离散数学图论部分综合练习

合集下载

离散数学测验题--图论部分(优选.)

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题一、单项选择题(本大题共10小题,每小题2分,共20分)1、在图G =<V ,E >中,结点总度数与边数的关系是( )(A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=Vv E v )deg(2、设D 是n 个结点的无向简单完全图,则图D 的边数为( )(A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/23、 设G =<V ,E >为无向简单图,∣V ∣=n ,∆(G )为G 的最大度数,则有(A) ∆(G )<n (B)∆(G )≤n (C) ∆(G )>n (D) ∆(G )≥n4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( )(A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( )(A) },,,,,,,,,{><><><><><=c d b c d b a b d a E(B) },,,,,,,,,{><><><><><=c d d b c b a b d a E(C) },,,,,,,,,{><><><><><=c d a d c b a b c a E6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的() (A)度数 (B) 出度 (C)最大度数 (D) 入度7、设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100则G 的边数为( ).A .5B .6C .3D .48、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( )(A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +29、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。

离散数学图论答案

离散数学图论答案

离散数学图论答案离散数学图论答案【篇⼀:离散数学图论习题】综合练习⼀、单项选择题1.设l是n阶⽆向图g上的⼀条通路,则下⾯命题为假的是( ). (a) l可以不是简单路径,⽽是基本路径 (b) l可以既是简单路径,⼜是基本路径 (c) l可以既不是简单路径,⼜不是基本路径 (d) l可以是简单路径,⽽不是基本路径答案:a2.下列定义正确的是( ).(a) 含平⾏边或环的图称为多重图(b) 不含平⾏边或环的图称为简单图 (c) 含平⾏边和环的图称为多重图(d) 不含平⾏边和环的图称为简单图答案:d3.以下结论正确是 ( ).(a) 仅有⼀个孤⽴结点构成的图是零图 (b) ⽆向完全图kn每个结点的度数是n (c) 有n(n1)个孤⽴结点构成的图是平凡图(d) 图中的基本回路都是简单回路答案:d4.下列数组中,不能构成⽆向图的度数列的数组是( ). (a)(1,1,1,2,3) (b) (1,2,3,4,5) (c) (2,2,2,2,2) (d) (1,3,3,3) 答案:b5.下列数组能构成简单图的是( ). (a) (0,1,2,3)(b) (2,3,3,3)(c) (3,3,3,3)(d) (4,2,3,3) 答案:c6.⽆向完全图k3的不同构的⽣成⼦图的个数为(). (a) 6 (b)5(c) 4 (d) 3 答案:c7.n阶⽆向完全图kn中的边数为().(a)n(n?1)n(n?1)(b) (c) n (d)n(n+1) 22答案:b8.以下命题正确的是( ).(a) n(n?1)阶完全图kn都是欧拉图(b) n(n?1)阶完全图kn都是哈密顿图(c) 连通且满⾜m=n-1的图v,e(?v?=n,?e?