e 2 M=aX+e 2a be 3 Y=c ’X+bM+e 3图1 中介变量示意图假设Y 与X 的相关显著,意味着回归系数c 显著(即H 0 : c = 0 的假设被拒绝) ,在这个前提下考虑中介变量M 。

如何知道M 真正起到了中介变量的作用,或者说中介效应(mediator effect ) 显著呢 目前有三种不同的做法。

传统的做法是依次检验回归系数 。

如果下面两个条件成立,则中介效应显著: (i) 自变量显著影响因变量;(ii) 在因果链中任一个变量,当控制了它前面的变量(包括自变量) 后,显著影响它的后继变量。

这是Baron 和Kenny 定义的(部分) 中介过程。

如果进一步要求: (iii) 在控制了中介变量后,自变量对因变量的影响不显著, 变成了Judd 和Kenny 定义的完全中介过程。

在只有一个中介变量的情形,上述条件相当于(见图1) : (i) 系数c 显著(即H 0 : c = 0 的假设被拒绝) ; (ii) 系数a 显著(即H 0 : a = 0 被拒绝) ,且系数b 显著(即H 0 : b = 0 被拒绝) 。

三种中介效应检验方法及操作步骤

三种中介效应检验方法及操作步骤

三种中介效应检验⽅法及操作步骤本⽂将介绍三种常见中介效应检验⽅法,分别是因果逐步回归检验法、系数乘积法、改良后的因果逐步回归法,以及如果使⽤SPSSAU进⾏操作。

什么是中介效应中介效应:如果⾃变量X通过影响变量M⽽对因变量Y产⽣影响,则称M为中介变量。

例如,上司的归因研究:下属的表现→上司对下属表现的归因→上司对下属表现的反应,其中的“上司对下属表现的归因”为中介变量。

中介作⽤的检验模型可以⽤以下路径图来描述:图1 中介效应检验模型路径图⽅程(1)的系数c 为⾃变量X对因变量Y的总效应;⽅程(2)的系数a为⾃变量X对中介变量M的效应;⽅程(3)的系数b是在控制了⾃变量X的影响后,中介变量M对因变量Y的效应;⽅程(3)的系数c′是在控制了中介变量M 的影响后,⾃变量X对因变量Y的直接效应;系数乘积a*b即为中介效应等于间接效应1 因果逐步回归检验法因果逐步回归法由Baron和Kenny(1986)提出,其检验步骤分为三步:第⼀,分析X对Y的回归,检验回归系数c的显著性(即检验H0:c=0);第⼆,分析X对M的回归,检验回归系数a的显著性(即检验H0:a=0);第三,分析加⼊中介变量M后X对Y的回归,检验回归系数b和c'的显著性(即检验H0:b=0、H0:c’=0)。

根据检验结果按下图进⾏判断:流程图基于SPSSAU的操作(1)第⼀步,登录SPSSAU,上传数据;(2)第⼆步,选择【问卷研究】--【中介作⽤】;(3)第三步,选择变量拖拽到右侧对应分析框内,点击开始分析。

结果分析SPSSAU的“中介作⽤”可直接将中介作⽤的检验过程⾃动化,⼀键提供出上述提及模型结果。

本次结果中共包含三个模型:①模型1:X对Y的回归模型,结果显⽰x与y存在显著影响关系,回归系数c=0.130.②模型2:x对m的回归模型,结果显⽰x与y存在显著影响关系,回归系数a=0.175.③模型3:加⼊中介变量m后x对y的回归模型,结果显⽰回归系数b、c’均呈现显著性,系数a、b均显著,说明存在中介效应。

