共价键理论

合集下载

一、共价键理论

一、共价键理论

一、共价键理论1.1、价键理论价键的形成是原子轨道的重叠或电子配对的结果,如果两个原子都有未成键电子,并且自旋方向相反,就能配对形成共价键。

例如:碳原子可与四个氢原子形成四个C—H键而生成甲烷。

HH..*.C4HHH*HHC+**.*HH由一对电子形成的共价键叫做单键,用一条短直线表示,如果两个原子各用两个或三个未成键电子构成的共价键,则构成的共价键为双键或三键CCCC双键三键共价键形成的基本要点:(1)成键电子自旋方向必需相反;(2)共价键的饱和性;(3)共价键的方向性——成键时,两个电子的原子的轨道发生重叠,而P电子的原子轨道具有一定的空间取向,只有当它从某一方向互相接近时才能使原子轨道得到最大的重叠,生成的分子的能量得到最大程度的降低,才能形成稳定的反之。

重叠最大H稳定结合Cl(1)H重叠较小 + 不稳定结合Cl (2)H(1s)Cl(2p)H不能结合(3)ClS 和P电子原子轨道的三种重叠情况1.2、分子轨道理论分子轨道理论是1932年提出了来的,它是从分子的整体出发去研究分子中每一个电子的运动壮态,认为形成的化学键的电子是在整个分子中运动的。

通过薛定谔方程的解,可以求出描述分子中的电子运动状态的波函数ψ,ψ称为分子轨道,每一个分子轨道ψ有一个相应的能量E, E近似的表示在这个轨道上的电子的电离能。

基本观点:(1)当任何数目的原子轨道重叠时,就可形成同样数目的分子轨道。

例如:两个原子轨道可以线性的组合成两个分子轨道,其中一个比原来的原子轨道的能量低,叫成键轨道(由符号相同的两个原子轨道的波函数相加而成),另一个是由符号不同的两个原子轨道的波函数相减而成,其能量比两个原子轨道的能量高,这中种分子轨道叫做反键轨道。

-=ψ(反键轨道)ψψ2ψA 2B能ψψ(原子轨道) AB量+=ψ1ψψ(成键轨道)1ψBA分子轨道能级图(2)和原子轨道一样,每一个分子轨道只能容纳两个自旋相反的电子,电子总是优先进入能量低的分子轨道,在依次进入能量较高的轨道。

共价键理论

共价键理论

Hybridize
Tetrahedral, all orbital bond angles are 109.5o.
SP2 Hybridization
1s22s22px12py12pz0 basic state Energy 1s22s12px12py1 2pz1 excited state 1s

杂化轨道(hybrid orbital ):杂化后所形 成的新轨道(都是一头大一头小的形态, 有利于轨道重叠)。

(2)hybrid orbital theory

先杂化再成键
(轨道形态优化,单电子数增 多,利于成键)
杂化前后轨道数不变 杂化轨道间尽量在空间取最大夹角

SP3 Hybridization
1s22(sp2)12(sp2)1 2 (sp2)1 2pz1
1s
2s
2p
2s
2p
2p 1s
hybridized state
3 sp2 hybrid orbital
SP2 Hybridization
杂化
CH2=CH2
乙 烯 分 子 的 形 成
头碰头重叠形成C—Cσ键
肩并肩重叠形成C—C 键
SP Hybridization
C C
C C
C C
特殊形式:配位键
2、杂化轨道理论
(1). hybrid orbital theory
(2). S P hybridization
(1)Hybridization hybrid orbital
杂化(Hybridization):原子在形成分 子时,原子中能量相近的轨道可以重新 组合形成新的轨道的过程.

什么是共价键理论

什么是共价键理论

什么是共价键理论
共价键理论是一种描述化学键的理论,主要内容如下:
1. 共价键的本质是电性的,共价键的结合力是两个原子核外共用电子对形成负电区域的吸引力,而不是正、负离子的之间的库伦作用力。