=m)是树 (d) n(n?5)阶完全图kn都是平⾯图答案:c10.下列结论不正确是( ).(a) ⽆向连通图g是欧拉图的充分必要条件是g不含奇数度结点(b) ⽆向连通图g有欧拉路的充分必要条件是g最多有两个奇数度结点 (c) 有向连通图d是欧拉图的充分必要条件是d的每个结点的⼊度等于出度(d) 有向连通图d有有向欧拉路的充分必要条件是除两个结点外,每个结点的⼊度等1于出度答案:d11.⽆向完全图k4是().(a)欧拉图(b)哈密顿图(c)树答案:b12.有4个结点的⾮同构的⽆向树有 ( )个.(a) 2 (b) 3(c) 4(d) 5 答案:a13.设g是有n个结点,m条边的连通图,必须删去g的( )条边,才能确定g的⼀棵⽣成树.(a) m?n?1 (b) n?m (c) m?n?1 (d) n?m?1 答案:a14.设g是有6个结点的完全图,从g中删去( )条边,则得到树. (a) 6 (b) 9 (c) 10 (d) 15 答案:c⼆、填空题1.数组{1,2,3,4,4}是⼀个能构成⽆向简单图的度数序列,此命题的真值是 . 答案:02.⽆向完全图k3的所有⾮同构⽣成⼦图有个.答案:43.设图g??v,e?,其中?v??n,?e??m.则图g是树当且仅当g是连通的,且m?.答案:n-14.连通图g是欧拉图的充分必要条件是答案:图g⽆奇数度结点 5.连通⽆向图g有6个顶点9条边,从g中删去g的⼀棵⽣成树t.答案:46.⽆向图g为欧拉图,当且仅当g是连通的,且g中⽆答案:奇数度7.设图g??v,e?是简单图,若图中每对结点的度数之和,则g⼀定是哈密顿图.答案:?8.如图1所⽰带权图中最⼩⽣成树的权是.答案:12三、化简解答题1.设⽆向图g=v,e,v={v1,v2,v3,v4,v5,v6}, e={( v1,v2), ( v2,v2), ( v4,v5), ( v3,v4), ( v1,v3),( v3,v1), ( v2,v4)}. (1) 画出图g的图形;2图15图22(2) 写出结点v2, v4,v6的度数; (3) 判断图g是简单图还是多重图.解:(1) 图g的图形如图5所⽰.(2) deg(v2)?4,deg(v4)?3,deg(v6)?0.(3) 图g是多重图.作图如图2. 2.设图g=v,e,其中v={a,b,c,d,e}, e={(a,b),(b,c),(c,d), (a,e)}试作出图g的图形,并指出图g是简单图还是多重图?是连通图吗?说明理由.b e解:图g如图8所⽰.. 图g中既⽆环,也⽆平⾏边,是简单图. cd 图g是连通图.g中任意两点都连通.图3所以,图g有9个结点.作图如图3.四、计算题1.设简单连通⽆向图g有12条边,g中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求g中有多少个结点.试作⼀个满⾜该条件的简单⽆向图.解:设图g有x个结点,由握⼿定理2?1+2?2+3?4+3?(x?2?2?3)=12?23x?24?21?18?27x=9 故图g有9个结点.图4满⾜该条件的简单⽆向图如图4所⽰2.设图g(如图5表⽰)是6个结点a,b,c, d,e,f的图,试求,图g的最⼩⽣成树,并计算它的权.c 解:构造连通⽆圈的图,即最⼩⽣成树,⽤克鲁斯克尔算法:第⼀步:取ab=1;第⼆步:取af=4第三步:取fe=3;第四步:取ad=9图5 第五步:取bc=23如图6.权为1+4+3+9+23=403.⼀棵树t有两个2度顶点,1个3度顶点;3个4问它有⼏⽚树叶?解:设t有n顶点,则有n-1条边.t中有2个 2度顶点,1个3度顶点,3个4度顶点,其余n-2-1-3个1度顶点.五、证明题1.若⽆向图g中只有两个奇数度结点,则这两个结点⼀定是连通的.证:⽤反证法.设g中的两个奇数度结点分别为u和v.假若u和v不连通.即它们之间⽆任何通路,则g⾄少有两个连通分⽀g1,g2,且u和v分别属于g1和g2,于是g1和g2各含有⼀个奇数度结点.这与握⼿定理的推论⽭盾.因⽽u和v⼀定是连通的.3【篇⼆:离散数学图论练习题】题1、设g是⼀个哈密尔顿图,则g⼀定是()。