中介效应分析方法

中介效应分析方法

中介效应分析方法中介效应是指在两个变量之间的关系中,一个中间变量(中介变量)可以解释这两个变量之间的关系。

通过中介效应分析可以帮助研究者理解为什么两个变量之间存在关系,以及这个关系是如何产生的。

本文将介绍几种中介效应分析的方法。

1. Sobel检验Sobel检验是最常用的中介效应分析方法之一、它基于一个简单的线性回归公式,通过计算中介变量对因变量的回归系数和因变量对自变量的回归系数的乘积与其标准差的比值,来检验中介效应是否显著。

如果计算得到的比值显著不等于零,则可以认为存在中介效应。

2. Bootstrap法Bootstrap法是一种基于重复抽样的统计方法,可以用来估计中介效应的置信区间。

该方法通过构建多个样本并分析每个样本中的中介效应,然后计算中介效应的分布,并从中计算出中介效应的置信区间。

Bootstrap法可以有效地降低因数据偏差和非正态分布而导致的误差。

Baron和Kenny的中介效应分析方法是一种最早的中介效应分析方法。

该方法包括四个步骤:首先,确定自变量对中介变量的回归系数是否显著;然后,确定自变量对因变量的回归系数是否显著;接下来,确定自变量和中介变量对因变量的回归系数是否显著;最后,通过比较两个回归系数的显著性来判断中介效应是否存在。

Preacher和Hayes的中介效应分析方法是一种较新的中介效应分析方法,也被认为是一种更精确的方法。

该方法通过计算中介效应的点估计和置信区间,同时还可以进行多个中介变量的分析。

该方法可以帮助研究者更深入地理解中介效应并进行更准确的统计推断。

除了以上提到的几种中介效应分析方法外,还有许多其他方法,例如结构方程模型、路径分析等。

这些方法都有各自的优缺点,研究者可以根据自己研究的需求和数据特点选择合适的方法进行中介效应分析。

无论选择哪种方法,都需要保证数据的质量和有效性,并进行适当的假设检验和结果解释,以确保中介效应的可靠性和统计显著性。

中介效应检验方法

中介效应检验方法

中介效应检验方法中介效应是指一个变量通过改变另一变量来影响另一个变量与最终结果之间的关系。

在社会科学研究中,中介效应的检验可以帮助理解变量之间的关系机制,揭示出其中的因果过程。

本文将介绍三种主要的中介效应检验方法:Sobel检验、Bootstrap检验和路径分析。

第一种方法是Sobel检验,它是最早也是最常见的中介效应检验方法之一、Sobel检验假设中介变量对因变量的影响是通过一些中介变量所导致的。

它通过计算一系列协方差来评估中介效应的大小和显著性。

具体步骤如下:1.首先,使用回归分析估计出自变量对中介变量和因变量的影响。

2.接下来,计算中介效应的大小,即自变量对因变量的总效应减去中介变量对因变量的效应。

3.然后,计算中介效应的标准误,根据标准误可以判断中介效应是否显著。

4. 最后,计算Sobel统计量,通过将中介效应除以中介效应标准误得到。

如果Sobel统计量的绝对值大于1.96,那么中介效应是显著的。

第二种方法是Bootstrap检验,它是一种非参数的方法,可以更好地解决样本量较小的问题。

Bootstrap检验通过多次重新抽样生成新的样本,并计算中介效应的大量估计值。

然后,计算这些估计值的标准差和置信区间,来判断中介效应是否显著。

具体步骤如下:1.首先,使用回归分析估计出自变量对中介变量和因变量的影响。

2. 然后,使用Bootstrap方法生成多个新的样本。

3.对每个新的样本,重新进行回归分析得到中介效应的估计值。

4.根据这些估计值计算中介效应的标准差和置信区间。

如果标准差不包含0,或者置信区间不包含0,则可以判断中介效应是显著的。

第三种方法是路径分析,它是一种图形分析方法,用来揭示变量之间的因果路径。

路径分析可以直接检验中介效应是否存在,并定量评估其效应的大小和显著性。

具体步骤如下:1.首先,构建一个结构方程模型,其中包括自变量、中介变量和因变量之间的路径。

2.通过最小二乘法估计模型参数,得到每个路径的标准化系数。

中介效应分析方法

中介效应分析方法

中介效应分析方法This model paper was revised by the Standardization Office on December 10, 2020中介效应分析方法1 中介变量和相关概念在本文中,假设我们感兴趣的是因变量(Y) 和自变量(X) 的关系。