2. 如果A、B两个原子各有一个未成对的电子,若两个单电子所在轨道对称性一致则可以互相重叠,电子以自旋相反的方式成对,两原子形成共价单键,体系的能量降低。

3. 共用电子对也可由其中一个原子提供,称为共价配键。

4. 共价键具有方向性和饱和性。

方向性成因是原子轨道分布具有方向性,饱和性成因是原子价层的单电子数有限。

5. 共价键的特征可以用键能、键长、键角等几个物理量来描述,键角决定几何构型。

以上是共价键理论的主要内容,此理论主要解决H2分子成键实质的问题。

如需了解更多信息,建议查阅化学领域相关书籍文献或咨询化学领域专业人士。

1.2 共价键理论

1.2  共价键理论

共价键理论(1)共价键两种常见的化学键:离子键——电子得失共价键——共用电子对原子的电子配对成键,形成稳定的8电子构型。

4 H + CH C H HH H C H HH路易斯式凯库勒式共价键理论(VB,valence bond theory)杂化轨道理论(hybrid orbital theory)价键理论原子轨道重叠共价键的形成定域性:自旋反平行的两个电子绕核做高速运动,属于成键原子共有。

电子对在两核之间出现的几率最大。

方向性:相连原子轨道重叠成键要满足最大重叠条件。

饱和性:一个电子和另一个电子配对以后,就不能和其他电子配对,原子中的成单电子数决定成键总数。

杂化轨道理论1931年,鲍林(Pauling L)提出轨道杂化理论。

碳原子化合价应该为2,最外层电子排布碳原子的电子排布实际上CH 4中碳原子为4价?1.碳原子的杂化6杂化:成键原子的几种能量相近的原子轨道混合起来,重新组合成一组新轨道的过程。

所形成的新轨道称为杂化轨道。

2p x 2p y 2p z2s基态2p x 2p y 2p z2s激发态激发s p 3杂化杂化轨道理论(2)孤立的原子不发生杂化,只有形成分子的过程中才发生。

(3)条件不同,杂化轨道类型可能不同。

(4)碳原子的杂化:sp3 sp2sp7杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。

sp 2杂化——1个s 轨道+2个p 轨道,生成3个sp 2杂化轨道。

sp 3杂化——1个s 轨道+3个p 轨道,生成4个sp 3杂化轨道。

杂化轨道的空间结构正四面体形轨道夹角109.50甲烷分子89杂化轨道理论SP 3杂化杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。

sp 2杂化——1个s 轨道+2个p 轨道,生成3个sp 2杂化轨道。

sp 3杂化——1个s 轨道+3个p 轨道,生成4个sp 3杂化轨道。

杂化轨道的空间结构平面三角形轨道夹角1200正四面体形轨道夹角109.50甲烷分子1011杂化轨道理论SP 2杂化杂化的三种类型sp 杂化——1个s 轨道+1个p 轨道,生成2个sp 杂化轨道。

共价键理论

共价键理论
7
共价键
5、键参数
价键理论
键能表征键的强弱,用键长、键角描述分子的 空间构型,用元素的电负性差值衡量键的极性 键能 键能越大,键越牢固 解离能 双原子分子 多原子分子?
例: 3(g)-NH
NH2(g)+ H(g) D1=427kJ/mol NH2(g)-- NH(g)+ H(g) D2=375kJ/mol NH(g)-- N(g)+ H(g) D3=365kJ/mol 总:NH3(g)-- N(g)+ 3H(g) D=1158kJ/mol E(N-H)=D/3=386kJ/mol
8
共价键
价键理论
键长——成键原子核间的平衡距离 键长愈短,键愈牢固 单键键长>双键键长>叁键键长
键角——多原子分子中,相邻二化学键间夹角 H2S ,H-S-H 键角为92 CO2,O=C=O 的键角为 180 极性键 键的极性 非极性键 本质:由于成键原子电负性不同,导致 正负电荷重心重合(不重合)
杂化后轨道方向性增强,有利于最大重叠--能量因素
11
共价键
1、能量相近原则
杂化轨道理论
疑问四:如何杂化?— 杂化原则
参与杂化的轨道能量相近,故通常参与杂化的原子 轨道为价层原子轨道。
2、轨道数目守恒原则 3、能量重新分配原则
sp1
sp2
sp3
参与杂化的原子轨道平均分配
4、杂化轨道对称性分布原则
杂化轨道在球形空间中轨道间的键角相等
21
1
配位键
讨论:只有非金属间才能形成共价键
共价键
1、共价键的形成 研究对象:H2的形成 自旋平行,出现斥态, 系统能量高; 自旋相反,出现基态, 引力增强,能量降低 74pm < 2*53pm 说明原子轨道发生了重叠