离散数学及其应用图论部分课后习题答案

离散数学及其应用图论部分课后习题答案

作业答案:图论部分P165:习题九1、 给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。

(1)111,G V E =<>,112345{,,,,}V v v v v v =,11223343345{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (2)222,G V E =<>,21V V =,11223344551{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,}E v v v v v v v v v v =<><><><><> (4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,}E v v v v v v v v v v =<><><><><> 解答: (1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。

(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。

14、设G 是(2)n n ≥阶无向简单图,G 是它的补图,已知12(),()G k G k δ∆==,求()G ∆,()G δ。

解答:2()1G n k ∆=--;1()1G n k δ=--。

15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。

解答:(c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d )同构,同构函数为12()345x a x bf x x c x d x e=⎧⎪=⎪⎪==⎨⎪=⎪=⎪⎩ 16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。

离散数学特殊图练习题

离散数学特殊图练习题

离散数学特殊图练习题一、基本概念与性质1. 判断下列说法是否正确:(1)完全图是连通图。

(2)树是一个无环的连通图。

(3)平面图一定可以画在一个平面上,使得任意两边都不相交。

2. 填空题:(1)一个有n个顶点的完全图的边数为______。

(2)一个有n个顶点的连通图至少有______条边。

(3)一个有n个顶点的树有______条边。

二、特殊图的判定1. 判断下列图是否为特殊图,并说明理由:(1)一个有5个顶点的图,其中每个顶点的度数分别为4, 4, 3, 3, 2。

(2)一个有6个顶点的图,其中每个顶点的度数都为3。

2. 下列图是否为平面图?请给出证明或反例:(1)K5(完全图K5)。

(2)K3,3(完全二部图K3,3)。

三、特殊图的性质与应用1. 计算下列图的色数:(1)一个有5个顶点的完全图。

(2)一个有6个顶点的环形图。

2. 下列图是否存在哈密顿回路?请给出证明或反例:(1)一个有5个顶点的环形图。

(2)一个有6个顶点的完全二部图。

四、综合题(1)若G为连通图,则G至少有n1条边。

(2)若G为平面图,则G的边数e ≤ 3n 6。

(1)完全图K6。

(2)完全二部图K3,3。

(3)一个有5个顶点的树。

3. 设G是一个有8个顶点的连通图,其中每个顶点的度数都为3。

证明:G至少有一个哈密顿回路。

五、图的同构与子图(1)图G1:顶点集{A, B, C, D},边集{AB, AC, BC, BD, CD};图G2:顶点集{P, Q, R, S},边集{PQ, PR, QR, QS, RS}。

(1)一个有4个顶点的完全图。

(2)一个有5个顶点的星形图。

六、路径与距离(1)一个有6个顶点的环形图。

(2)一个有5个顶点的完全图。

(1)一个有6个顶点的路径图,顶点A和顶点B分别位于路径的两端。

(2)一个有7个顶点的图,顶点A和B不相邻,但通过其他顶点可以到达。

七、欧拉图与哈密顿图(1)一个有5个顶点的环形图。

离散图论部分习题

离散图论部分习题
一个路径是哈密顿回路,如果它通过图中的每个顶点恰好一 次,并从某个顶点开始,最后回到这个顶点结束。
图的着色问题习题解答
01
图的着色问题:给定一个图,使 用最少的颜色对图中顶点进行着 色,使得相邻的顶点颜色不同。
02
图的着色问题是一个经典的NP难 问题,其求解方法包括贪心算法 、回溯算法等。
最小生成树问题习题解答
习题解答与解析
欧拉路径与回路习题解答
欧拉路径
一个路径是欧拉路径,如果它通过图 中的每条边恰好一次。
欧拉回路
一个路径是欧拉回路,如果它通过图 中的每条边恰好一次,并从某一条边 开始,最后回到这条边结束。
哈密顿路径与回路习题解答
哈密顿路径
一个路径是哈密顿路径,如果它通过图中的每个顶点恰好一 次。
哈密顿回路
02
基础问题解析
欧拉路径与回路
定义
一个遍历图中的所有边且每条边只遍历一 次的路径称为欧拉路径。如果这个路径的 起点和终点是同一点,则称为欧拉回路。
求解方法
应用
在计算机科学中,欧拉回路可用于解 决一些优化问题,如旅行商问题。
通过穷举法或动态规划法寻找是否存 在欧拉回路,并确定回路的长度。
哈密顿路径与回路
应用场景
最短路径问题在路由选择、 物流配送、旅行规划等领 域有广泛应用。
图的连通性问题
连通性定义
一个无向图是连通的,如果任意两个顶点之间都存在一条路径。
连通性判定
常用的连通性判定算法有深度优先搜索和广度优先搜索。
应用场景
图的连通性问题在社交网络分析、交通网络分析、通信网络分析 等领域有广泛应用。
04
离散图论部分习
目录
• 基础知识回顾 • 基础问题解析 • 高级问题解析 • 习题解答与解析

离散数学——图论部分习题课

离散数学——图论部分习题课

之和为24,而图G中其余点的度数小于3,即图G中其余点的
度数只可能是2或1(由于图G是连通图,所以无零度点). 由此可知,图G中至少有11个顶点: 3个4度点,4个3度点和 4个2度点; 至多有15个顶点: 3个4度点,4个3度点和8个1
度点.
7. 设G1,G2,G3,G4均是4阶3条边的无向简单图,
n ( n 1) 2
即m=n(n-1)/4, 而m为正整数,所以要么n=4k或n=4k+1, 所以不存在3个顶点和6个顶点的自补图.
9. 设有向简单D的度数列为2,2,3,3,入度列为 0,0,2,3,试求D的出度列。 解:设有向简单图D的度数列为2,2,3,3, 对应的顶点分别为v1,v2,v3,v4,
(1)1,1,2,3,5 (3)1,3,1,3,2 答案(2) (2)1,2,3,4,5 (4)1,2,3,4,6
Байду номын сангаас