虽然它们之间不一定是因果关系,而可能只是相关关系,但按文献上的习惯而使用“X对的影响”、“因果链”的说法。

为了简单明确起见,本文在论述中介效应的检验程序时,只考虑一个自变量、一个中介变量的情形。

但提出的检验程序也适合有多个自变量、多个中介变量的模型。

中介变量的定义考虑自变量X 对因变量Y 的影响,如果X通过影响变量M来影响Y,则称M 为中介变量。

例如“, 父亲的社会经济地位”影响“儿子的教育程度”,进而影响“儿子的社会经济地位”。

又如,“工作环境”(如技术条件) 通过“工作感觉”(如挑战性) 影响“工作满意度”。

在这两个例子中,“儿子的教育程度”和“工作感觉”是中介变量。

假设所有变量都已经中心化(即均值为零) ,可用下列方程来描述变量之间的关系:Y = cX + e1(1)M = aX + e2(2)Y = c’X + bM + e3(3)1Y=cX+e1e2M=aX+e2a be3Y=c’X+bM+e3 M图1 中介变量示意图假设Y与X的相关显着,意味着回归系数c显着(即H: c = 0 的假设被拒绝) ,在这个前提下考虑中介变量M。

如何知道M真正起到了中介变量的作用,或者说中介效应(mediator effect ) 显着呢目前有三种不同的做法。

传统的做法是依次检验回归系数。

如果下面两个条件成立,则中介效应显着: (i) 自变量显着影响因变量;(ii) 在因果链中任一个变量,当控制了它前面的变量(包括自变量) 后,显着影响它的后继变量。

这是Baron 和Kenny 定义的(部分) 中介过程。

如果进一步要求: (iii) 在控制了中介变量后,自变量对因变量的影响不显着, 变成了Judd和Kenny 定义的完全中介过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中介效应分析方法1 中介变量和相关概念在本文中,假设我们感兴趣的是因变量(Y) 和自变量(X) 的关系。

虽然它们之间不一定是因果关系,而可能只是相关关系,但按文献上的习惯而使用“X 对的影响”、“因果链”的说法。

为了简单明确起见,本文在论述中介效应的检验程序时,只考虑一个自变量、一个中介变量的情形。

但提出的检验程序也适合有多个自变量、多个中介变量的模型。

1.1 中介变量的定义考虑自变量X 对因变量Y 的影响,如果X 通过影响变量M 来影响Y ,则称M 为中介变量。

例如“, 父亲的社会经济地位”影响“儿子的教育程度”,进而影响“儿子的社会经济地位”。

又如,“工作环境”(如技术条件) 通过“工作感觉”(如挑战性) 影响“工作满意度”。

在这两个例子中,“儿子的教育程度”和“工作感觉”是中介变量。

假设所有变量都已经中心化(即均值为零) ,可用下列方程来描述变量之间的关系:Y = cX + e 1 (1)M = aX + e 2 (2)Y = c ’X + bM + e 3 (3)1 Y=cX+e 1e 2 M=aX+e 2a bMe3 Y=c’X+bM+e3图1 中介变量示意图假设Y与X的相关显著,意味着回归系数c显著(即H0 : c = 0 的假设被拒绝) ,在这个前提下考虑中介变量M。

如何知道M真正起到了中介变量的作用,或者说中介效应(mediator effect ) 显著呢? 目前有三种不同的做法。

传统的做法是依次检验回归系数。

如果下面两个条件成立,则中介效应显著: (i) 自变量显著影响因变量;(ii) 在因果链中任一个变量,当控制了它前面的变量(包括自变量) 后,显著影响它的后继变量。

这是Baron 和Kenny 定义的(部分) 中介过程。

如果进一步要求: (iii) 在控制了中介变量后,自变量对因变量的影响不显著, 变成了Judd和Kenny 定义的完全中介过程。

在只有一个中介变量的情形,上述条件相当于(见图1) : (i) 系数c显著(即H0 : c = 0 的假设被拒绝) ;(ii) 系数a 显著(即H0: a = 0 被拒绝) ,且系数b显著(即H0: b = 0 被拒绝) 。

完全中介过程还要加上: (iii) 系数c’不显著。

第二种做法是检验经过中介变量的路径上的回归系数的乘积ab是否显著,即检验H0 : ab = 0 ,如果拒绝原假设,中介效应显著 ,这种做法其实是将ab作为中介效应。