共价键理论

共价键理论

1927年,Heitler 和London 用量子力学处理氢气分子H2,解决了两个氢原子之间化学键的本质问题,并将对H2 的处理结果推广到其它分子中,形成了以量子力学为基础的共价键理论(V. B. 法)。

1共价键理论2共价键的形成A、B 两原子各有一个成单电子,当A、B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。

形成的共价键越多,则体系能量越低,形成的分子越稳定。

因此,各原子中的未成对电子尽可能多地形成共价键。

配位键形成条件:一种原子中有孤对电子,而另一原子中有可与孤对电子所在轨道相互重叠的空轨道。

在配位化合物中,经常见到配位键。

、3共价键的特征——饱和性、方向性饱和性:几个未成对电子(包括原有的和激发而生成的),最多形成几个共价键。

例如:O 有两个单电子,H有一个单电子,所以结合成水分子,只能形成2个共价键;C最多能与H 形成4个共价键。

方向性:各原子轨道在空间分布是固定的,为了满足轨道的最大重叠,原子间成共价键时,当然要具有方向性。

1940年Sidgwick 提出价层电子对互斥理论,用以判断分子的几何构型. 分子ABn 中,A 为中心,B 为配体,B均与A有键联关系. 本节讨论的ABn 型分子中,A为主族元素的原子.4理论要点ABn 型分子的几何构型取决于中心 A 的价层中电子对的排斥作用. 分子的构型总是采取电子对排斥力平衡的形式.1)中心价层电子对总数和对数a)中心原子价层电子总数等于中心A 的价电子数(s + p)加上配体在成键过程中提供的电子数,如CCl4 4 + 1×4 = 8b)氧族元素的氧族做中心时:价电子数为6,如H2O,H2S;做配体时:提供电子数为0,如在CO2中.c)处理离子体系时,要加减离子价d)总数除以2 ,得电子对数:总数为奇数时,对数进1,例如:总数为9,对数为5 2)电子对和电子对空间构型的关系电子对相互排斥,在空间达到平衡取向. 3)分子的几何构型与电子对构型的关系若配体数和电子对数相一致,各电子对均为成键电对,则分子构型和电子对构型一致。

共价键理论

共价键理论
原子具有自旋相反的未成对电子是化合成键的先决条件, 各具有自旋相反的一个电子的两个原子,可以相互配对形成稳 定的单键,这对电子为两个原子所共有。
共价键理论
一个原子含有几个未成对电子,就可以和几个自旋量 子数不同的电子配对成键,或者说,原子能形成共价键的数 目是受原子中未成对电子数目限制的,这就是共价键的饱和 性。例如,H原子只有一个未成对电子,它只能形成H2而不 能形成H3;N原子有三个未成对电子,N和H只能形成NH3, 而不能形成NH4。由此可知,一些元素的原子(如N、O、F 等)的共价键数等于其原子的未成对电子数。
共价键理论
图2-7 CH4分子的形成
共价键理论
C原子的1个s轨道与3个p轨道经杂化形成4个sp3杂化轨道 ,每一个sp3新轨道一端膨胀一端缩小,C原子和H原子成键时 从较大的一端进行轨道重叠,4个sp3杂化轨道间的夹角为 109.5°。可见,原子轨道杂化的原因是杂化后轨道形状发生改 变(一端显得突出而肥大),便于最大重叠;轨道方向改变,使 成键电子距离最远,斥力最小,能量降低。总之,杂化后能 增大轨道重叠区域,增强成键能力,使分子更稳定。
共价键理论
(2)π键。 原子轨道以“肩并肩”的方式 发生重叠,轨道重叠部分对通过
一个键轴的平面具有能面反对称性,这 种键称为π键,如pzpz、pypy轨道重叠形成π 键,如图2-5(b)所示。
共价键理论
图2-5 σ键和π键形成示意图
共价键理论
有些分子中既有σ键, 也有π键。例如,N2分子的 结构中有一个σ键和两个π键。 N原子的电子层结 ,而pypy、pz-pz分别沿y轴和z轴 相互平行或以“肩并肩”的 方式重叠形成π键,如图2-6 所示。
含有配位键的化合物称为配位化合物,这类化合物将在以后 的章节中讨论。