则它们之间至少有几个是同构的? 解: 4阶3条边非同构的无向简单图共有3个,因此 G1,G2,G3,G4中至少有2个是同构的。
8. 是否存在3个顶点和6个顶点的自补图? 解: 由于顶点为n的无向完全图的边数为
n ( n 1) 2
.
设G的自补图为G’,则G与G’的边数相等. 设它们的边数各为m,于是有m+m=
本章重点
一、掌握有关图的基本概念:
邻接 关联 有向图
平行边 多重图
无向图
n阶图
底图
连通图
自回路(环) 简单图
二、掌握图中顶点的度数,握手定理及其推论 定理:设图G是具有n个顶点、m条边的无向图, 其中点集V={v1, v2,… vn }, 则
deg(
i 1

(图论)离散数学习题参考答案2

(图论)离散数学习题参考答案2
2 6 2 4 1 1 3 3 2 5 8 7 5 1 3 6 8 6 6 3
解此不等式可得 n ≥ 7 , 即 G 中至少有 7 个顶点, 当为 7 个顶点时, 其度数列为 2, 2, 2, 3, 3, 4, 4 , Δ = 4, δ = 2 8. 设有 n 个顶点,由握手定理可得: ∑ d (vi ) = 2m ,即
i =1 n
1 × (3 + 5) + (n − 2) × 2 = 2 × 6
d − (v1 ) = 3, d + (v1 ) = 0; d − (v2 ) = 1, d + (v2 ) = 2; d − (v3 ) = 1, d + (v3 ) = 3; d − (v4 ) = 2, d + (v4 ) = 2
第十一次: (欧拉图与哈密顿图)P305 1.2.11.21 (无向树及其性质)P318 2.24(a), 25(b) 1. (a),(c) 是欧拉图,因为它们均连通且都无奇度顶点; (b),(d)都不是欧拉图;因为(b) 不连通,(d) 既不连通又有奇度顶点;要使(b),(d)变为欧拉图 均至少加两条边,使其连通并且无奇度顶点。如下图所示。
(1) v2 到 v5 长度为 1,2,3,4 的通路数分别为 0, 2, 0,0 条; (2) v5 到 v5 长度为 1,2,3,4 的通路数分别为 0,0,4,0 条; (3) D 中长度为 4 的通路(含回路)为 32 条; (4) D 中长度为小于或等于 4 的回路数为 12 条; (5) 因为 D 是强连通图,所以可达矩阵为 4 阶全 1 方阵,如上图所示。 46. 各点的出度和入度分别如下:
(v2,12)** (v5, 7)*
根据上表的最后一行,从 v1 到其余各点的最短路径和距离如下: v1v2, d(v1,v2)=6 v1v2v6, d(v1,v6)=12 v1v3, d(v1,v3)=3 v1v3v4v5v7, d(v1,v7)=7 v1v3v4, d(v1,v4)=5 v1v3v4v5v7v8, d(v1,v8)=10 v1v3v4v5, d(v1,v5)=6

《离散数学》任务2 (图论部分概念与性质)选择题判断题

《离散数学》任务2 (图论部分概念与性质)选择题判断题

第二部分图论选择题判断题注意:A B C D顺序会出现变动!根据选项确定答案!1. 已知无向图G的邻接矩阵为,则G有(5点,7边).A. 5点,8边B. 6点,7边C. 6点, 8边D. 5点,7边2. 设无向图G的邻接矩阵为,则G的边数为( 5 ).A. 6B. 5C.4 C.33.设无向图G的邻接矩阵为则G的边数为( 7 )。