第三种做法是检验c’与c的差异是否显著,即检验H0 : c - c’= 0 ,如果拒绝原假设,中介效应显著。

1.2 中介效应与间接效应依据路径分析中的效应分解的术语 ,中介效应属于间接效应(indirect effect) 。

在图1 中, c是X对Y的总效应, ab是经过中介变量M 的间接效应(也就是中介效应) , c’是直接效应。

当只有一个自变量、一个中介变量时,效应之间有如下关系c = c’+ ab (4)当所有的变量都是标准化变量时,公式(4) 就是相关系数的分解公式。

但公式(4) 对一般的回归系数也成立)。

由公式(4) 得c-c’=ab,即c-c’等于中介效应,因而检验H0 : ab = 0 与H0 : c-c’= 0 是等价的。

但由于各自的检验统计量不同,检验结果可能不一样。

中介效应都是间接效应,但间接效应不一定是中介效应。

实际上,这两个概念是有区别的。

首先,当中介变量不止一个时,中介效应要明确是哪个中介变量的中介效应,而间接效应既可以指经过某个特定中介变量的间接效应(即中介效应) ,也可以指部分或所有中介效应的和。

其次,在只有一个中介变量的情形,虽然中介效应等于间接效应,但两者还是不等同。

中介效应的大前提是自变量与因变量相关显著,否则不会考虑中介变量。

但即使自变量与因变量相关系数是零,仍然可能有间接效应。

下面的人造例子可以很好地说明这一有趣的现象。

设Y是装配线上工人的出错次数, X 是他的智力, M 是他的厌倦程度。

又设智力(X) 对厌倦程度(M) 的效应是0.707 ( =a) ,厌倦程度(M) 对出错次数( Y ) 的效应也是0.707 ( = b) ,而智力对出错次数的直接效应是20.50( = c′) 。

智力对出错次数的总效应( = c) 是零(即智力与出错次数的相关系数是零) 。

本例涉及效应(或相关系数) 的遮盖( suppression) 问题。

由于实际中比较少见,这里不多讨论。

但从这个例子可以看出中介效应和间接效应是有区别的。

当然,如果修改中介效应的定义,不以自变量与因变量相关为前提,则另当别论。

在实际应用中,当两个变量相关不显著时,通常不再进一步讨论它们的关系了。

2中介效应分析方法由于中介效应是间接效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。

从路径图(图1) 可以看出,模型是递归的( recursive) ,即在路径图上直线箭头都是单向的,没有反向或循环的直线箭头,且误差之间没有弧线箭头联系。

所以,如果所有变量都是显变量,可以依次做方程(1) —(3) 的回归分析,来替代路径分析。

就是说,如果研究的是显变量,只需要做通常的回归分析就可以估计和检验中介效应了。

无论是回归分析还是结构方程分析,用适当的统计软件都可以得到c的估计cˆ; a , b , c′的估计aˆ,bˆ,cˆ',以及相应的标准误。

中介效应的估计是aˆbˆ或cˆ-cˆ',在显变量情形并且用通常的最小二乘回归估计时,这两个估计相等。

在其他情形,使用aˆbˆ比较直观,并且它等于间接效应的估计。

除了报告中介效应的大小外,还应当报告中介效应与总效应之比(aˆbˆ/ (cˆ'+aˆbˆ) ) ,或者中介效应与直接效应之比(aˆbˆ/cˆ') , 它们都可以衡量中介效应的相对大小。

与中介效应的估计相比,中介效应的检验要复杂得多。

下面按检验的原假设分别讨论。

2.1 依次检验回归系数在三种做法中,依次检验回归系数涉及的原假设最多,但其实是最容易的。

如果H0 : a = 0 被拒绝且H0 : b = 0 被拒绝,则中介效应显著,否则不显著。

完全中介效应还要检验H0 : c’= 0 。

检验统计量t等于回归系数的估计除以相应的标准误。

流行的统计软件分析结果中一般都有回归系数的估计值、标准误和t 值,检验结果一目了然。

这种检验的第一类错误率很小,不会超过显著性水平,有时会远远小于显著性水平。

问题在于当中介效应较弱时,检验的功效很低。

这容易理解,如果a 很小(检验结果是不显著) ,而b 很大(检验结果是显著) ,因而依次检验的结果是中介效应不显著,但实际上的ab 与零有实质的差异(中介效应存在) ,此时犯了第二类错误。