2020高中化学路易斯共价键理论

2020高中化学路易斯共价键理论

Each Covalent Bond contains two electrons
Carbon has 4 valence electrons
H HCH
H methane
H HCH
H
HC
Ne Neon
Stable Octet required
Covalent Bonding – Atoms Share Electrons
NO2
Number of valence electrons = 17
ONO
ONO
ONO
Molecules and atoms which are neutral (contain no formal charge) and with an
unpaired electron are called Radicals
可以通过共用电子对形成分子,共价键,共价分子。 八隅体规则
Lewis Symbols
Represent the number of valence electrons as dots Valence number is the same as the Periodic Table Group Number
1. Odd Number of Electrons
NO
Number of valence electrons = 11
NO
NO
Resonace Arrows
Resonance occurs when more than one valid Lewis structure can be written for a particular molecule (i.e. rearrange electrons)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、价键理论的要点
1、要有自旋相反的未配对的电子
H↑+ H↓-→H↑↓H表示:H:H或H-H
2、电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3,这就是共价键的饱和性。
3、原子轨道的最大程度重叠(重叠得越多,形成的共价键越牢固)
H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生
教案用纸
教学内容、方法及过程
附记
重叠,核间形成一个电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。
(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)
靠共用电子对,形成化学键,得到稳定电子层结构。
定义:原子间借用共用电子对结合的化学键叫作共价键。
对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。
一、共价键的形成和本质(应用量子力学)
当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:E0﹤2E,形成稳定的共价键。
E(C-H)=(D1+ D2+ D3+ D4)/4= 415.25 KJ/mol
2、键长(用X射线法):
成键的两个原子核之间的距离。
两个原子共价半径之和=键长
键长越短,键能越大,共价键越牢固。
3、键角
键长和键角确定,分子构型就确定了。
价键理论比较简明地阐述了共价键的形成过程和本质,并成功地解释了共价键的饱和性和方向性,但在解释分子的空间构型(结构)方面发生一定
教案用纸
教学内容、方法及过程
附记
第5讲
(2课时)
授课日期:2016.10.06
教学目的:掌握共价键形成,特征,类型及键参数
教学重点:共价键特征及类型;
教学难点:共价键类型及键参数
教学设计:1、首先给大家引入共价键的形成原理。
2、着重分析共价键的类型以及三种键参数。
教学内容:
第一节共价键理论
1916年,路易斯提出共价键理论。
指298.15K,101.3KPa条件下,
AB(g)-→A(g)+ B(g)所需的E(KJ/mol)
双原子分子,其键能=离解能D,如Cl2,HCl
多原子分子,指的是平均键能:
例:CH4D1= 435.1KJ/mol;D2= 443.5KJ/mol;D3= 443.5KJ/mol;D4= 338.9KJ/mol;
极性共价键是非极性共价键和离子键的过渡键型。
3、配位共价键(配位键)
原子或离子有空轨道,有孤对电子,配位键的离子或分子很普遍(第九章)。
教案用纸
教学内容、方法及过程
附记
五、键参数
表征共价键的物理量叫键参数。
键能:共价键的强度。
键长、键角:以共价键形成的分子的空间构型(几何构型)。
1、键能:衡量共价键强弱的物理量。
三、共价键的特征
饱和性、方向性
四、共价键的类型
1、σ键和π键(根据原子轨道重叠方式不同而分类)
s-s:σ键,如:H-H
s-p:σ键,如:H-Cl
p-p:σ键,如:Cl-Cl π键,
单键:σ键
双键:一个σ键,一个π键
叁键:一个σ键,两个π键
教案用纸
教学内容、方法及过程
附记
例:N≡N
σ键的重叠程度比π键大,∴π键不如σ键牢固。
σ键
π键
原子轨道重叠方式
头碰头
肩并肩
能单独存在
不能单独存在
沿轴转180O
符号不变
符号变
牢固程度
牢固

含共价双键和叁键的化合物重键容易打开,参与反应。
2、非极性共价键和极性共价键
根据共价键的极性分(电子云在两核中的分布),由同种原子组成的共价键为非极性共价键。例:H2,O2,N2等
一般来说,不同种原子组成的共价电负性的大小来表示。
教案用纸
教学内容、方法及过程
附记
困难。
教学小结:
掌握共价键理论,了解共价键形成的特点
作业:
思考价键理论的要点
教后记:
相关文档
最新文档