A.1 B. 6 C. 7 D. 144.设图G=<V, E>,v V,则下列结论成立的是 (()deg2v Vv E∈=∑) .A. deg(v)=2|E|B. deg(v)=|E|C.()deg2v Vv E∈=∑D.()degv Vv E∈=∑5.图G如图二所示,以下说法正确的是 ( {b,c}是点割集 )A. a是割点B. {b,c}是点割集C. {b, d}是点割集D. {c}是点割集6.如图所示,以下说法正确的是 ( e是割点).A. e是割点B. {a,e}是点割集C. {b , e}是点割集D. {d}是点割集7. 如图所示,以下说法正确的是(e是割点)A. e是割点B. {a,e}是点割集C. {b, e}是点割集D. {d}是点割集8. 如图一所示,以下说法正确的是 ( {(d, e)}是边割集 ) .A. {(a, e)}是割边B. {(a, e)}是边割集C. {(a, e) ,(b, c)}是边割集D. {(d, e)}是边割集9.图G如图四所示,以下说法正确的是( {(a, d) ,(b, d)}是边割集) .A. {(a, d)}是割边B. {(a, d)}是边割集C. {(a, d) ,(b, d)}是边割集D. {(b, d)}是边割集图四10.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是 ((a)是强连通的 ).图五A.(a)是强连通的B. (b)是强连通的C. (c)是强连通的D. (d)是强连通的11. 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( (d)只是弱连通的 ).图六A. (a)只是弱连通的B. (b)只是弱连通的C. (c)只是弱连通的D. (d)只是弱连通的12.设G是连通平面图,有v个结点,e条边,r个面,则r = ( e-v+2 ).A. e-v+2B. v+e-2C. e-v-2D. e+v+213.设完全图K n有n个结点(n 2),m条边,当(n为奇数)时,K n中存在欧拉回路.A. m为奇数B. n为偶数C. n为奇数D. m为偶数14.若G是一个欧拉图,则G一定是( 连通图).A. 平面图B. 汉密尔顿图C. 连通图D. 对偶图15.若G是一个汉密尔顿图,则G一定是( 连通图 ).A. 平面图B. 对偶图C. 欧拉图D. 连通图16.无向完全图K4是(汉密尔顿图).A. 欧拉图B. 汉密尔顿图C. 非平面图D. 树17.无向树T有8个结点,则T的边数为( 7 ).A. 6B. 7C.8D.918. 无向简单图G是棵树,当且仅当( G连通且边数比结点数少1 ).A. G连通且边数比结点数少1B. G连通且结点数比边数少1C. G的边数比结点数少1D. G中没有回路19. 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( 5 ).A.8 B.5 C.4 D.320.设G是有n个结点,m条边的连通图,必须删去G的( m-n+1 )条边,才能确定G的一棵生成树A. m-n+1B. m-nC. m+n+1D. n-m+121. 以下结论正确的是(树的每条边都是割边)A. 无向完全图都是欧拉图B. 有n个结点n-1条边的无向图都是树C. 无向完全图都是平面图D. 树的每条边都是割边22.无向图G存在欧拉回路,当且仅当(G连通且至多有两个奇数度结点).A. G中所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点二、判断题1.设G 是一个有7个结点16条边的连通图,则G 为平面图. ( 错 )2. 如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路. ( 错 )3. 如图九所示的图G 不是欧拉图而是汉密尔顿图. ( 对 )4. 设图G 如图七所示,则图G 的点割集是{f}. ( 错 )5. 两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.( 对 )6. 设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去4条边后使之变成树. ( 对 )7. 若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W ≤|S|. ( 对 )8. 汉密尔顿图一定是欧拉图. ( 错 )9. 设G=<V ,E>是具有n 个结点的简单图,若在G 中每一对结点度数之和小于n-1,则在G 中存在一条汉密尔顿路. ( 错 )(应该大于等于n-1)10. 设G 是一个连通平面图,且有6个结点11条边,则G 有7个面.( 对 )11. 已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. ( 对 )12. 设图G 是有5个结点的连通图,结点度数总和为10,则可从G 中删去6条边后使之变成树. ( 错 )(应该删除5-4=1条边)13. 设完全图Kn 有n 个结点(n ≥2),m 条边,当n 为奇数时,Kn 中存在欧拉回路 ( 对 )14. 设G 是一个图,结点集合为V ,边集合为E ,则()v Vdeg 2v E ∈=∑ ( 对 )15. 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b,d)},则该图中的割边为(b, c)( 对 )16. 结点数v与边数e满足e=v的无向连通图就是树. ( 错)17. 无向图G的结点数比边数多1,则G是树. ( 错)18. 设连通平面图G的结点数为5,边数为6,则面数为4. ( 错)19. 如图八所示的图G存在一条欧拉回路. ( 错)20. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( 对 )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学图论部分综合练习1.设图G =<V , E >,则下列结论成立的是 ( ). A .deg(V )=2E B .deg(V )=EC .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg( 2.图G 如图一所示,以下说确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集3.如图二所示,以下说确的是 ( ).A .e 是割点B .{a, e }是点割集C .{b , e }是点割集D .{d }是点割集4.如图三所示,以下说确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集图三5.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的6.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 7.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 8.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点οο ο ο οca b edο f图一图二C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点9.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 10.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .2.设给定图G (如图四所示),则图G 的点割集是 .3.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 .6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题ο ο οο ο c a b e dο f 图四1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题 1.设图GV ,E ,其中V a 1, a 2, a 3, a 4, a 5,Ea 1, a 2,a 2, a 4,a 3, a 1,a 4, a 5,a 5, a 2(1)试给出G 的图形表示;(2)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)求出每个结点的度数; (3)画出图G 的补图的图形.3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)求出每个结点的度数;v 1v 2v 3v 4v 5v 6v 1v 2 v 3 v 5 db a e f g h n 图六οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图八(3)画出其补图的图形.4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形;(2)求出G 权最小的生成树及其权值.5.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试(1)画出相应的最优二叉树; (2)计算它们的权值. 6.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它的权.五、证明题1.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的. 2.设G 是一个n 阶无向简单图,n 是大于等于2的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.3.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.参考解答一、单项选择题1.C 2.C 3.A 4.D 5.D 6.C 7.A 8.D 9.A 10.A二、填空题1.15 2.{f },{c ,e } 3.W|S|4.所有结点的度数全为偶数 5.等于出度 6.n 为奇数 7.v -e +r =2 8.3 9.e=v -1 10.4 11.512.3 13.0三、判断说明题1.解:正确.因为图G 为连通的,且其中每个顶点的度数为偶数. 2.解:(1)图G 1是欧拉图. 因为图G 1中每个结点的度数都是偶数.图G 2是汉密尔顿图.因为图G 2存在一条汉密尔顿回路(不惟一):a (a ,b )b (b , e ) e (e , f ) f (f , g ) g (g , d ) d (d ,c ) c (c , a )a 问题:请大家想一想,为什么图G 1不是汉密尔顿图,图G 2不是欧拉图。