做联合检验(原假设是H 0 : a = 0 且b = 0 ,即同时检验a 和b 的显著性) ,功效要比依次检验的高。

问题是联合检验的显著性水平与通常的不一样,做起来有点麻烦。

2.2 检验H 0 : ab = 0检验H 0 : ab = 0 的关键在于求出aˆb ˆ的标准误。

目前至少有5 种以上的近似计算公式 。

当样本容量比较大时(如大于500) ,各种检验的功效差别不大。

值得在此介绍的是Sobel 根据一阶Taylor 展式得到的近似公式s ab = 2a 22b 2s b +^s a ^ (5)其中, s a , s b 分别是aˆ,b ˆ的标准误。

检验统计量是z = a ˆb ˆ/ s ab 。

只有一个中介变量的情形,LISREL 输出的间接效应的标准误与使用这个公式计算的结果一致。

在输出指令“OUT ”中加入“EF ”选项,会输出包括间接效应在内的效应估计、相应的标准误和t 值,这个t 值就是Sobel 检验中的z 值。

由于涉及到参数的乘积的分布,即使总体的X 、M 和Y 都是正态分布,并且是大样本, z = aˆb ˆ/s ab 。

还是可能与标准正态分布有较大的出入。

MacKinnon 等人用该统计量但使用不同的临界值进行检验。

在他们的临界值表中,显著性水平0. 05对应的临界值是0. 97 (而不是通常的1. 96 ,说明中介变量有更多的机会被认为是显著的,从而检验的功效提高了,但第一类错误率也大大增加了)。

MacKinnon 等人的模拟比较研究发现,在样本较小或总体的中介效应不大时,使用新的临界值检验的功效比同类检验的要高,在总体参数a = 0 且b = 0 时第一类错误率与0. 05 很接近,因而是一种比较好的检验方法。

但在统计软件采用该临界值表之前,难以推广应用。

而且,当a = 0 或b = 0 只有一个成立时(此时也有ab = 0 ,即中介效应为零) ,第一类错误率远远高于0. 05 ,这是该方法的最大弊端。

2.3 检验H 0 : c-c ’= 0同样,检验H 0 : c-c ’= 0 的关键在于如何计算cˆ-c ˆ 的标准误。

目前也有多种近似公式。

MacKinnon 等人比较的结果是其中有两个公式得到的检验有较高的功效,在总体参数a = 0 且b = 0 时的第一类错误率与0. 05 很接近。

一个是Clogg 等人给出的公式S c-c ’= ◣XM r ◣s c ’ (6)其中r XM 是X 和M 的相关系数。

另一个是Freedman 等人推出的公式S c-c ’= 2XM c'c 2c'2c r -1s 2s -s +s (7)当a = 0 但b ≠0 时(此时ab = 0 ,即中介效应为零) ,这两种公式对应的检验(即t = (cˆ-c ˆ ) / s c-c ’作为检验统计量) 的第一类错误率都很高。

特别是公式(6) ,对应的第一类错误率有可能高达100 %。

事实上,由公式(6) 得到的检验与H 0 : b = 0 的检验等价 。

就是说,即使中介效应不存在( ab = 0) ,只要b 显著,检验结果就是中介效应显著(犯了第一类错误) 。

2.4 一个实用的中介效应检验程序为了使一个中介效应检验的第一类错误率和第二类错误率都比较小,既可以检验部分中介效应,又可以检验完全中介效应,而且还比较容易实施,我们提出如下检验程序。

1. 检验回归系数c ,如果显著,继续下面的第2步。

否则停止分析。

2. 做Baron 和Kenny 部分中介检验,即依次检验系数a , b ,如果都显著,意味着X 对Y 的影响至少有一部分是通过了中介变量M 实现的,第一类错误率小于或等于0. 05 ,继续下面第3步。

如果至少有一个不显著,由于该检验的功效较低(即第二类错误率较大) ,所以还不能下结论,转到第4步。

3. 做Judd 和Kenny 完全中介检验中的第三个检验(因为前两个在上一步已经完成) ,即检验系数c’,如果不显著,说明是完全中介过程,即X 对Y 的影响都是通过中介变量M 实现的;如果显著,说明只是部分中介过程,即X 对Y 的影响只有一部分是通过中介变量M 实现的。

相关文档
最新文档