(2)图G 1的欧拉回路为:(不惟一):v 1(v 1, v 2) v 2 (v 2, v 3) v 3 (v 3, v 4) v 4 (v 4, v 5)v 5 (v 5, v 2) v 2 (v 2, v 6)v 6 (v 6, v 4) v 4 (v 4, v 1)v 1 3.解:图G 是平面图.因为只要把结点v 2与v 6的连线(v 2, v 6)拽 到结点v 1的外面,把把结点v 3与v 6的连线 (v 3, v 6)拽到结点v 4, v 5的外面,就得到一个平 面图,如图九所示.4.解:错误.不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.”四、计算题1.解:(1)图G 是有向图:(2)图G 是单侧连通图,也是弱连通图. 2.解:(1)图G 如图十(3)deg(v 1)=2deg(v 2)=3 deg(v 3)=4 deg(v 4)=3deg(v 5)=2(4)补图如图十一οο ο ο ο a 1a 2 a 3 a 4a 5v 1 v 2 v 3 v 4v 5οο οο οv 1 v 2 v 3v 4v 5οοοο οοοο ο οv 5v 1 v 2 v 4v 6 ο v 3图九图十一 3.解:(1)G 的图形如图十二图十二(2)v 1,v 2,v 3,v 4,v 5结点的度数依次为1,2,4,3,2 (3)补图如图十三:图十三 4.解:(1)G 的图形表示如图十四:图十四(2)粗线表示最小的生成树,如图十五如图十五 最小的生成树的权为1+1+2+3=7: 5.解:(1)最优二叉树如图十六所示: 方法(Huffman ):从2,3,5,7,11,13,17 ,19,23,29,31中选2,3为最低层结点,并 从权数中删去,再添上他们的和数,即 5,5,7,11,13,17,19,23,29,31;再从5,5,7,11,13,17,19,23,29,31中选 5,5为倒数第2层结点,并从上述数列中删去,再添上他们的和数,即7,10,11,13, 17,19,23,29,31; 然后,从7,10,11,13,17,19,23,29,31中 选7,10和11,13为倒数第3层结点,并从 如图十六 上述数列中删去,再添上他们的和数,即 17,17,24,19,23,29,31; ……(2)权值为:26+36+55+74+114+134+173+193+233+293+312=12+18+25+28+44+52+51+57+69+87+62=505 6.解:最优二叉树如图十七ο ο ο ο οο ο ο ο 327 13 5 5 11 17 34 οο 160 29 10 ο ο ο 23 19 42 ο ο17 ο 24 ο 5331ο οο 9565 12如图十七它的权为:13+23+22+32+42=27五、证明题1.证明:用反证法.设G 中的两个奇数度结点分别为u 和v .假设u 和v 不连通,即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.这与定理7.1.2的推论矛盾.因而u 和v 一定是连通的.2.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于2的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.3.证明:由定理7.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数.又根据定理7.4.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.。

相关文档
最新文档